Briquetting of Poplar Wood from Short Rotation Coppice—The Effects of Moisture Content and Hammer Mill Screen Size
Abstract
:1. Introduction
2. Materials and Methods
2.1. Feedstock and Material Preparation
2.2. Ash and Elemental Composition of Poplar Wood
2.3. Briquetting Process
2.4. Experimental Design
- hammer mill screen size: 5.3 mm, 10.3 mm, and 25.4 mm,
- moisture content: 13.6%, 19%, and 25% (w.b.).
2.5. Physical Properties
3. Results and Discussion
3.1. Properties of Briquettes from Poplar-Max-4 Tree Fractions
3.2. Compressed Density
3.3. Relaxed Density
3.4. Relaxation Ratio
3.5. Shatter Index
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chou, C.-S.; Lin, S.-H.; Lu, W.-C. Preparation and characterization of solid biomass fuel made from rice straw and rice bran. Fuel Process. Technol. 2009, 90, 980–987. [Google Scholar] [CrossRef]
- Fontes, C.H.d.O.; Freires, F.G.M. Sustainable and renewable energy supply chain: A system dynamics overview. Renew. Sustain. Energy Rev. 2018, 82, 247–259. [Google Scholar]
- Ali, S.; Akter, S.; Ymeri, P.; Fogarassy, C. How the use of biomass for green energy and waste incineration practice will affect GDP growth in the less developed countries of the EU (A case study with Visegrad and Balkan countries). Energies 2022, 15, 2308. [Google Scholar] [CrossRef]
- Ali, S.; Akter, S.; Fogarassy, C. The role of the key components of renewable energy (combustible renewables and waste) in the context of CO2 emissions and economic growth of selected countries in Europe. Energies 2021, 14, 2034. [Google Scholar] [CrossRef]
- Dincer, I. Renewable energy and sustainable development: A crucial review. Renew. Sustain. Energy Rev. 2000, 4, 157–175. [Google Scholar] [CrossRef]
- Owusu, P.A.; Asumadu-Sarkodie, S. A review of renewable energy sources, sustainability issues and climate change mitigation. Cogent Eng. 2016, 3, 1167990. [Google Scholar] [CrossRef]
- Zahraee, S.M.; Shiwakoti, N.; Stasinopoulos, P. Biomass supply chain environmental and socio-economic analysis: 40-years comprehensive review of methods, decision issues, sustainability challenges, and the way forward. Biomass Bioenergy 2020, 142, 105777. [Google Scholar] [CrossRef]
- Filbakk, T.; Skjevrak, G.; Høibø, O.; Dibdiakova, J.; Jirjis, R. The influence of storage and drying methods for scots pine raw material on mechanical pellet properties and production parameters. Fuel Process. Technol. 2011, 92, 871–878. [Google Scholar] [CrossRef]
- Hansted, A.L.S.; Nakashima, G.T.; Martins, M.P.; Yamamoto, H.; Yamaji, F.M. Comparative analyses of fast growing species in different moisture content for high quality solid fuel production. Fuel 2016, 184, 180–184. [Google Scholar] [CrossRef]
- Obi, O.F. Evaluation of the physical properties of composite briquette of sawdust and palm kernel shell. Biomass Convers. Biorefinery 2015, 5, 271–277. [Google Scholar] [CrossRef]
- Sahoo, G.; Sharma, A.; Dash, A.C. Biomass from trees for bioenergy and biofuels—A briefing paper. Mater. Today Proc. 2022, 65, 461–467. [Google Scholar] [CrossRef]
- Obi, O.F.; Okongwu, K.C. Characterization of fuel briquettes made from a blend of rice husk and palm oil mill sludge. Biomass Convers. Biorefinery 2016, 6, 449–456. [Google Scholar] [CrossRef]
- Orisaleye, J.I.; Jekayinfa, S.O.; Adebayo, A.O.; Ahmed, N.A.; Pecenka, R. Effect of densification variables on density of corn cob briquettes produced using a uniaxial compaction biomass briquetting press. Energy Sources Part A Recovery Util. Environ. Eff. 2018, 40, 3019–3028. [Google Scholar] [CrossRef]
