The Modeling and Control of (Renewable) Energy Systems by Partial Differential Equations—An Overview
Abstract
:1. Introduction
2. The Modeling and Control of Fuel Cells Using PDEs
2.1. The Modeling and Control of PEMFCs Using PDEs
2.2. The Modeling of SOFCs Using PDEs
3. The Modeling and Control of Wind Energy Systems Using PDEs
4. The Modeling and Control of Solar Cells Using PDEs
5. The Modeling and Control of Batteries Using PDEs
6. The Modeling and Control of Wave Energy and Tidal Energy Using PDEs
6.1. The Modeling and Control of Wave Energy Using PDEs
6.2. The Modeling and Control of Tidal Energy Using PDEs
7. Modeling Other Classes of Energy Systems Using PDEs
8. Discussion
9. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pukrushpan, J.; Peng, H.; Stefanopoulou, A. Control oriented modeling and analysis for automotive fuel cell systems. Trans. ASME J. Dyn. Syst. Meas. Control. 2004, 126, 14–25. [Google Scholar] [CrossRef]
- Gebregergis, A.; Pillay, P.; Bhattacharyya, D.; Rengaswemy, R. Solid oxide fuel cell modeling. IEEE Trans. Ind. Electron. 2009, 56, 139–148. [Google Scholar] [CrossRef]
- Puranik, S.; Keyhani, A.; Khorrami, F. State-space modeling of proton exchange membrane fuel cell. IEEE Trans. Energy Conversat. 2010, 25, 804–813. [Google Scholar] [CrossRef]
- Park, G.-H.; Gajic, Z. Sliding mode control for a linearized model of the proton exchange membrane fuel cell. J. Power Resour. 2012, 212, 226–232. [Google Scholar] [CrossRef]
- Lee, M.; Park, G.-H.; Radisavljevic, V. Modeling of solid oxide fuel cells: An overview. In Proceedings of the International Conference on Modeling, Simulation, and Applied Optimization, Hammamet, Tunisia, 28–30 April 2013; IEEE: Piscataway, NJ, USA. [Google Scholar] [CrossRef]
- Leung, M.; Park, G.-H.; Radisavljevic, V. Control of solid oxide fuel cells: An overview. In Proceedings of the Asian Control Conference, Istanbul, Turkey, 23–26 June 2013; IEEE: Piscataway, NJ, USA, 2013; pp. 1896–1901. [Google Scholar] [CrossRef]
- Radisavljevic-Gajic, V.; Rose, P. A new stage design of feedback controllers for a hydrogen gas reformer. Int. J. Hydrogen Energy 2014, 39, 11738–11748. [Google Scholar] [CrossRef]
- Park, G.-H.; Gajic, Z. A simple sliding mode controller of a fifth-order nonlinear PEM fuel cell model. IEEE Trans. Energy Convers. 2014, 29, 65–71. [Google Scholar] [CrossRef]
- Radisavljevic-Gajic, V.; Milanovic, M.; Rose, P. Multi-Stage and Multi-Time Feedback Control of Linear Systems with Applications to Fuel Cells; Series Research Monographs in Mechanical Engineering; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Siegel, C. Review of computational heat and mass transfer modeling in polymer-electrolyte-membrane (PEM) fuel cells. Energy 2008, 33, 1331–1352. [Google Scholar] [CrossRef]
- Milanovic, M.; Radisavljevic, V. Optimal linear-quadratic integral feedback controller design with disturbance rejection for proton exchange membrane fuel cell. Energies 2020, 13, 166. [Google Scholar] [CrossRef]
- Nehrir, H.; Wang, C. Modeling and Control of Fuel Cells; IEEE-Press Wiley: Piscataway, NJ, USA, 2009. [Google Scholar]
- Gou, B.; Na, W.; Diong, B. Fuel cells: Modeling, Control, and Applications; Taylor & Francis: Abingdon, UK, 2010. [Google Scholar]
