Thermochemical Energy Storage with Integrated District Heat Production–A Case Study of Sweden
Abstract
:1. Introduction
2. The Proposed Scheme
3. Sweden as a Case Study
4. Methodology
4.1. Overview
4.2. Considerations for the Case Study
4.2.1. Framing of the Energy System
- Price threshold 1, Only_VRE—the charging step makes use of only wind-dominating periods.
- Price threshold 2, UF_50—the charging step utilizes electricity for 50% of the year.
- Price threshold 3, No_peak—the charging step avoids only peak price events, characterized by sharp increases in the price duration curves.
4.2.2. Process Sizing
4.2.3. Reactor Modeling
- Uniform pressure and temperature are assumed.
- No pressure or heat losses is assumed.
- Steady-state operation is assumed.
- The solid streams entering each reactor are assumed to be heated to a temperature that is 200 °C lower than the reactor temperature, through a series of heat exchangers that recover heat from the outlet reactor streams. This assumption is on the conservative side according to the results from equivalent works [68].
5. Results
6. Discussion
6.1. Practical Implications
6.2. Additional Implementation Options
6.2.1. Reduction Hub
6.2.2. Cogeneration of Electricity and Industrial Heat
6.2.3. On-Demand H2 Production
6.2.4. Expanded Operational Modes
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
ADV | average duration of variations |
Fred,in | solids inflow into the reduction reactor |
Foxid,out | solids outflow from the oxidation reactor |
H2,comb | hydrogen required for combustion |
H2,red | hydrogen required for chemical reduction |
Msolids,stored | inventory of reduced solids stored |
Msystem | total inventory of solids |
Nlifetime | number of cycles within the material lifetime |
m make-up | material make-up flow |
rdisp | dispatchability ratio |
tred | reduction running time |
τcycle | residence time of one cycle |
UF | utilization factor |
Abbreviations
BECCS | bioenergy with carbon capture and storage |
CDR | carbon dioxide removal |
CHP | combined heat and power |
CLC | chemical looping combustion |
DH | district heating |
DIR | direction iron reduction |
DRI | direct reduced iron |
EAF | electric arc furnace |
FB | fluidized bed |
HP | heat pump |
HP-TES | heat pump with thermal energy storage |
MSW | municipal solid waste |
TCES | thermochemical energy storage |
TRL | technology readiness level |
VRE | variable renewable electricity |
References
- Nordic Energy Research. Tracking Nordic Clean Energy Progress 2020—Progress towards Nordic Carbon Neutrality; Nordic Energy Research: Oslo, Norway, 2020. [Google Scholar]
- IEA. Clean Energy Innovation: Accelerating technology progress for a sustainable future. Energy Technol. Perspect. 2020, 61–89. [Google Scholar]
- European Commission. Accelerating Clean Energy Innovations; Clean Energy for All Europeans; European Commission: Brussels, Belgium, 2016. [Google Scholar]
- Nebel, A.; Cantor, J.; Salim, S.; Salih, A.; Patel, D. The Role of Renewable Energies, Storage and Sector-Coupling Technologies in the German Energy Sector under Different CO2 Emission Restrictions. Sustainability 2022, 14, 10379. [Google Scholar] [CrossRef]
- Waterson, M.; Baute, E.T.; Giulietti, M. Intermittency and the social role of storage. Energy Policy 2022, 165, 112947. [Google Scholar] [CrossRef]
- International Energy Agency. Technology Roadmap—Energy Storage; International Energy Agency: Paris, France, 2014. [Google Scholar]
- Göransson, L.; Johnsson, F. A comparison of variation management strategies for wind power integration in different electricity system contexts. Wind. Energy 2018, 21, 837–854. [Google Scholar] [CrossRef]
- Johansson, V.; Göransson, L. Impacts of variation management on cost-optimal investments in wind power and solar photovoltaics. Renew. Energy Focus 2020, 32, 10–22. [Google Scholar] [CrossRef]