- Pecenka, R.; Lenz, H.; Jekayinfa, S.O.; Hoffmann, T. Influence of tree species, harvesting method and storage on energy demand and wood chip quality when chipping poplar, willow and black locust. Agriculture 2020, 10, 116. [Google Scholar] [CrossRef]
- Ratknić, M.; Braunović, S. The possibility of establishing short rotation coppices for energy purposes in the kolubara district. In Sustainable Agriculture and Rural Development in Terms of the Republic of Serbia Strategic Goals Realization with the Danube Region-Development and Application of Clean Technologies in Agriculture-Thematic Proceedings, December 2016, Belgrade, Serbia; Institute of Agricultural Economics: Belgrade, Serbia, 2017; pp. 216–233. [Google Scholar]
- Scriba, C.; Lunguleasa, A.; Salca, E.-A.; Ciobanu, V.D. Properties of biomass obtained from short-rotation inger willow clone grown on a contaminated and non-contaminated land. Maderas. Ciencia y Tecnología 2021, 23, 1–12. [Google Scholar] [CrossRef]
- Ehlert, D.; Pecenka, R. Harvesters for short rotation coppice: Current status and new solutions. Int. J. For. Eng. 2013, 24, 170–182. [Google Scholar] [CrossRef]
- European Commission Joint Research Centre. Brief on Biomass for Energy in the European Union; Publications Office: Brussels, Belgium, 2019. [Google Scholar] [CrossRef]
- De Jesus Eufrade-Junior, H.; Guerra, S.P.S.; Sansígolo, C.A.; Ballarin, A.W. Management of eucalyptus short-rotation coppice and its outcome on fuel quality. Renew. Energy 2018, 121, 309–314. [Google Scholar] [CrossRef]
- Guerra, S.P.; Garcia, E.A.; Lanças, K.P.; Rezende, M.A.; Spinelli, R. Heating value of eucalypt wood grown on src for energy production. Fuel 2014, 137, 360–363. [Google Scholar] [CrossRef]
- Zöhrer, J.; Probst, M.; Dumfort, S.; Lenz, H.; Pecenka, R.; Insam, H.; Ascher-Jenull, J. Molecular monitoring of the poplar wood chip microbiome as a function of storage strategy. Int. Biodeterior. Biodegrad. 2021, 156, 105133. [Google Scholar] [CrossRef]
- Ruttens, A.; Boulet, J.; Weyens, N.; Smeets, K.; Adriaensen, K.; Meers, E.; Van Slycken, S.; Tack, F.; Meiresonne, L.; Thewys, T. Short rotation coppice culture of willows and poplars as energy crops on metal contaminated agricultural soils. Int. J. Phytoremediation 2011, 13, 194–207. [Google Scholar] [CrossRef]
- Warren, C.R.; Burton, R.; Buchanan, O.; Birnie, R.V. Limited adoption of short rotation coppice: The role of farmers’ socio-cultural identity in influencing practice. J. Rural. Stud. 2016, 45, 175–183. [Google Scholar] [CrossRef]
- Guerra, S.P.S.; Oguri, G.; Spinelli, R. Harvesting eucalyptus energy plantations in brazil with a modified new holland forage harvester. Biomass Bioenergy 2016, 86, 21–27. [Google Scholar] [CrossRef]
- Pecenka, R.; Hoffmann, T. Harvest technology for short rotation coppices and costs of harvest, transport and storage. Agron. Res. 2015, 13, 361–371. [Google Scholar]
- Pecenka, R.; Lenz, H.; Hering, T. Options for optimizing the drying process and reducing dry matter losses in whole-tree storage of poplar from short-rotation coppices in germany. Forests 2020, 11, 374. [Google Scholar] [CrossRef]
- Tumuluru, J.S.; Wright, C.T.; Hess, J.R.; Kenney, K.L. A review of biomass densification systems to develop uniform feedstock commodities for bioenergy application. Biofuels Bioprod. Biorefining 2011, 5, 683–707. [Google Scholar] [CrossRef]