- Xu, L.; Xiao, J. Dynamic simulation for fuel cell based on distributed and lumped parameter models. In Proceedings of the 2011 International Conference on Consumer Electronics, Communications and Networks (CECNet), Xianning, China, 16–18 April 2011; IEEE: Piscataway, NJ, USA, 2011. 978-1-61284-459-6/11. [Google Scholar]
- Xu, L. Modeling and simulation of PEM fuel cell based on distributed-parameter model. In Proceedings of the 2012 2nd International Conference on Consumer Electronics, Communications and Networks (CECNet), Yichang, China, 21–23 April 2012; IEEE: Piscataway, NJ, USA, 2012. 978-1-4577-1415-3/12. [Google Scholar]
- Alotto, P.; Guarnieri, M.; Moro, F. A fully coupled three-dimensional dynamic model of a polymeric membranes for fuel cells. IEEE Trans. Magn. 2010, 46, 3257–3260. [Google Scholar] [CrossRef]
- Sarmiento-Carnevali, M.; Serra, M.; Batlle, C. Distributed parameter model simulation tool for PEM fuel cells. Int. J. Hydrog. Energy 2014, 39, 4044–4052. [Google Scholar] [CrossRef]
- Alloto, P.; Guarnieri, M.; Moro, F.; Stella, A. A proper generalized decomposition approach for fuel cell polymeric membrane modeling. IEEE Trans. Magn. 2011, 47, 1462–1465. [Google Scholar] [CrossRef]
- Iranzo, A.; Biollat, P.; Rosa, F. Validation of a three dimensional PEM fuel cell CFD model using local liquid water distribution measured with neuron imaging. Int. J. Hydrogen Energy 2014, 39, 7089–7099. [Google Scholar] [CrossRef]
- Lakshmi, R.B.; Harikrishnan, N.P.; Juliet, A.V. Comparative analysis of 2D and 3D model of a PEMFC in COMSOL. Appl. Surf. Sci. 2017, 419, 99–102. [Google Scholar] [CrossRef]
- Zhou, D.; Gao, F.; Al-Durra, A.; Breaz, E.; Ravey, A.; Miraoui, A. Development of a multiphysical 2-D model of a PEM fuel cell for real-time control. IEEE Trans. Ind. Appl. 2018, 54, 4864–4874. [Google Scholar] [CrossRef]
- Zhou, D.; Gao, F.; Breaz, E.; Ravey, A.; Miraoui, A. Triangular matrix algorithm for real-time simulation of a two-dimensional PEM fuel cell model. IEEE Trans. Ind. Electron. 2018, 65, 7106–7118. [Google Scholar] [CrossRef]
- Restrepo, C.; Garcia, G.; Calvente, J.; Giral, R.; Martinez-Salamero, L. Static and dynamic current-voltage modeling of a proton exchange membrane fuel cell using an input-output diffusive approach. IEEE Trans. Ind. Electron. 2016, 63, 1003–1015. [Google Scholar] [CrossRef]
- Luna, J.; Husar, A.; Serra, M. Nonlinear distributed parameter observer design for fuel cell systems. Int. J. Hydrogen Energy 2015, 40, 11322–11332. [Google Scholar] [CrossRef]
- Xue, X.; Tang, J.; Sammes, N.; Du, Y. Dynamic modeling of single tabular SOFC combining heat/mass transfer and electrochemical reaction effects. J. Power Sources 2005, 142, 211–222. [Google Scholar] [CrossRef]
- Bhattacharyya, D.; Rengsaswamy, R.; Caine, F. Isothermal models for anode-supported tabular solid oxide fuel cells. Chem. Eng. Sci. 2007, 62, 4250–4267. [Google Scholar] [CrossRef]
- Ma, R.; Breaz, E.; Li, Z.; Briois, P.; Gao, F. Co-oxidation modeling for a syngas-supplied microtubular solid oxide fuel cell. IEEE Trans. Ind. Appl. 2018, 54, 4917–4926. [Google Scholar] [CrossRef]
- Ma, R.; Breaz, E.; Huangfu, Y.; Briois, P. Multidimensional reversible solid oxide fuel cell modeling for embedded applications. IEEE Trans. Energy Convers. 2018, 33, 692–701. [Google Scholar] [CrossRef]
