Review of Micro- and Nanobubble Technologies: Advancements in Theory and Applications and Perspectives on Adsorption Cooling and Desalination Systems
Abstract
:1. Introduction
2. Nanobubbles: Explanation and Properties
2.1. The Issue of Micropankes
2.2. Zeta Potential
2.3. Stability of Nanobubbles
Surface Nanobubbles
3. Nanobubbles for the Surfaces Cleaning
4. Technological Advancements in Adsorption Refrigeration: Improving Performance and Efficiency
5. Advanced Adsorption and Desalination Systems Using Ultrafine Bubbles
6. Discussion
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Correction Statement
Nomenclature
NB | Nanobubble |
MB | Microbubble |
mNB | micro/nanobubble |
SNB | surface nanobubble |
BNB | bulk nanobubble |
PDT | photodynamic therapy |
PTT | photothermal therapy |
ΥSV | solid–vapor interfacial energy |
ΥSL | liquid–vapor interfacial energy |
P | pressure [Pa] |
r | bubble radius [m] |
γ | surface tension [Pa] |
Δ | change |
θ | contact angle [°] |
D | indicates pore size [m] |
References
- Gao, M.; Xiao, Y.; Chen, Z.; Ding, L.; Gao, Y.; Dai, Z.; Yu, G.; Krzywanski, J.; Wang, F. Comparison of Physicochemical Properties and Gasification Reactivity of Soot from Entrained Flow Gasification Processes. Chem. Eng. J. 2022, 450, 136660. [Google Scholar] [CrossRef]
- Muskała, W.; Krzywanski, J.; Rajczyk, R.; Cecerko, M.; Kierzkowski, B.; Nowak, W.; Gajewski, W. Investigation of Erosion in CFB Boilers. Rynek Energii 2010, 2, 97–102. [Google Scholar]
- Nowak, W.; Muskala, W.; Krzywanski, J.; Czakiert, T. The Research of CFB Boiler Operation for Oxygen Enhanced Dried Lignite Combustion. Rynek Energii 2011, 92, 172–176. [Google Scholar]
- Iheonye, A.C.; Raghavan, V.; Ferrie, F.P.; Orsat, V.; Gariepy, Y. Monitoring Visual Properties of Food in Real Time During Food Drying. Food Eng. Rev. 2023, 15, 242–260. [Google Scholar] [CrossRef]
- Krzywanski, J. Heat Transfer Performance in a Superheater of an Industrial CFBC Using Fuzzy Logic-Based Methods. Entropy 2019, 21, 919. [Google Scholar] [CrossRef]
- Krzywanski, J.; Blaszczuk, A.; Czakiert, T.; Rajczyk, R.; Nowak, W. Artificial intelligence treatment of NOx emissions from CFBC in air and oxy-fuel conditions, (2014) CFB-11. In Proceedings of the 11th International Conference on Fluidized Bed Technology, Beijing, China, 1 May 2014; pp. 619–624. [Google Scholar]
- Xiao, W.; Ke, S.; Quan, N.; Zhou, L.; Wang, J.; Zhang, L.; Dong, Y.; Qin, W.; Qiu, G.; Hu, J. The Role of Nanobubbles in the Precipitation and Recovery of Organic-Phosphine-Containing Beneficiation Wastewater. Langmuir 2018, 34, 6217–6224. [Google Scholar] [CrossRef]
- Singh, B.; Shukla, N.; Cho, C.H.; Kim, B.S.; Park, M.H.; Kim, K. Effect and Application of Micro- and Nanobubbles in Water Purification. Toxicol. Environ. Health Sci. 2021, 13, 9–16. [Google Scholar] [CrossRef]