- Gadd, H.; Werner, S. Thermal energy storage systems for district heating and cooling. In Advances in Thermal Energy Storage Systems; Woodhead Publishing: Sawston, UK, 2021; pp. 625–638. [Google Scholar]
- Romanchenko, D.; Kensby, J.; Odenberger, M.; Johnsson, F. Thermal energy storage in district heating: Centralised storage vs. storage in thermal inertia of buildings. Energy Convers. Manag. 2018, 162, 26–38. [Google Scholar] [CrossRef]
- Guelpa, E.; Verda, V. Thermal energy storage in district heating and cooling systems: A review. Appl. Energy 2019, 252, 113474. [Google Scholar] [CrossRef]
- Bayon, A.; Bader, R.; Jafarian, M.; Fedunik-Hofman, L.; Sun, Y.; Hinkley, J.; Miller, S.; Lipiński, W. Techno-economic assessment of solid–gas thermochemical energy storage systems for solar thermal power applications. Energy 2018, 149, 473–484. [Google Scholar] [CrossRef]
- Prasad, J.S.; Muthukumar, P.; Desai, F.; Basu, D.N.; Rahman, M.M. A critical review of high-temperature reversible thermochemical energy storage systems. Appl. Energy 2019, 254, 113733. [Google Scholar] [CrossRef]
- André, L.; Abanades, S.; Flamant, G. Screening of thermochemical systems based on solid-gas reversible reactions for high temperature solar thermal energy storage. Renew. Sustain. Energy Rev. 2016, 64, 703–715. [Google Scholar] [CrossRef]
- Laurie, A.; Abanades, S. Recent Advances in Thermochemical Energy Storage via Solid-Gas Reversible Reactions at High Temperature. Energies 2020, 13, 5859. [Google Scholar] [CrossRef]
- Li, Z.; Xu, M.; Huai, X.; Huang, C.; Wang, K. Simulation and analysis of thermochemical seasonal solar energy storage for district heating applications in China. Int. J. Energy Res. 2020, 45, 7093–7107. [Google Scholar] [CrossRef]
- Marie, L.; Landini, S.; Bae, D.; Francia, V.; O’Donovan, T. Advances in thermochemical energy storage and fluidised beds for domestic heat. J. Energy Storage 2022, 53, 105242. [Google Scholar] [CrossRef]
- Debiagi, P.; Rocha, R.; Scholtissek, A.; Janicka, J.; Hasse, C. Iron as a sustainable chemical carrier of renewable energy: Analysis of opportunities and challenges for retrofitting coal-fired power plants. Renew. Sustain. Energy Rev. 2022, 165, 112579. [Google Scholar] [CrossRef]
- European Commission, Directorate-General for Energy; Kranzl, L.; Fallahnejad, M.; Büchele, R.; Müller, A.; Hummel, M.; Fleiter, T.; Mandel, T.; Bagheri, M.; Deac, G.; et al. Renewable Space Heating Uunder the Revised Renewable Energy Directive Final Report; European Commission: Brussels, Belgium, 2021. [Google Scholar]
- Osička, J.; Černoch, F. European energy politics after Ukraine: The road ahead. Energy Res. Soc. Sci. 2022, 91, 102757. [Google Scholar] [CrossRef]
- Rabbi, M.F.; Popp, J.; Máté, D.; Kovács, S. Energy Security and Energy Transition to Achieve Carbon Neutrality. Energies 2022, 15, 8126. [Google Scholar] [CrossRef]
- Gerard, F.; Opinska, L.G.; Smit, T.; Rademaekers, K.; Braungardt, S.; Monejar Montagud (DTU). Policy Support for Heating and Cooling Decarbonisation; European Commission: Brussels, Belgium, 2021. [Google Scholar]
- Latõšov, E.; Volkova, A.; Siirde, A.; Kurnitski, J.; Thalfeldt, M. Primary energy factor for district heating networks in European Union member states. Energy Procedia 2017, 116, 69–77. [Google Scholar] [CrossRef]
- Arens, M.; Aydemir, A.; Elsland, R.; Fleiter, T.; Frassine, C.; Herbst, A.; Hirzel, S.; Krail, M.; Ragwitz, M.; Rehfeldt, M.; et al. Mapping and Analyses of the Current and Future (2020–2030) Heating/Cooling Fuel Deployment (Fossil/Renewables); European Commission: Brussels, Belgium, 2016. [Google Scholar]
- Vad, B.; Alberg, P.; Connolly, D.; Nielsen, S.; Persson, U. Heat Roadmap Europe 2050. In Proceedings of the IEA CHP/DHC Working Group Joint Strategic Workshop, Aalborg, Denmark, 27–28 May 2014. [Google Scholar]
- Lund, H.; Werner, S.; Wiltshire, R.; Svendsen, S.; Thorsen, J.E.; Hvelplund, F.; Mathiesen, B.V. 4th Generation District Heating (4GDH): Integrating smart thermal grids into future sustainable energy systems. Energy 2014, 68, 1–11. [Google Scholar] [CrossRef]