- Monder, D.S.; Polisetty, V.G.; Jampana, P.V.; Janardhanan, V.M. A distributed parameter model for a solid oxide fuel cell: Simulating realistic operating conditions. IFAC-Pap. 2015, 48, 734–739. [Google Scholar] [CrossRef]
- Bove, R.; Ubertini, S. (Eds.) Modeling Solid Oxide Fuel Cells; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Kulikovsky, A.A. Analytical Modeling of Fuel Cells; Elsevier: Amsterdam, The Netherlands, 2010. [Google Scholar]
- Howell, S.; Pinto, H.; Strbac, G.; Proudlove, N.; Black, M. A partial differential equation system for modeling stochastic storage in physical systems with applications to wind power generation. IMA J. Manag. Math. 2011, 22, 231–252. [Google Scholar]
- Gayme, D.F.; Chakrabortty, A. Impact of wind farm placement on inter-area oscillations in large power systems. In Proceedings of the American Control Conference, Montreal, QC, Canada, 27–29 June 2012; pp. 3038–3043. [Google Scholar]
- Magar, K.S.T.; Balas, M.J.; Gayme, D.F. Adaptive suppression of inter-area oscillation using multiple wind power systems in a distributed parameter control methodology. In Proceedings of the 19th World Congress of IFAC, Cape Town, South Africa, 24–29 August 2014; pp. 1886–1891. [Google Scholar]
- Wu, F.; Kong, W.; Zhou, Y.; Shi, L.; Jin, Y.; Han, J.; Ju, P.; Huang, J.; Qiao, L. Crank-Nicholson scheme based wind speed modeling. In Proceedings of the IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC), Brisbane, Australia, 15–18 November 2015. 978-1-4673-8132-1/15. [Google Scholar]
- Ghanavati, M.; Chkravarthy, A. PDE-based modeling and control for power generation management of wind farms. IEEE Trans. Sustain. Energy 2019, 10, 2104–2113. [Google Scholar] [CrossRef]
- Mercieca, J.; Aram, P.; Jones, B.L.; Kadirkamanathan, V. A spatiotemporal estimation framework for real-world LIDAR wing speed measurement. IEEE Trans. Control. Syst. Technol. 2020, 28, 1595–1602. [Google Scholar] [CrossRef]
- Song, K.; Huan, H.; Kang, Y. Aerodynamic performance and wake characteristics analysis of Archimedes spiral wind turbine rotors with different blade angle. Energies 2023, 16, 385. [Google Scholar] [CrossRef]
- Zjavka, L.; Misak, S. Direct wind power forecasting using a polynomial decomposition of the general differential equation. IEEE Trans. Sustain. Energy 2018, 9, 1529–1539. [Google Scholar] [CrossRef]
- Zjavka, L. Constructing general partial differential equations polynomial and neural networks. Neural Netw. 2016, 73, 58–69. [Google Scholar] [CrossRef] [PubMed]
- Al-Iedani, I.; Gajic, Z. Optimal control of wind turbine systems via time-scale decomposition. Energies 2020, 13, 287. [Google Scholar] [CrossRef]
- Al-Iedani, I.; Gajic, Z. Order reduction of a wind turbine energy system via the methods of system balancing and singular perturbations. Electr. Power Energy Syst. 2020, 117, 105642. [Google Scholar] [CrossRef]
- Moreira, M.; Rodrigues, F.; Candido, S.; Santos, G.; Pascoa, J. Development of a background-oriented Schlieren (BOS) system for thermal characterization of flow induced by plasma actuators. Energies 2023, 16, 540. [Google Scholar] [CrossRef]