- Lee, J.; Laoui, T.; Karnik, R. Nanofluidic Transport Governed by the Liquid/Vapour Interface. Nat. Nanotechnol. 2014, 9, 317–323. [Google Scholar] [CrossRef]
- Bai, M.; Liu, Z.; Zhang, J.; Lu, L. Prediction and Experimental Study of Mass Transfer Properties of Micronanobubbles. Ind. Eng. Chem. Res. 2021, 60, 8291–8300. [Google Scholar] [CrossRef]
- Bai, M.; Liu, Z.; Zhan, L.; Liu, Z.; Fan, Z. A Comparative Study of Removal Efficiency of Organic Contaminant in Landfill Leachate-Contaminated Groundwater under Micro-Nano-Bubble and Common Bubble Aeration. Environ. Sci. Pollut. Res. 2022, 29, 87534–87544. [Google Scholar] [CrossRef]
- Feng, Y.; Mu, H.; Liu, X.; Huang, Z.; Zhang, H.; Wang, J.; Yang, Y. Leveraging 3D Printing for the Design of High-Performance Venturi Microbubble Generators. Ind. Eng. Chem. Res. 2020, 59, 8447–8455. [Google Scholar] [CrossRef]
- Alheshibri, M.; Al Baroot, A.; Shui, L.; Zhang, M. Nanobubbles and Nanoparticles. Curr. Opin. Colloid Interface Sci. 2021, 55, 101470. [Google Scholar] [CrossRef]
- Xiao, W.; Xu, G. Mass Transfer of Nanobubble Aeration and Its Effect on Biofilm Growth: Microbial Activity and Structural Properties. Sci. Total Environ. 2020, 703, 134976. [Google Scholar] [CrossRef]
- Zhang, D.; Jiang, E.; Zhou, J.; Shen, C.; He, Z.; Xiao, C. Investigation on Enhanced Mechanism of Heat Transfer Assisted by Ultrasonic Vibration. Int. Commun. Heat Mass Transf. 2020, 115, 104523. [Google Scholar] [CrossRef]
- Amiri Delouei, A.; Sajjadi, H.; Ahmadi, G. Ultrasonic Vibration Technology to Improve the Thermal Performance of CPU Water-Cooling Systems: Experimental Investigation. Water 2022, 14, 4000. [Google Scholar] [CrossRef]
- Qii, P.; Wong, S.W.; Chon, W.Y. Effects of Ultrasonic Vibrations on Heat Transfer to Liquids by Natural Convection and by Boiling. AIChE J. 1969, 15, 281–288. [Google Scholar]
- Shen, G.; Ma, L.; Zhang, S.; Zhang, S.; An, L. Effect of Ultrasonic Waves on Heat Transfer in Al2O3 Nanofluid under Natural Convection and Pool Boiling. Int. J. Heat Mass Transf. 2019, 138, 516–523. [Google Scholar] [CrossRef]
- Zhang, D.; Guan, J.; He, Z.; Shen, C.; Cao, H. Experimental Investigation on Heat Transfer and Flow Patterns of Pulsating Heat Pipe Assisted by Ultrasonic Cavitation. Int. J. Heat Mass Transf. 2022, 183, 122187. [Google Scholar] [CrossRef]
- Tan, B.H.; An, H.; Ohl, C.D. Identifying Surface-Attached Nanobubbles. Curr. Opin. Colloid Interface Sci. 2021, 53, 101429. [Google Scholar] [CrossRef]
- Favvas, E.P.; Kyzas, G.Z.; Efthimiadou, E.K.; Mitropoulos, A.C. Bulk Nanobubbles, Generation Methods and Potential Applications. Curr. Opin. Colloid Interface Sci. 2021, 54, 101455. [Google Scholar] [CrossRef]
- An, H.; Liu, G.; Craig, V.S.J. Wetting of Nanophases: Nanobubbles, Nanodroplets and Micropancakes on Hydrophobic Surfaces. Adv. Colloid Interface Sci. 2015, 222, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Epstein, P.S.; Plesset, M.S. On the Stability of Gas Bubbles in Liquid-Gas Solutions. J. Chem. Phys. 1950, 18, 1505–1509. [Google Scholar] [CrossRef]