- Islas, J.; Manzini, F.; Masera, O.; Vargas, V. Solid biomass to heat and power. In The Role of Bioenergy in the Bioeconomy; Elsevier: Amsterdam, The Netherlands, 2019; pp. 145–177. [Google Scholar]
- De Jesus Eufrade-Junior, H.; Nakashima, G.T.; Yamaji, F.M.; Guerra, S.P.S.; Ballarin, A.W. Eucalyptus short-rotation coppice for solid fuel production. Ind. Crops Prod. 2017, 108, 636–640. [Google Scholar] [CrossRef]
- Kulig, R.; Skonecki, S.; Lysiak, G. The effect of binder addition on the parameters of compacted poplar wood sawdust. Teka Komisji Motoryzacji i Energetyki Rolnictwa 2012, 12, 87–91. [Google Scholar]
- Han, G.-S.; Kim, Y.-I.; Mun, K.-T. Briquetting from japanese larch and hyunsasi poplar. J. Korean Wood Sci. Technol. 2012, 40, 1–9. [Google Scholar] [CrossRef]
- Stolarski, M.J.; Szczukowski, S.; Tworkowski, J.; Krzyżaniak, M.; Gulczyński, P.; Mleczek, M. Comparison of quality and production cost of briquettes made from agricultural and forest origin biomass. Renew. Energy 2013, 57, 20–26. [Google Scholar] [CrossRef]
- Shojaeiarani, J.; Bajwa, D.S.; Bajwa, S.G. Properties of densified solid biofuels in relation to chemical composition, moisture content, and bulk density of the biomass. BioResources 2019, 14, 4996–5015. [Google Scholar] [CrossRef]
- Cuiping, L.; Chuangzhi, W.; Haitao, H. Chemical elemental characteristics of biomass fuels in china. Biomass Bioenergy 2004, 27, 119–130. [Google Scholar] [CrossRef]
- Tumuluru, J.; Tabil, L.; Song, Y.; Iroba, K.; Meda, V. Impact of process conditions on the density and durability of wheat, oat, canola, and barley straw briquettes. Bioenergy Res. 2015, 8, 388–401. [Google Scholar] [CrossRef] [Green Version]
- Setter, C.; Ataíde, C.H.; Mendes, R.F.; de Oliveira, T.J.P. Influence of particle size on the physico-mechanical and energy properties of briquettes produced with coffee husks. Environ. Sci. Pollut. Res. 2021, 28, 8215–8223. [Google Scholar] [CrossRef]
- Sharma, H.B.; Sarmah, A.K.; Dubey, B. Hydrothermal carbonization of renewable waste biomass for solid biofuel production: A discussion on process mechanism, the influence of process parameters, environmental performance and fuel properties of hydrochar. Renew. Sustain. Energy Rev. 2020, 123, 109761. [Google Scholar] [CrossRef]
- Carone, M.T.; Pantaleo, A.; Pellerano, A. Influence of process parameters and biomass characteristics on the durability of pellets from the pruning residues of Olea europaea L. Biomass Bioenergy 2011, 35, 402–410. [Google Scholar] [CrossRef]
- Pérez, S.; Renedo, C.; Ortiz, A.; Mañana, M.; Delgado, F.; Tejedor, C. Energetic density of different forest species of energy crops in cantabria (spain). Biomass Bioenergy 2011, 35, 4657–4664. [Google Scholar] [CrossRef]
- Andrejko, D.; Grochowicz, J. Effect of the moisture content on compression energy and strength characteristic of lupine briquettes. J. Food Eng. 2007, 83, 116–120. [Google Scholar] [CrossRef]
- Civitarese, V.; Acampora, A.; Sperandio, G.; Assirelli, A.; Picchio, R. Production of wood pellets from poplar trees managed as coppices with different harvesting cycles. Energies 2019, 12, 2973. [Google Scholar] [CrossRef]
- Shaw, M.; Karunakaran, C.; Tabil, L. Physicochemical characteristics of densified untreated and steam exploded poplar wood and wheat straw grinds. Biosyst. Eng. 2009, 103, 198–207. [Google Scholar] [CrossRef]