- Ju¨ngel, A. Transport Equations for Semiconductors; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Kaushika, N.D.; Mishra, A.; Rai, A.K. Solar Photovoltaics: Technology, System Design, Reliability and Viability; Springer: Cham, Switzerland, 2018. [Google Scholar]
- Brennan, K.F. The Physics of Semiconductors: With Applications to Optoelectronic Devices; Cambridge University Press: Cambridge, UK, 1999. [Google Scholar]
- Machtyngier, E. Exact controllability for the Schrodinger equation. SIAM J. Control. Optim. 1994, 32, 24–34. [Google Scholar] [CrossRef]
- Beauchard, K. Local controllability of a 1-d Schrodinger equation. J. Math. Pures Appl. 2005, 84, 851–956. [Google Scholar] [CrossRef]
- Rosier, L.; Zhang, B.-Y. Exact boundary controllability of the nonlinear Schrodinger equation. J. Differ. Equ. 2009, 246, 4129–4153. [Google Scholar] [CrossRef]
- Kammerer, C.F.; Letrouit, C. Observability and controllability of the discrete spectrum Schrodinger equation driven by an external field. Ann L’institut Henri Poincare C 2009, 26, 329–349. [Google Scholar]
- Kammerer, C.F.; Letrouit, C. Observability and controllability for the Schrodinger equation on quotients of groups of Heisenberg type. J. L’ecole Polytech. Math. 2021, 8, 1459–1513. [Google Scholar] [CrossRef]
- Steeves, D.; Krstic, M.; Vazquez, R. Prescribed time estimation and output regulation of the linearized Schrodinger equation by backstepping. Eur. J. Control. 2020, 55, 3–13. [Google Scholar] [CrossRef]
- Ohsumi, A. An interpretation of the Schrodinger equation in quantum mechanics from the control-theoretic point of view. Automatica 2019, 99, 181–187. [Google Scholar] [CrossRef]
- Phung, K.D. Observability and control of Schrodinger equations. SIAM J. Control. Optim. 2001, 40, 211–230. [Google Scholar] [CrossRef]
- Karagiannis, D.; Radisavljevic-Gajic, V. Sliding mode boundary control for vibration suppression in a pinned-pinned Euler-Bernoulli beam with disturbances. J. Vib. Control. 2018, 24, 1109–1122. [Google Scholar] [CrossRef]
- Jerome, J.W. Analysis of Charge Transport: A Mathematical Study of Semiconductor Devices; Springer: Berlin/Heidelberg, Germany, 1995. [Google Scholar]
- Strandberg, R.; Reenaas, T.W. Drift-diffusion model for intermediate band solar cells including photo filling effects. Prog. Photovolt. Res. Appl. 2011, 19, 21–32. [Google Scholar] [CrossRef]
- Bhattacharya, S.; Baydoun, I.; Lin, M.; John, S. Towards 30photonic-crystal solar cells. Phys. Rev. Appl. 2019, 11, 14005. [Google Scholar] [CrossRef]
- Padmanabhan, B.; Ashok, A.; Vasileska, D.; Zhang, Y.H. Drift Diffusion Modeling of Solar Cells. AIP Conf. Proc. 2010, 1199, 501–502. [Google Scholar]
- Schulze, A.; Koentopp, M.B.; Taubitz, C. A drift and diffusion model for PID-s in solar modules. IEEE J. Photovolt. 2020, 10, 1403–1408. [Google Scholar] [CrossRef]
- Kallmann, H.; Pope, M. Photovoltaic effect in organic crystals. J. Chem. Phys. 1959, 30, 585–586. [Google Scholar] [CrossRef]
- Yu, G.; Gao, J.; Hummelen, J.C.; Wudl, F.; Heeger, A.J. Polymer photovoltaic cells: Enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science 1995, 270, 1789–1791. [Google Scholar] [CrossRef]
- National Renewable Energy Laboratory. Best Research-Cell Efficiency Chart; National Renewable Energy Laboratory: Golden, CO, USA, 2023. [Google Scholar]