- Ducker, W.A. Contact Angle and Stability of Interfacial Nanobubbles. Langmuir 2009, 25, 8907–8910. [Google Scholar] [CrossRef]
- Berge, L.I. Dissolution of Air Bubbles by the Resistive Pulse and the Pressure Reversal Technique. J. Colloid Interface Sci. 1990, 134, 548–562. [Google Scholar] [CrossRef]
- Batchelor, D.V.B.; Armistead, F.J.; Ingram, N.; Peyman, S.A.; Mclaughlan, J.R.; Coletta, P.L.; Evans, S.D. Nanobubbles for Therapeutic Delivery: Production, Stability and Current Prospects. Curr. Opin. Colloid Interface Sci. 2021, 54, 101456. [Google Scholar] [CrossRef]
- Der, O.; Alqahtani, A.A.; Marengo, M.; Bertola, V. Characterization of Polypropylene Pulsating Heat Stripes: Effects of Orientation, Heat Transfer Fluid, and Loop Geometry. Appl. Therm. Eng. 2021, 184, 116304. [Google Scholar] [CrossRef]
- Alheshibri, M.; Qian, J.; Jehannin, M.; Craig, V.S.J. A History of Nanobubbles. Langmuir 2016, 32, 11086–11100. [Google Scholar] [CrossRef]
- Montero De Hijes, P.; Shi, K.; Noya, E.G.; Santiso, E.E.; Gubbins, K.E.; Sanz, E.; Vega, C. The Young-Laplace Equation for a Solid-Liquid Interface. J. Chem. Phys. 2020, 153, 191102. [Google Scholar] [CrossRef]
- Kwan, J.J.; Borden, M.A. Lipid Monolayer Collapse and Microbubble Stability. Adv. Colloid Interface Sci. 2012, 183–184, 82–99. [Google Scholar] [CrossRef]
- Nirmalkar, N.; Pacek, A.W.; Barigou, M. On the Existence and Stability of Bulk Nanobubbles. Langmuir 2018, 34, 10964–10973. [Google Scholar] [CrossRef] [PubMed]
- Parker, J.L.; Claesson, P.M.; Attard, P. Bubbles, Cavities, and the Long-Ranged Attraction between Hydrophobic Surfaces. J. Phys. Chem. 1994, 98, 8468–8480. [Google Scholar] [CrossRef]
- Berkelaar, R.P.; Dietrich, E.; Kip, G.A.M.; Kooij, E.S.; Zandvliet, H.J.W.; Lohse, D. Exposing Nanobubble-like Objects to a Degassed Environment. Soft Matter 2014, 10, 4947–4955. [Google Scholar] [CrossRef] [PubMed]
- Bui, T.T.; Nguyen, D.C.; Han, M. Average Size and Zeta Potential of Nanobubbles in Different Reagent Solutions. J. Nanoparticle Res. 2019, 21, 173. [Google Scholar] [CrossRef]
- Han, Z.; Kurokawa, H.; Matsui, H.; He, C.; Wang, K.; Wei, Y.; Dodbiba, G.; Otsuki, A.; Fujita, T. Stability and Free Radical Production for CO2 and H2 in Air Nanobubbles in Ethanol Aqueous Solution. Nanomaterials 2022, 12, 237. [Google Scholar] [CrossRef]
- Alam, H.S.; Sutikno, P.; Soelaiman, T.A.F.; Sugiarto, A.T. Bulk Nanobubbles: Generation Using a Two-Chamber Swirling Flow Nozzle and Long-Term Stability in Water. J. Flow. Chem. 2022, 12, 161–173. [Google Scholar] [CrossRef]
- Meegoda, J.N.; Aluthgun Hewage, S.; Batagoda, J.H. Stability of Nanobubbles. Environ. Eng. Sci. 2018, 35, 1216–1227. [Google Scholar] [CrossRef]
- Takahashi, M. ζ Potential of Microbubbles in Aqueous Solutions: Electrical Properties of the Gas-Water Interface. J. Phys. Chem. B 2005, 109, 21858–21864. [Google Scholar] [CrossRef]