- Mediavilla, I.; Esteban, L.; Fernández, M. Optimisation of pelletisation conditions for poplar energy crop. Fuel Process. Technol. 2012, 104, 7–15. [Google Scholar] [CrossRef]
- Styks, J.; Wróbel, M.; Frączek, J.; Knapczyk, A. Effect of compaction pressure and moisture content on quality parameters of perennial biomass pellets. Energies 2020, 13, 1859. [Google Scholar] [CrossRef]
- Obi, O.F.; Pecenka, R.; Clifford, M.J. A review of biomass briquette binders and quality parameters. Energies 2022, 15, 2426. [Google Scholar] [CrossRef]
- Jiang, L.; Liang, I.; Yuan, X.; Li, H.; Li, C.; Xiao, Z.; Huang, H.; Wang, H.; Zeng, G. Co-pelletization of sewage sludge and biomass: The density and hardness of pellet. Bioresour. Technol. 2014, 166, 435–443. [Google Scholar] [CrossRef] [PubMed]
- Hernandez-Estrada, A.; Pecenka, R.; Dumfort, S.; Ascher-Jenull, J.; Lenz, H.; Idler, C.; Hoffmann, T. Establishment of a laboratory scale set-up with controlled temperature and high humidity to investigate dry matter losses of wood chips from poplar during storage. Forests 2022, 13, 459. [Google Scholar] [CrossRef]
- Carmona, R.; Nuñez, T.; Alonso, M. Biomass yield and quality of an energy dedicated crop of poplar (populus spp.) clones in the mediterranean zone of chile. Biomass Bioenergy 2015, 74, 96–102. [Google Scholar] [CrossRef]
- Sannigrahi, P.; Ragauskas, A.J.; Tuskan, G.A. Poplar as a feedstock for biofuels: A review of compositional characteristics. Biofuels Bioprod. Biorefining 2010, 4, 209–226. [Google Scholar] [CrossRef]
- Klasnja, B.; Kopitovic, S.; Orlovic, S. Wood and bark of some poplar and willow clones as fuelwood. Biomass Bioenergy 2002, 23, 427–432. [Google Scholar] [CrossRef]
- Güleç, F.; Pekaslan, D.; Williams, O.; Lester, E. Predictability of higher heating value of biomass feedstocks via proximate and ultimate analyses–a comprehensive study of artificial neural network applications. Fuel 2022, 320, 123944. [Google Scholar] [CrossRef]
- Lenz, H.; Pecenka, R.; Hartung, E.; Idler, C. Development and test of a simplified method to calculate dry matter loss during open-air storage of poplar wood chips by analysing ash contents. Biomass Bioenergy 2016, 94, 258–267. [Google Scholar] [CrossRef]
- Myeong, S.-J.; Han, S.-H.; Shin, S.-J. Analysis of chemical compositions and energy contents of different parts of yellow poplar for development of bioenergy technology. J. Korean Soc. For. Sci. 2010, 99, 706–710. [Google Scholar]
- Gómez-Martín, J.; Castaño-Díaz, M.; Cámara-Obregón, A.; Álvarez-Álvarez, P.; Folgueras-Díaz, M.B.; Diez, M.A. On the chemical composition and pyrolytic behavior of hybrid poplar energy crops from northern spain. Energy Rep. 2020, 6, 764–769. [Google Scholar] [CrossRef]
- Cen/tc 335-Solid Biofuels, En 14774-2:2009; Solid Biofuels–Determination of Moisture Content—Oven Dry Method—Part 2: Total Moisture. European Committee for Standardization: Brussels, Belgium, 2009.
- Minitab. Minitab Statistical Software version 19. Available online: https://www.minitab.com/en-us/products/minitab/ (accessed on 13 January 2022).
- ASTM E873-82; Standard test method for bulk density of densified particulate biomass fuels. 2013. Available online: https://www.astm.org/e0873-82r06.html (accessed on 13 April 2022).
- ASTM D2395-17; Standard test methods for density and specific gravity (relative density) of wood and wood-based materials. ASTM International: West Conshohocken, PA, USA, 2017. Available online: https://www.astm.org/d2395-17.html (accessed on 13 April 2022).