- Sorknæs, P. Hybrid energy networks and electrification of district heating under different energy system conditions. Energy Rep. 2021, 7, 222–236. [Google Scholar] [CrossRef]
- Soysal, E.R.; Sneum, D.M.; Skytte, K.; Olsen, O.J.; Sandberg, E. Electric boilers in district heating systems: A comparative study of the Scandinavian market conditions. In Proceedings of the Swedish Association for Energy Economics Conference, Luleå, Sweden, 23–24 August 2016. [Google Scholar]
- Sneum, D.M.; Sandberg, E. Economic incentives for flexible district heating in the Nordic countries. Int. J. Sustain. Energy Plan. Manag. 2018, 16, 27–44. [Google Scholar]
- Patronen, J.; Kaura, E.; Torvestad, C. Nordic Heating and Cooling; Nordic Council of Ministers: Copenhagen, Denmark, 2017. [Google Scholar] [CrossRef] [Green Version]
- Schweiger, G.; Rantzer, J.; Ericsson, K.; Lauenburg, P. The potential of power-to-heat in Swedish district heating systems. Energy 2017, 137, 661–669. [Google Scholar] [CrossRef]
- David, A.; Mathiesen, B.V.; Averfalk, H.; Werner, S.; Lund, H. Heat Roadmap Europe: Large-Scale Electric Heat Pumps in District Heating Systems. Energies 2017, 10, 578. [Google Scholar] [CrossRef] [Green Version]
- Göransson, L.; Lehtveer, M.; Nyholm, E.; Taljegard, M.; Walter, V. The Benefit of Collaboration in the North European Electricity System Transition—System and Sector Perspectives. Energies 2019, 12, 4648. [Google Scholar] [CrossRef] [Green Version]
- Hassan, I.; Ramadan, H.S.; Saleh, M.A.; Hissel, D. Hydrogen storage technologies for stationary and mobile applications: Review, analysis and perspectives. Renew. Sustain. Energy Rev. 2021, 149, 111311. [Google Scholar] [CrossRef]
- Andersson, J.; Grönkvist, S. Large-scale storage of hydrogen. Int. J. Hydrogen Energy 2019, 44, 11901–11919. [Google Scholar] [CrossRef]
- Beiron, J.; Göransson, L.; Normann, F.; Johnsson, F. Flexibility provision by combined heat and power plants—An evaluation of benefits from a plant and system perspective. Energy Convers. Manag. X 2022, 16, 100318. [Google Scholar] [CrossRef]
- Gerssen-Gondelach, S.; Saygin, D.; Wicke, B.; Patel, M.; Faaij, A. Competing uses of biomass: Assessment and comparison of the performance of bio-based heat, power, fuels and materials. Renew. Sustain. Energy Rev. 2014, 40, 964–998. [Google Scholar] [CrossRef] [Green Version]
- Philibert, C. Renewable Energy for Industry: Materials and Fuels. International Energy Agency: Paris, France, 2017. [Google Scholar]
- Malico, I.; Pereira, R.N.; Gonçalves, A.C.; Sousa, A.M.O. Current status and future perspectives for energy production from solid biomass in the European industry. Renew. Sustain. Energy Rev. 2019, 112, 960–977. [Google Scholar] [CrossRef]
- Searle, S.Y.; Malins, C.J. Waste and residue availability for advanced biofuel production in EU Member States. Biomass Bioenergy 2016, 89, 2–10. [Google Scholar] [CrossRef]
- Swedish Energy Agency: State Aid for BECCS,” 2022. Available online: http://www.energimyndigheten.se/en/sustainability/carbon-capture-and-storage/state-aid-for-beccs/ (accessed on 9 November 2022).
- Hanssen, S.V.; Daioglou, V.; Steinmann, Z.J.N.; Doelman, J.C.; Van Vuuren, D.P.; Huijbregts, M.A.J. The climate change mitigation potential of bioenergy with carbon capture and storage. Nat. Clim. Chang. 2020, 10, 1023–1029. [Google Scholar] [CrossRef]
- Swedish Energy Agency: Statistics. 2022. Available online: https://www.energimyndigheten.se/en/facts-and-figures/statistics/ (accessed on 11 November 2022).
- Johansson, N. A Faster Pace And Higher Targets in LKAB’s Transition Towards a Sustainable Future, Luleå, April 2022. Available online: https://lkab.com/en/press/a-faster-pace-and-higher-targets-in-lkabs-transition-towards-a-sustainable-future/ (accessed on 3 October 2022).