- Ahmed, A.K.A.; Sun, C.; Hua, L.; Zhang, Z.; Zhang, Y.; Zhang, W.; Marhaba, T. Generation of Nanobubbles by Ceramic Membrane Filters: The Dependence of Bubble Size and Zeta Potential on Surface Coating, Pore Size and Injected Gas Pressure. Chemosphere 2018, 203, 327–335. [Google Scholar] [CrossRef]
- Tan, B.H.; An, H.; Ohl, C.D. How Bulk Nanobubbles Might Survive. Phys. Rev. Lett. 2020, 124, 134503. [Google Scholar] [CrossRef]
- Xiao, W.; Wang, X.; Zhou, L.; Zhou, W.; Wang, J.; Qin, W.; Qiu, G.; Hu, J.; Zhang, L. Influence of Mixing and Nanosolids on the Formation of Nanobubbles. J. Phys. Chem. B 2019, 123, 317–323. [Google Scholar] [CrossRef] [PubMed]
- Olszok, V.; Rivas-Botero, J.; Wollmann, A.; Benker, B.; Weber, A.P. Particle-Induced Nanobubble Generation for Material-Selective Nanoparticle Flotation. Colloids Surf. A Physicochem. Eng. Asp. 2020, 592, 124576. [Google Scholar] [CrossRef]
- Berkelaar, R.P.; Seddon, J.R.T.; Zandvliet, H.J.W.; Lohse, D. Temperature Dependence of Surface Nanobubbles. ChemPhysChem 2012, 13, 2213–2217. [Google Scholar] [CrossRef] [PubMed]
- Borkent, B.M.; De Beer, S.; Mugele, F.; Lohse, D. On the Shape of Surface Nanobubbles. Langmuir 2010, 26, 260–268. [Google Scholar] [CrossRef]
- Sun, Y.; Xie, G.; Peng, Y.; Xia, W.; Sha, J. Stability Theories of Nanobubbles at Solid-Liquid Interface: A Review. Colloids Surf. A Physicochem. Eng. Asp. 2016, 495, 176–186. [Google Scholar] [CrossRef]
- Das, S.; Snoeijer, J.H.; Lohse, D. Effect of Impurities in Description of Surface Nanobubbles. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 2010, 82, 056310. [Google Scholar] [CrossRef]
- Weijs, J.H.; Lohse, D. Why Surface Nanobubbles Live for Hours. Phys. Rev. Lett. 2013, 110, 054501. [Google Scholar] [CrossRef]
- Brenner, M.P.; Lohse, D. Dynamic Equilibrium Mechanism for Surface Nanobubble Stabilization. Phys. Rev. Lett. 2008, 101, 214505. [Google Scholar] [CrossRef]
- Das, S. Effect of Added Salt on Preformed Surface Nanobubbles: A Scaling Estimate. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 2011, 84, 036303. [Google Scholar] [CrossRef]
- Zhang, X.; Uddin, M.H.; Yang, H.; Toikka, G.; Ducker, W.; Maeda, N. Effects of Surfactants on the Formation and the Stability of Interfacial Nanobubbles. Langmuir 2012, 28, 10471–10477. [Google Scholar] [CrossRef]
- Zhang, X.H.; Zhang, X.D.; Lou, S.T.; Zhang, Z.X.; Sun, J.L.; Hu, J. Degassing and Temperature Effects on the Formation of Nanobubbles at the Mica/Water Interface. Langmuir 2004, 20, 3813–3815. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Seddon, J. Nanobubble-Nanoparticle Interactions in Bulk Solutions. Langmuir 2016, 32, 11280–11286. [Google Scholar] [CrossRef] [PubMed]
- Aikawa, A.; Kioka, A.; Nakagawa, M.; Anzai, S. Nanobubbles as Corrosion Inhibitor in Acidic Geothermal Fluid. Geothermics 2021, 89, 101962. [Google Scholar] [CrossRef]