- Antwi-Boasiako, C.; Acheampong, B. Strength properties and calorific values of sawdust-briquettes as wood-residue energy generation source from tropical hardwoods of different densities. Biomass Bioenergy 2016, 85, 144–152. [Google Scholar] [CrossRef]
- Kpalo, S.Y.; Zainuddin, M.F.; Manaf, L.A.; Roslan, A.M. Production and characterization of hybrid briquettes from corncobs and oil palm trunk bark under a low pressure densification technique. Sustainability 2020, 12, 2468. [Google Scholar] [CrossRef] [Green Version]
- Tumuluru, J.S. Effect of moisture content and hammer mill screen size on the briquetting characteristics of woody and herbaceous biomass. KONA Powder Part. J. 2019, 36, 241–251. [Google Scholar] [CrossRef]
- Mani, S.; Tabil, L.G.; Sokhansanj, S. Specific energy requirement for compacting corn stover. Bioresour. Technol. 2006, 97, 1420–1426. [Google Scholar] [CrossRef] [PubMed]
- Aransiola, E.; Oyewusi, T.; Osunbitan, J.; Ogunjimi, L. Effect of binder type, binder concentration and compacting pressure on some physical properties of carbonized corncob briquette. Energy Rep. 2019, 5, 909–918. [Google Scholar] [CrossRef]
- Wang, X.; Chen, Z.; Yu, G.; Yuan, X. Effects of poplar fibres as solid bridge on the physical characteristics of biomass briquette made from sawdust and bamboo powder. Wood Res. 2018, 63, 141–153. [Google Scholar]
- Mohsenin, N.; Zaske, J. Stress relaxation and energy requirements in compaction of unconsolidated materials. J. Agric. Eng. Res. 1976, 21, 193–205. [Google Scholar] [CrossRef]
- Saeed, A.A.H.; Yub Harun, N.; Bilad, M.R.; Afzal, M.T.; Parvez, A.M.; Roslan, F.A.S.; Abdul Rahim, S.; Vinayagam, V.D.; Afolabi, H.K. Moisture content impact on properties of briquette produced from rice husk waste. Sustainability 2021, 13, 3069. [Google Scholar] [CrossRef]
- Adapa, P.; Schoenau, G.; Tabil, L.; Sokhansanj, S.; Crerar, B. Pelleting of Fractionated Alfalfa Products. In Proceedings of the 2003 ASAE Annual Meeting, Winchester, NV, USA, 27–30 July 2003; American Society of Agricultural and Biological Engineers: St. Joseph, MI, USA, 2003; p. 1. [Google Scholar]
Fraction | Source | DF | Adj SS | Adj MS | F-Value | p-Value |
---|---|---|---|---|---|---|
Crown | Screen size | 2 | 0.156 | 0.078 | 3.94 | 0.038 |
Moisture content | 2 | 0.047 | 0.023 | 1.18 | 0.331 | |
Sieve size * Moisture content | 4 | 0.044 | 0.011 | 0.56 | 0.697 | |
Error | 18 | 0.357 | 0.020 | |||
Total | 26 | 0.605 | ||||
Stem | Screen size | 2 | 0.405 | 0.203 | 19.63 | 0.000 |
Moisture content | 2 | 0.179 | 0.090 | 8.68 | 0.002 | |
Sieve size * Moisture content | 4 | 0.009 | 0.002 | 0.21 | 0.927 | |
Error | 18 | 0.186 | 0.010 | |||
Total | 26 | 0.779 |
Screen Size (mm) | Moisture Content (% w.b.) | Compressed Density (g/cm−3) | |
---|---|---|---|
Crown Fraction | Stem Fraction | ||
5.3 | 13.6 | 0.92 a | 1.07 a |
19.0 | 1.11 a | 0.95 a,b | |
25.0 | 0.93 a | 0.90 a,b | |
10.3 | 13.6 | 1.03 a | 1.05 a |
19.0 | 1.02 a | 0.91 a,b | |
25.0 | 0.93 a | 0.85 a,b,c | |
25.4 | 13.6 | 0.82 a | 0.80 a,b,c |
19.0 | 0.85 a | 0.72 b,c | |
25.0 | 0.82 a | 0.57 c |
Fraction | Source | DF | Adj SS | Adj MS | F-Value | p-Value |
---|---|---|---|---|---|---|
Crown | Screen size | 2 | 0.119 | 0.059 | 3.85 | 0.041 |
Moisture content | 2 | 0.014 | 0.007 | 0.45 | 0.643 | |
Screen size * Moisture content | 4 | 0.122 | 0.031 | 1.99 | 0.140 | |