- Jorgensen, K.; Carle, J.E.; Sondergaard, R.R.; Lauritzen, M.; Dagnaes-Hansen, N.A.; Byskov, S.L.; Andersen, T.R.; Larsen-Olsen, T.T.; Bottiger, A.P.L.; Andreasen, B.; et al. The state of organic solar cells: A meta analysis. Sol. Energy Mater. Sol. Cells 2013, 119, 84–93. [Google Scholar] [CrossRef]
- Duan, L.; Uddin, A. Progress in stability of organic solar cells. Adv. Sci. 2020, 7, 1903259. [Google Scholar] [CrossRef]
- Agnihotria, P.; Patel, M.; Verma, A.; Sahu, S.; Pathak, S.; Tiwaria, S. Advancement in Simulation and Modeling of Organic Solar Cells. In Recent Advances in Photovoltaics; Ramrakhiani, M., Ed.; Materials Research Forum, LLC: Millersville, PA, USA, 2017; Chapter 11. [Google Scholar]
- Farrokhifar, M.; Rostami, A.; Sadoogi, N. Opto-electrical simulation of organic solar cells. In Proceedings of the European Modelling Symposium, Pisa, Italy, 21–23 October 2014; pp. 507–512. [Google Scholar]
- Ali, G.; Omar, M.; Khan, A.K.; Nadeem, M.F. Recent challenges of solar cell technologies; a critical analysis. In Proceedings of the 2018 International Symposium on Recent Advances in Electrical Engineering (RAEE), Islamabad, Pakistan, 17–18 October 2018; pp. 1–5. [Google Scholar]
- Barker, J.A.; Ramsdale, C.M.; Greenham, N.C. Modeling the current-voltage characteristics of bilayer polymer photovoltaic devices. Phys. Rev. B 2003, 67, 75205. [Google Scholar] [CrossRef]
- de Falco, C.; Sacco, R.; Verri, M. Analytical and numerical study of photocurrent transients in organic polymer solar cells. Comput. Methods Appl. Mech. Eng. 2010, 199, 1722–1732. [Google Scholar] [CrossRef]
- de Falco, C.; Porro, M.; Sacco, R.; Verri, M. Multiscale modeling and simulation of organic solar cells. Comput. Methods Appl. Mech. Eng. 2012, 245–246, 102–116. [Google Scholar] [CrossRef]
- Verri, M.; Porro, M.; Sacco, R.; Salsa, S. Solution map analysis of a multiscale drift/diffusion model for organic solar cells. Comput. Methods Appl. Mech. Eng. 2018, 331, 281–308. [Google Scholar] [CrossRef]
- Koster, L.J.A.; Smits, E.C.P.; Mihailetchi, V.D.; Blom, P.W.M. Device model for the operation of polymer/fullerene bulk heterojunction solar cells. Phys. Rev. B 2005, 72, 85205. [Google Scholar] [CrossRef]
- Kaka, F.; Keshav, M.; Ramamurthy, P.C. Optimizing the photovoltaic parameters in donor/acceptor/acceptor ternary polymer solar cells using machine learning framework. Sol. Energy 2022, 231, 447–457. [Google Scholar] [CrossRef]
- Kaka, F.; Khanna, S.; Ramamurthy, P.C.; Choudhury, A. Investigation of process/structure/property relationship in ternary organic photovoltaics. J. Appl. Phys. 2020, 128, 145501. [Google Scholar] [CrossRef]
- Gagliardi, A.; Wang, S.; Albes, T. Simulation of charge carrier mobility unbalance in organic solar cells. Org. Electron. 2018, 59, 171–176. [Google Scholar] [CrossRef]
- Buxton, G.A.; Clarke, N. Computer simulation of polymer solar cells. Model. Simul. Mater. Sci. Eng. 2006, 15, 13. [Google Scholar] [CrossRef]
- Sadoogi, N.; Rostami, A.; Faridpak, B.; Farrokhifar, M. Performance analysis of organic solar cells: Opto-electrical modeling and simulation. Eng. Sci. Technol. Int. J. 2021, 24, 229–235. [Google Scholar] [CrossRef]
- Hwang, N.G. Modeling photocurrent transients in organic solar cells. Nanotechnology 2008, 19, 424012. [Google Scholar] [CrossRef]