- Zhang, M.; Lemay, S.G. Interaction of Anionic Bulk Nanobubbles with Cationic Liposomes: Evidence for Reentrant Condensation. Langmuir 2019, 35, 4146–4151. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; An, H.; Alheshibri, M.; Liu, L.; Terpstra, P.M.J.; Liu, G.; Craig, V.S.J. Cleaning with Bulk Nanobubbles. Langmuir 2016, 32, 11203–11211. [Google Scholar] [CrossRef] [PubMed]
- Dayarathne, H.N.P.; Jeong, S.; Jang, A. Chemical-Free Scale Inhibition Method for Seawater Reverse Osmosis Membrane Process: Air Micro-Nano Bubbles. Desalination 2019, 461, 1–9. [Google Scholar] [CrossRef]
- Fu, W.; Zhang, W. Microwave-Enhanced Membrane Filtration for Water Treatment. J. Membr. Sci. 2018, 568, 97–104. [Google Scholar] [CrossRef]
- Dehariya, D.; Eswar, K.; Tarafdar, A.; Balusamy, S.; Rengan, A.K. Recent Advances of Nanobubble-Based Systems in Cancer Therapeutics: A Review. Biomed. Eng. Adv. 2023, 5, 100080. [Google Scholar] [CrossRef]
- Gao, Y.; Hernandez, C.; Yuan, H.X.; Lilly, J.; Kota, P.; Zhou, H.; Wu, H.; Exner, A.A. Ultrasound Molecular Imaging of Ovarian Cancer with CA-125 Targeted Nanobubble Contrast Agents. Nanomedicine 2017, 13, 2159–2168. [Google Scholar] [CrossRef]
- Yu, Z.; Hu, M.; Li, Z.; Xu, D.; Zhu, L.; Guo, Y.; Liu, Q.; Lan, W.; Jiang, J.; Wang, L. Anti-G250 Nanobody-Functionalized Nanobubbles Targeting Renal Cell Carcinoma Cells for Ultrasound Molecular Imaging. Nanotechnology 2020, 31, 205101. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, X. A Unified Mechanism for the Stability of Surface Nanobubbles: Contact Line Pinning and Supersaturation. J. Chem. Phys. 2014, 141, 134702. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Wu, M.; Zhang, Y.; Zhang, J.; Su, J.; Yang, C. Molecular Imaging of Atherosclerotic Plaque with Lipid Nanobubbles as Targeted Ultrasound Contrast Agents. Colloids Surf. B Biointerfaces 2020, 189, 110861. [Google Scholar] [CrossRef] [PubMed]
- de Leon, A.; Perera, R.; Nittayacharn, P.; Cooley, M.; Jung, O.; Exner, A.A. Chapter Three—Ultrasound Contrast Agents and Delivery Systems in Cancer Detection and Therapy. Adv. Cancer Res. 2018, 139, 57–84. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.; Zhao, H.; Guo, L.; Wang, Y.; Song, J.; Zhao, X.; Li, C.; Hao, L.; Wang, D.; Tang, J. Ultrasound-Mediated Nanobubble Destruction (UMND) Facilitates the Delivery of A10-3.2 Aptamer Targeted and SiRNA-Loaded Cationic Nanobubbles for Therapy of Prostate Cancer. Drug Deliv. 2018, 25, 226–240. [Google Scholar] [CrossRef] [PubMed]
- Bessone, F.; Argenziano, M.; Grillo, G.; Ferrara, B.; Pizzimenti, S.; Barrera, G.; Cravotto, G.; Guiot, C.; Stura, I.; Cavalli, R.; et al. Low-Dose Curcuminoid-Loaded in Dextran Nanobubbles Can Prevent Metastatic Spreading in Prostate Cancer Cells. Nanotechnology 2019, 30, 214004. [Google Scholar] [CrossRef] [PubMed]