- Spreitzer, D.; Schenk, J. Iron Ore Reduction by Hydrogen Using a Laboratory Scale Fluidized Bed Reactor: Kinetic Investigation—Experimental Setup and Method for Determination. Met. Mater. Trans. B 2019, 50, 2471–2484. [Google Scholar] [CrossRef]
- Beiron, J.; Montañés, R.M.; Normann, F.; Johnsson, F. Combined heat and power operational modes for increased product flexibility in a waste incineration plant. Energy 2020, 202, 117696. [Google Scholar] [CrossRef]
- Adánez, J.; Abad, A.; Mendiara, T.; Gayán, P.; de Diego, L.; García-Labiano, F. Chemical looping combustion of solid fuels. Prog. Energy Combust. Sci. 2018, 65, 6–66. [Google Scholar] [CrossRef]
- Elmquist, S. Operational results of the Circored fine ore direct reduction plant in Trinidad. Stahl Und Eisen (Ger.) 2002, 122, 59–64. [Google Scholar]
- Zhang, H. CFD-DEM Modeling of Gas-Solid Flow and Heat Transfer in A FINEX Melter & Gasifier. Ph.D. Thesis, UNSW Sydney, Kensington, Australia, 2011. [Google Scholar]
- Hillisch, W.; Zirngast, J. Status of Finmet plant operation at BHP in Australia. Steel Times Int. 2001, 3, 20–22. [Google Scholar]
- Anameric, B.; Kawatra, S.K. Properties and features of direct reduced iron. Miner. Process. Extr. Met. Rev. 2007, 28, 59–116. [Google Scholar] [CrossRef]
- Technology Data. Danish Energy Agency. Available online: https://ens.dk/en/our-services/projections-and-models/technology-data (accessed on 7 November 2022).
- Liu, T.; Panahi, A. Metal Fuels as Alternative Sources of Energy for Zero Carbon Emission. IOP Conf. Ser. Earth Environ. Sci. 2021, 943, 012016. [Google Scholar] [CrossRef]
- Leion, H.; Mattisson, T.; Lyngfelt, A. Use of Ores and Industrial Products As Oxygen Carriers in Chemical-Looping Combustion. Energy Fuels 2009, 23, 2307–2315. [Google Scholar] [CrossRef]
- Kobayashi, H.; Hayakawa, A.; Somarathne, K.K.A.; Okafor, E.C. Science and technology of ammonia combustion. Proc. Combust. Inst. 2019, 37, 109–133. [Google Scholar] [CrossRef]
- Steinfeld, A.; Kuhn, P.; Reller, A.; Palumbo, R.; Murray, J.; Tamaura, Y. Solar-processed metals as clean energy carriers and water-splitters. Int. J. Hydrogen Energy 1998, 23, 767–774. [Google Scholar] [CrossRef]
- Vogl, V.; Åhman, M.; Nilsson, L.J. Assessment of hydrogen direct reduction for fossil-free steelmaking. J. Clean. Prod. 2018, 203, 736–745. [Google Scholar] [CrossRef]
- Bhaskar, A.; Assadi, M.; Somehsaraei, H.N. Decarbonization of the Iron and Steel Industry with Direct Reduction of Iron Ore with Green Hydrogen. Energies 2020, 13, 758. [Google Scholar] [CrossRef] [Green Version]
- Pei, M.; Petäjäniemi, M.; Regnell, A.; Wijk, O. Toward a Fossil Free Future with HYBRIT: Development of Iron and Steelmaking Technology in Sweden and Finland. Metals 2020, 10, 972. [Google Scholar] [CrossRef]
- Kjärstad, J.; Johnsson, F. The European power plant infrastructure—Presentation of the Chalmers energy infrastructure database with applications. Energy Policy 2007, 35, 3643–3664. [Google Scholar] [CrossRef]
- Toktarova, A.; Göransson, L.; Johnsson, F. Design of Clean Steel Production with Hydrogen: Impact of Electricity System Composition. Energies 2021, 14, 8349. [Google Scholar] [CrossRef]
- Sterner, M.; Stadler, I. Handbook of Energy Storage; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Böhm, H.; Moser, S.; Puschnigg, S.; Zauner, A. Power-to-hydrogen & district heating: Technology-based and infrastructure-oriented analysis of (future) sector coupling potentials. Int. J. Hydrogen Energy 2021, 46, 31938–31951. [Google Scholar] [CrossRef]
- Linderholm, C.; Schmitz, M. Chemical-looping combustion of solid fuels in a 100 kW dual circulating fluidized bed system using iron ore as oxygen carrier. J. Environ. Chem. Eng. 2016, 4, 1029–1039. [Google Scholar] [CrossRef]