Error | 18 | 0.278 | 0.015 | |||
Total | 26 | 0.533 | ||||
Stem | Screen size | 2 | 0.900 | 0.450 | 33.75 | 0.000 |
Moisture content | 2 | 0.177 | 0.089 | 6.64 | 0.007 | |
Screen size * Moisture content | 4 | 0.025 | 0.006 | 0.46 | 0.761 | |
Error | 18 | 0.240 | 0.013 | |||
Total | 26 | 1.342 |
Screen Size (mm) | Moisture Content (% w.b.) | Relaxed Density (g/cm3) | |
---|---|---|---|
Crown Fraction | Stem Fraction | ||
5.3 | 13.6 | 0.79 a | 0.96 a |
19.0 | 1.05 a | 0.81 a | |
25.0 | 0.95 a | 0.84 a | |
10.3 | 13.6 | 0.91 a | 0.97 a |
19.0 | 0.79 a | 0.87 a | |
25.0 | 0.91 a | 0.81 a | |
25.4 | 13.6 | 0.78 a | 0.65 a,b |
19.0 | 0.76 a | 0.45 b | |
25.0 | 0.77 a | 0.37 b |
Fraction | Source | DF | Adj SS | Adj MS | F-Value | p-Value |
---|---|---|---|---|---|---|
Crown | Screen size | 2 | 0.019 | 0.009 | 0.16 | 0.852 |
Moisture content | 2 | 0.058 | 0.029 | 0.50 | 0.615 | |
Screen size * Moisture content | 4 | 0.122 | 0.030 | 0.52 | 0.721 | |
Error | 18 | 1.053 | 0.058 | |||
Total | 26 | 1.252 | ||||
Stem | Screen size | 2 | 0.743 | 0.372 | 9.04 | 0.002 |
Moisture content | 2 | 0.112 | 0.056 | 1.36 | 0.282 | |
Screen size * Moisture | 4 | 0.160 | 0.040 | 0.98 | 0.445 | |
Error | 18 | 0.740 | 0.041 | |||
Total | 26 | 1.756 |
Screen Size (mm) | Moisture Content (% w.b.) | Relaxation Ratio | |
---|---|---|---|
Crown-Fraction | Stem-Fraction | ||
5.3 | 13.6 | 1.19 a | 1.12 a |
19.0 | 1.06 a | 1.17 a | |
25.0 | 1.02 a | 1.07 a | |
10.3 | 13.6 | 1.14 a | 1.09 a |
19.0 | 1.30 a | 1.14 a | |
25.0 | 1.02 a | 1.06 a | |
25.4 | 13.6 | 1.05 a | 1.23 a |
19.0 | 1.14 a | 1.61 a | |
25.0 | 1.12 a | 1.55 a |
Fraction | Source | DF | Adj SS | Adj MS | F-Value | p-Value |
---|---|---|---|---|---|---|
Crown | Screen size | 2 | 1854.5 | 927.23 | 54.81 | 0.000 |
Moisture content | 2 | 1416.3 | 708.16 | 41.86 | 0.000 | |
Screen size * Moisture content | 4 | 1440.8 | 360.21 | 21.29 | 0.000 | |
Error | 18 | 304.5 | 16.92 | |||
Total | 26 | 5016.1 | ||||
Stem | Screen size | 2 | 4762.4 | 2381.21 | 52.39 | 0.000 |
Moisture content | 2 | 3435.9 | 1717.97 | 37.80 | 0.000 | |
Screen size * Moisture content | 4 | 2118.2 | 529.54 | 11.65 | 0.000 | |
Error | 18 | 818.1 | 45.45 | |||
Total | 26 | 11,134.6 |
Screen Size (mm) | Moisture Content (% w.b.) | Shatter Index (%) | |
---|---|---|---|
Crown-Fraction | Stem-Fraction | ||
5.3 | 13.6 | 100.0 a | 91.4 a,b,c |
19.0 | 100.0 a | 97.7 a | |
25.0 | 89.0 a,b | 79.7 a,b,c | |
10.3 | 13.6 | 95.2 a,b | 96.3 a,b |
19.0 | 95.3 a,b | 85.9 a,b,c | |
25.0 | 96.1 a,b | 83.1 a,b,c | |
25.4 | 13.6 | 95.2 a,b | 76.9 c |
19.0 | 84.9 b | 77.3 b,c | |
25.0 | 55.0 c | 28.3 d |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Obi, O.F.; Pecenka, R. Briquetting of Poplar Wood from Short Rotation Coppice—The Effects of Moisture Content and Hammer Mill Screen Size. Energies 2023, 16, 1454. https://doi.org/10.3390/en16031454
Obi OF, Pecenka R. Briquetting of Poplar Wood from Short Rotation Coppice—The Effects of Moisture Content and Hammer Mill Screen Size. Energies. 2023; 16(3):1454. https://doi.org/10.3390/en16031454
Chicago/Turabian StyleObi, Okey Francis, and Ralf Pecenka. 2023. "Briquetting of Poplar Wood from Short Rotation Coppice—The Effects of Moisture Content and Hammer Mill Screen Size" Energies 16, no. 3: 1454. https://doi.org/10.3390/en16031454