- Kumar, R. Modeling and Control of Processes in Organic Solar Cells. Master’s Thesis, Rutgers University, New Brunswick, NJ, USA, 2014. [Google Scholar]
- Park, G.-H.; Selwan, E.; Gajic, Z. Optimal control of the Cuk converter used in solar cells via stochastic jump parameter theory. IET Control. Theory Appl. 2015, 9, 893–899. [Google Scholar]
- Sharma, K.; Sharma, V.; Sharma, S.S. Dye-sensitized solar cells: Fundamental and current status. Nanoscale Res. Lett. 2018, 13, 381. [Google Scholar] [CrossRef]
- Bose, S.; Soni, V.; Genwa, K.R. Recent advances and future prospects for dye sensitized solar cells: A review. Int. J. Sci. Res. Publ. 2015, 5, 4. [Google Scholar]
- Kaliramna, S.; Dhayal, S.S.; Chaundhary, R.; Khaturia, S.; Ameta, K.L.; Kumar, N. A Review and comparative analysis of different types of dyes for applications in dye-sensitized solar cells. Braz. J. Phys. 2022, 52, 136. [Google Scholar] [CrossRef]
- Roslan, N.; Ya’acob, M.E.; Radzi, M.A.M.; Hashimoto, Y.; Jamaludin, D.; Chen, G. Dye sensitized solar cell (DSSC) greenhouse shading: New insights for solar radiation manipulation. Renew. Sustain. Energy Rev. 2018, 92, 171–186. [Google Scholar] [CrossRef]
- Sugathan, V.; John, E.; Sudhakar, K. Recent improvements in dye sensitized solar cells: A review. Renew. Sustain. Energy Rev. 2015, 52, 54–64. [Google Scholar] [CrossRef]
- Wang, W.; Tade, M.O.; Shao, Z. Research progress of perovskite materials in photocatalysis- and photovoltaics-related energy conversion and environmental treatment. Chem. Soc. Rev. 2015, 44, 5371–5408. [Google Scholar] [CrossRef]
- Cao, J.; Yan, F. Recent progress in tin-based perovskite solar cells. Energy Environ. Sci. 2021, 14, 1286–1325. [Google Scholar] [CrossRef]
- Ding, L. Organic Solar Cells: Materials Design, Technology, and Commercialization; Wiley: Hoboken, NJ, USA, 2022. [Google Scholar]
- Hitamoto, M. Organic Solar Cells: Energetic and Nanostructural Design; Springer: Berlin/Heidelberg, Germany, 2020. [Google Scholar]
- Fu, K.; Ho-Baillie, A.; Mulmudi, H.; Trang, P. Perovskitte Solar Cells: Technology and Practices; Apple Academic Press: Palm Bay, FL, USA, 2020. [Google Scholar]
- Luo, X.; Wang, J.; Dooner, M.; Clarke, J. Overview of current development in electrical energy storage technologies and the application potential in power system operation. Appl. Energy 2015, 137, 511–536. [Google Scholar] [CrossRef]
- Pillot, C. The rechargeable battery market and main trends 2018–2030. In Proceedings of the 36th Annual International Battery Seminar & Exhibit, Lyon, France, 18 September 2019. [Google Scholar]
- Esfahanian, V.; Shahbazi, A.A.; Torabi, F. A real-time battery engine simulation tool (BEST) based on lumped model and reduced-order modes: Application to lead-acid battery. J. Energy Storage 2019, 24, 100780. [Google Scholar] [CrossRef]
- May, G.J.; Davidson, A.; Monahov, B. Lead batteries for utility energy storage: A review. J. Energy Storage 2018, 15, 145–157. [Google Scholar] [CrossRef]
- Parker, C.; Garche, J. Chapter 10—Battery Energy-Storage Systems for Power- Supply Networks. In Valve-Regulated Lead-Acid Batteries; Rand, D., Garche, J., Moseley, P., Parker, C., Eds.; Elsevier: Amsterdam, The Netherlands, 2004; pp. 295–326. [Google Scholar]