- Bujok, T.; Boruta, P.; Mika, Ł.; Sztekler, K. Analysis of Designs of Heat Exchangers Used in Adsorption Chillers. Energies 2021, 14, 8038. [Google Scholar] [CrossRef]
- Sztekler, K.; Kalawa, W.; Nowak, W.; Mika, L.; Krzywanski, J.; Grabowska, K.; Sosnowski, M.; Alharbi, A. Performance Evaluation of a Single-Stage Two-Bed Adsorption Chiller with Desalination Function. J. Energy Resour. Technol. Trans. ASME 2021, 143, 082101. [Google Scholar] [CrossRef]
- Chen, C.J.; Wang, R.Z.; Wang, L.W.; Lu, Z.S. Studies on Cycle Characteristics and Application of Split Heat Pipe Adsorption Ice Maker. Energy Convers. Manag. 2007, 48, 1106–1112. [Google Scholar] [CrossRef]
- Doubek, M.; Vacek, V. Universal Heat Exchanger for Air and Evaporative Cooling of Electronics. Therm. Sci. Eng. Prog. 2021, 23, 100865. [Google Scholar] [CrossRef]
- Grabowska, K.; Sztekler, K.; Krzywanski, J.; Sosnowski, M.; Stefanski, S.; Nowak, W. Construction of an Innovative Adsorbent Bed Configuration in the Adsorption Chiller Part 2. Experimental Research of Coated Bed Samples. Energy 2021, 215, 119123. [Google Scholar] [CrossRef]
- Krzywanski, J.; Sztekler, K.; Bugaj, M.; Kalawa, W.; Grabowska, K.; Chaja, P.R.; Sosnowski, M.; Nowak, W.; Mika, L.; Bykuc, S. Adsorption Chiller in a Combined Heating and Cooling System: Simulation and Optimization by Neural Networks. Bull. Pol. Acad. Sci. Tech. Sci. 2021, 69, e137054. [Google Scholar] [CrossRef]
- Nikbakhti, R.; Wang, X.; Chan, A. Performance Optimization of an Integrated Adsorption-Absorption Cooling System Driven by Low-Grade Thermal Energy. Appl. Therm. Eng. 2021, 193, 117035. [Google Scholar] [CrossRef]
- Nikbakhti, R.; Wang, X.; Chan, A. Performance Analysis of an Integrated Adsorption and Absorption Refrigeration System. Int. J. Refrig. 2020, 117, 269–283. [Google Scholar] [CrossRef]
- Nikbakhti, R.; Iranmanesh, A. Potential Application of a Novel Integrated Adsorption–Absorption Refrigeration System Powered with Solar Energy in Australia. Appl. Therm. Eng. 2021, 194, 117114. [Google Scholar] [CrossRef]
- Khan, M.Z.I.; Alam, K.C.A.; Saha, B.B.; Akisawa, A.; Kashiwagi, T. Study on a Re-Heat Two-Stage Adsorption Chiller—The Influence of Thermal Capacitance Ratio, Overall Thermal Conductance Ratio and Adsorbent Mass on System Performance. Appl. Therm. Eng. 2007, 27, 1677–1685. [Google Scholar] [CrossRef]
- Krzywanski, J.; Grabowska, K.; Sosnowski, M.; Zyłka, A.; Sztekler, K.; Kalawa, W.; Wójcik, T.; Nowak, W. Modeling of a Re-Heat Two-Stage Adsorption Chiller by AI Approach. Proc. MATEC Web Conf. 2018, 240, 05014. [Google Scholar] [CrossRef]
- Kulakowska, A.; Pajdak, A.; Krzywanski, J.; Grabowska, K.; Zylka, A.; Sosnowski, M.; Wesolowska, M.; Sztekler, K.; Nowak, W. Effect of Metal and Carbon Nanotube Additives on the Thermal Diffusivity of a Silica-Gel-Based Adsorption Bed. Energies 2020, 16, 1391. [Google Scholar] [CrossRef]