- Liu, Y.; Zhu, Q.; Zhang, T.; Yan, X.; Duan, R. Analysis of chemical-looping hydrogen production and power generation system driven by solar energy. Renew. Energy 2020, 154, 863–874. [Google Scholar] [CrossRef]
- Bahgat, M.; Khedr, M. Reduction kinetics, magnetic behavior and morphological changes during reduction of magnetite single crystal. Mater. Sci. Eng. B 2007, 138, 251–258. [Google Scholar] [CrossRef]
- Patisson, F.; Mirgaux, O. Hydrogen Ironmaking: How it Works. Metals 2020, 10, 922. [Google Scholar] [CrossRef]
- Castilla, G.M.; Guío-Pérez, D.; Papadokonstantakis, S.; Pallarès, D.; Johnsson, F. Techno-Economic Assessment of Calcium Looping for Thermochemical Energy Storage with CO2 Capture. Energies 2021, 14, 3211. [Google Scholar] [CrossRef]
- LKAB. Annual and Sustainability Report; LKAB: Luleå, Sweden, 2021. [Google Scholar]
- Woods, R.D. Rules of Thumb in Engineering Practice; Wiley-VCH: Weinheim, UK, 2007. [Google Scholar]
- Rydén, M.; Arjmand, M. Continuous hydrogen production via the steam–iron reaction by chemical looping in a circulating fluidized-bed reactor. Int. J. Hydrogen Energy 2012, 37, 4843–4854. [Google Scholar] [CrossRef]
- Glenk, G.; Reichelstein, S. Economics of converting renewable power to hydrogen. Nat. Energy 2019, 4, 216–222. [Google Scholar] [CrossRef]
Electricity Price Profile | A: Nuclear_Dominated | B: Medium_Wind | C: High_Wind | |
---|---|---|---|---|
Electricity mix (%) | Hydro | 12 | 20 | 27 |
Wind | 31 | 52 | 65 | |
Nuclear | 56 | 27 | - | |
PV | 1 | 1 | 2 | |
Biogas CCGT | - | - | 6 | |
CO2 tax (€/tonne) | 40 | 100 | 400 |
Threshold/Electricity Price Profile | A: Nuclear_Dominated | B: Medium_Wind | C: High_Wind | |
---|---|---|---|---|
Only_ VRE | Reduction running time, tred (h/yr) | 1487 | 1680 | 5295 |
UF (-) | 0.17 | 0.19 | 0.60 | |
ADV (h) | 181 | 244 | 147 | |
UF_50 | Reduction running time, tred (h/yr) | 4380 | 4380 | 4380 |
UF (-) | 0.50 | 0.50 | 0.50 | |
ADV (h) | 54 | 64 | 90 | |
No_peak | Reduction running time, tred (h/yr) | 8605 | 8596 | 8502 |
UF (-) | 0.98 | 0.98 | 0.97 | |
ADV (h) | 12 | 7 | 8 |
Parameter | Value |
---|---|
Low-temperature electrolyzer electricity consumption | 194 MJ/kgH2 |
High-temperature electrolyzer electricity consumption | 136 MJ/kgH2 |
FeO density | 5740 kg/m3 |
Fe3O4 density | 5170 kg/m3 |
Fe2O3 density | 5240 kg/m3 |
Void fraction of bulk materials | 0.5 (-) |
Lifetime of the material, Nlifetime | 3500 cycles |
Reactor | Operational Conditions | Given Parameter | Outlet Condition Constraint |
---|---|---|---|
Reduction | 1100 °C and 1 bar | Solids inflow | 10% Fe3O4 content in solid phase |
Oxidation | 900 °C and 1 bar | Net heat flow | 0% FeO content in solid phase |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guío-Pérez, D.C.; Martinez Castilla, G.; Pallarès, D.; Thunman, H.; Johnsson, F. Thermochemical Energy Storage with Integrated District Heat Production–A Case Study of Sweden. Energies 2023, 16, 1155. https://doi.org/10.3390/en16031155
Guío-Pérez DC, Martinez Castilla G, Pallarès D, Thunman H, Johnsson F. Thermochemical Energy Storage with Integrated District Heat Production–A Case Study of Sweden. Energies. 2023; 16(3):1155. https://doi.org/10.3390/en16031155
Chicago/Turabian StyleGuío-Pérez, Diana Carolina, Guillermo Martinez Castilla, David Pallarès, Henrik Thunman, and Filip Johnsson. 2023. "Thermochemical Energy Storage with Integrated District Heat Production–A Case Study of Sweden" Energies 16, no. 3: 1155. https://doi.org/10.3390/en16031155
APA StyleGuío-Pérez, D. C., Martinez Castilla, G., Pallarès, D., Thunman, H., & Johnsson, F. (2023). Thermochemical Energy Storage with Integrated District Heat Production–A Case Study of Sweden. Energies, 16(3), 1155. https://doi.org/10.3390/en16031155