- Gu, H.; Nguyen, T.V.; White, R.E. A mathematical model of a lead-acid cell: Discharge, rest, and charge. J. Electrochem. Soc. 1987, 134, 2953. [Google Scholar] [CrossRef]
- Bernardi, D.M.; Carpenter, M.K. A mathematical model of the oxygen-recombination lead-acid cell. J. Electrochem. Soc. 1995, 142, 2631–2642. [Google Scholar] [CrossRef]
- Gu, W.B.; Wang, C.Y.; Liaw, B.Y. Numerical modeling of coupled electrochemical and transport processes in lead-acid batteries. J. Electrochem. Soc. 1997, 144, 2053–2061. [Google Scholar] [CrossRef]
- Rahn, C.D.; Wang, C.Y. Battery Systems Engineering; John Wiley & Sons: Hoboken, NJ, USA, 2013. [Google Scholar]
- Jung, J.; Zhang, L.; Zhang, J. Mathematical Modeling of Lead-Acid Batteries. In Lead-Acid Battery Technologies; CRC Press: Boca Raton, FL, USA, 2016; Volume 8, pp. 244–333. [Google Scholar]
- Schweighofer, B.; Brandstatter, B. An accurate model for a lead-acid cell suitable for real-time environments applying control volume method. Compel 2003, 22, 703–714. [Google Scholar] [CrossRef]
- Jiang, S.; Song, Z. A review on the state of health estimation methods of lead-acid batteries. J. Power Sources 2022, 517, 230710. [Google Scholar] [CrossRef]
- Piller, S.; Perrin, M.; Jossen, A. Methods for state-of-charge determination and their applications. J. Power Sources 2001, 96, 113–120. [Google Scholar] [CrossRef]
- Rodrigues, S.; Munichandraiah, N.; Shukla, A.K. A review of state-of-charge indication of batteries by means of a.c. impedance measurements. J. Power Sources 2000, 87, 12–20. [Google Scholar] [CrossRef]
- Nwanna, E.C.; Bitire, S.; Imoisili, P.E.; Jen, T. An overview of the application of atomic layer deposition process for lithium-ion based batteries. Int. J. Energy Res. 2022, 46, 10499–10521. [Google Scholar] [CrossRef]
- Behabtu, H.A.; Messagie, M.; Coosemans, T.; Berecibar, M.; Anlay Fante, K.; Kebede, A.A.; Mierlo, J.V. A Review of energy storage technologies: Application potentials in renewable energy sources grid integration. Sustainability 2020, 12, 10511. [Google Scholar] [CrossRef]
- Camargos, P.H.; Santos, P.H.J.; Santos, I.R.; Ribeiro, G.S.; Caetano, R.E. Perspectives on Li-ion battery categories for electric vehicle applications: A review of state of the art. Int. J. Energy Res. 2022, 46, 19258–19268. [Google Scholar] [CrossRef]
- Wakihara, M. Recent developments in lithium ion batteries. Mater. Sci. Engineering. R Rep. A Rev. J. 2001, 33, 109–134. [Google Scholar] [CrossRef]
- Diaz- Gonzalez, F.; Sumper, A.; Gomis-Bellmunt, O.; Villafafila-Robles, R. A review of energy storage technologies for wind power applications. Renew. Sustain. Energy Rev. 2012, 16, 2154–2171. [Google Scholar] [CrossRef]
- Williard, N.; He, W.; Hendricks, C.; Pecht, M. Lessons learned from the 787 Dreamliner issue on lithium-ion battery reliability. Energies 2013, 6, 4682–4695. [Google Scholar] [CrossRef]
- Mathew, M.; Janhunen, S.; Rashid, M.; Long, F.; Fowler, M. Comparative analysis of lithium-ion battery resistance estimation techniques for battery management systems. Energies 2018, 11, 1490. [Google Scholar] [CrossRef]
- Thomas, K.E.; Newman, J.; Darling, R.M. Mathematical modeling of lithium batteries. In Advances in Lithium-Ion Batteries; van Schalkwijk, W.A., Scrosati, B., Eds.; Springer: Boston, MA, USA, 2002; pp. 345–392. [Google Scholar]