- Pajdak, A.; Kulakowska, A.; Liu, J.; Berent, K.; Kudasik, M.; Krzywanski, J.; Kalawa, W.; Sztekler, K.; Skoczylas, N. Accumulation and Emission of Water Vapor by Silica Gel Enriched with Carbon Nanotubes CNT-Potential Applications in Adsorption Cooling and Desalination Technology. Appl. Sci. 2022, 12, 5644. [Google Scholar] [CrossRef]
- Lasek, L.; Zylka, A.; Krzywanski, J.; Skrobek, D.; Sztekler, K.; Nowak, W. Review of Fluidized Bed Technology Application for Adsorption Cooling and Desalination Systems. Energies 2023, 16, 7311. [Google Scholar] [CrossRef]
- Rogala, Z.; Kolasinski, P.; Błasiak, P. The Influence of Operating Parameters on Adsorption/Desorption Characteristics and Performance of the Fluidised Desiccant Cooler. Energies 2018, 11, 1597. [Google Scholar] [CrossRef]
- Rogala, Z.; Kolasiński, P.; Gnutek, Z. Modelling and Experimental Analyzes on Air-Fluidised Silica Gel-Water Adsorption and Desorption. Appl. Therm. Eng. 2017, 127, 950–962. [Google Scholar] [CrossRef]
- Skrobek, D.; Krzywanski, J.; Sosnowski, M.; Kulakowska, A.; Zylka, A.; Grabowska, K.; Ciesielska, K.; Nowak, W. Prediction of Sorption Processes Using the Deep Learning Methods (Long Short-Term Memory). Energies 2020, 13, 6601. [Google Scholar] [CrossRef]
- Krzywanski, J.; Skrobek, D.; Zylka, A.; Grabowska, K.; Kulakowska, A.; Sosnowski, M.; Nowak, W.; Blanco-Marigorta, A.M. Heat and Mass Transfer Prediction in Fluidized Beds of Cooling and Desalination Systems by AI Approach. Appl. Therm. Eng. 2023, 225, 120200. [Google Scholar] [CrossRef]
- Krzywanski, J.; Grabowska, K.; Sosnowski, M.; Zylka, A.; Kulakowska, A.; Czakiert, T.; Sztekler, K.; Wesolowska, M.; Nowak, W. Heat Transfer in Adsorption Chillers with Fluidized Beds of Silica Gel, Zeolite, and Carbon Nanotubes. Heat Transf. Eng. 2021, 43, 172–182. [Google Scholar] [CrossRef]
- Skrobek, D.; Krzywanski, J.; Sosnowski, M.; Kulakowska, A.; Zylka, A.; Grabowska, K.; Ciesielska, K.; Nowak, W. Implementation of Deep Learning Methods in Prediction of Adsorption Processes. Adv. Eng. Softw. 2022, 173, 103190. [Google Scholar] [CrossRef]
- Bai, M.; Liu, Z.; Zhan, L.; Yuan, M.; Yu, H. Effect of Pore Size Distribution and Colloidal Fines of Porous Media on the Transport Behavior of Micro-Nano-Bubbles. Colloids Surf. A Physicochem. Eng. Asp. 2023, 660, 130851. [Google Scholar] [CrossRef]
- Senthilkumar, G.; Rameshkumar, C.; Nikhil, M.N.V.S.; Kumar, J.N.R. An Investigation of Nanobubbles in Aqueous Solutions for Various Applications. Appl. Nanosci. 2018, 8, 1557–1567. [Google Scholar] [CrossRef]
- Sakr, M.; Mohamed, M.M.; Maraqa, M.A.; Hamouda, M.A.; Aly Hassan, A.; Ali, J.; Jung, J. A Critical Review of the Recent Developments in Micro–Nano Bubbles Applications for Domestic and Industrial Wastewater Treatment. Alex. Eng. J. 2022, 61, 6591–6612. [Google Scholar] [CrossRef]
- Amburi, P.K.; Senthilkumar, G.; Neme Mogose, I. Heat Transfer Augmentation: Experimental Study with Nanobubbles Technology. Adv. Mater. Sci. Eng. 2022, 2022, 5885280. [Google Scholar] [CrossRef]
- Zhou, D.W. Heat Transfer Enhancement of Copper Nanofluid with Acoustic Cavitation. Int. J. Heat Mass Transf. 2004, 47, 3109–3117. [Google Scholar] [CrossRef]
- Aluthgun Hewage, S.; Meegoda, J.N. Molecular Dynamics Simulation of Bulk Nanobubbles. Colloids Surf. A Physicochem. Eng. Asp. 2022, 650, 129565. [Google Scholar] [CrossRef]
- Fan, M.; Tan, D.; Honaker, R.; Luo, Z. Nanobubble Generation and Its Application in Froth Flotation (Part I): Nanobubble Generation and Its Effects on Properties of Microbubble and Millimeter Scale Bubble Solutions. Min. Sci. Technol. 2010, 20, 1–19. [Google Scholar] [CrossRef]
- Hampton, M.A.; Nguyen, A.V. Accumulation of Dissolved Gases at Hydrophobic Surfaces in Water and Sodium Chloride Solutions: Implications for Coal Flotation. Miner. Eng. 2009, 22, 786–792. [Google Scholar] [CrossRef]
- Zhang, X.H.; Quinn, A.; Ducker, W.A. Nanobubbles at the Interface between Water and a Hydrophobic Solid. Langmuir 2008, 24, 4756–4764. [Google Scholar] [CrossRef]
- Lienhard, J.H. A Heat Transfer Textbook Third Edition; Phlogiston Press: Cambridge, UK, 2008. [Google Scholar]
- Han, S.; Lee, S.; Joung, Y.S. Long-Term Effect of Nanobubbles Generated by Turbulent Flow through Diamond-Pattern Notches on Liquid Properties. Results Eng. 2022, 14, 100375. [Google Scholar] [CrossRef]
- Krzywanski, J.; Skoczylas, N.; Sosnowski, M. Adsorption Desalination and Cooling Systems Advances in Design, Modeling and Performance. Energies 2022, 15, 4036. [Google Scholar]
- Craig, V.S.J. Very Small Bubbles at Surfaces—The Nanobubble Puzzle. Soft Matter 2011, 7, 40–48. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lasek, L.; Krzywanski, J.; Skrobek, D.; Zylka, A.; Nowak, W. Review of Micro- and Nanobubble Technologies: Advancements in Theory and Applications and Perspectives on Adsorption Cooling and Desalination Systems. Energies 2023, 16, 8078. https://doi.org/10.3390/en16248078
Lasek L, Krzywanski J, Skrobek D, Zylka A, Nowak W. Review of Micro- and Nanobubble Technologies: Advancements in Theory and Applications and Perspectives on Adsorption Cooling and Desalination Systems. Energies. 2023; 16(24):8078. https://doi.org/10.3390/en16248078
Chicago/Turabian StyleLasek, Lukasz, Jaroslaw Krzywanski, Dorian Skrobek, Anna Zylka, and Wojciech Nowak. 2023. "Review of Micro- and Nanobubble Technologies: Advancements in Theory and Applications and Perspectives on Adsorption Cooling and Desalination Systems" Energies 16, no. 24: 8078. https://doi.org/10.3390/en16248078
APA StyleLasek, L., Krzywanski, J., Skrobek, D., Zylka, A., & Nowak, W. (2023). Review of Micro- and Nanobubble Technologies: Advancements in Theory and Applications and Perspectives on Adsorption Cooling and Desalination Systems. Energies, 16(24), 8078. https://doi.org/10.3390/en16248078