- Doyle, M.; Fuller, T.F.; Newman, J. Modeling of galvanostatic charge and discharge of the lithium/polymer/insertion cell. J. Electrochem. Soc. 1993, 140, 1526–1533. [Google Scholar] [CrossRef]
- Fuller, T.F.; Doyle, M.; Newman, J. Simulation and optimization of the dual lithium ion insertion cell. J. Electrochem. Soc. 1994, 141, 1. [Google Scholar] [CrossRef]
- Darling, R.; Newman, J. Modeling side reactions in composite Li Mn2O4 electrodes. J. Electrochem. Soc. 1998, 145, 990. [Google Scholar] [CrossRef]
- Chaturvedi, N.A.; Klein, R.; Christensen, J.; Ahmed, J.; Kojic, A. Algorithms for advanced battery-management systems. IEEE Control. Syst. Mag. 2010, 30, 49–68. [Google Scholar]
- Ramadass, P.; Haran, B.; Gomadam, P.M.; White, R.; Popov, B.N. Development of first principles capacity fade model for Li-ion cells. J. Electrochem. Soc. 2004, 151, A196. [Google Scholar] [CrossRef]
- Atlung, S.; West, K.; Jacobsen, T. Dynamic aspects of solid solution cathodes for electrochemical power sources. J. Electrochem. Soc. 1979, 126, 1311. [Google Scholar] [CrossRef]
- Santhanagopalan, S.; Guo, Q.; Ramadass, P.; White, R.E. Review of models for predicting the cycling performance of lithium ion batteries. J. Power Sources 2006, 156, 620–628. [Google Scholar] [CrossRef]
- Moura, S.J.; Chaturvedi, N.A.; Krstić, M. Adaptive partial differential equation observer for battery state-of-charge/state-of-health estimation via an electrochemical model. J. Dyn. Syst. Meas. Control. 2013, 136, 11015. [Google Scholar] [CrossRef]
- Zhang, X.; Shyy, W.; Sastry, A.M. Numerical simulation of intercalation-induced stress in Li-ion battery electrode particles. J. Electrochem. Soc. 2007, 154, A910. [Google Scholar] [CrossRef]
- Zhang, D.; Dey, S.; Couto, L.D.; Moura, S.J. Battery adaptive observer for a single-particle model with intercalation-induced stress. IEEE Trans. Control. Syst. Technol. 2020, 28, 1363–1377. [Google Scholar] [CrossRef]
- Zou, C.; Manzie, C.; Nešić, D. A Framework for simplification of PDE-based Lithium-ion battery models. IEEE Trans. Control. Syst. Technol. 2016, 24, 1594–1609. [Google Scholar] [CrossRef]
- Zou, C.; Manzie, C.; Nešić, D. Model predictive control for lithium-ion battery optimal charging. IEEE/ASME Trans. Mechatron. 2018, 23, 947–957. [Google Scholar] [CrossRef]
- Pecher, A.; Kofoed, J.P. Handbook of Ocean Wave Energy; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Drew, B.; Plummer, A.R.; Sahinkaya, M.N. A review of wave energy converter technology. Proc. Inst. Mech. Eng. Part A J. Power Energy 2009, 223, 887–902. [Google Scholar] [CrossRef]
- Clement, A.; McCullen, P.; Falcao, A.; Fiorentino, A.; Gardner, F.; Hammarlund, K.; Lemonis, G.; Lewis, T.; Nielsen, K.; Petroncini, S.; et al. Wave energy in Europe: Current status and perspectives. Renew. Sustain. Energy Rev. 2002, 6, 405–431. [Google Scholar] [CrossRef]
- Sowa, D.M.A.; Amuzu-Sefordzi, B.; Baddoo, T.D.; Amo-Boateng, M.; Domfeh, M.K. Climate change and hydrovision. In Sustainable Hydropower in West Africa; Kabo-Bah, A., Diji, C.J., Eds.; Academic Press: Cambridge, MA, USA, 2018; pp. 1–28. [Google Scholar]
- Gonzalez, A.T.; Dunning, P.; Howard, I.; McKee, K.; Wiercigroch, M. Is wave energy untapped potential? Int. J. Mech. Sci. 2021, 205, 106544. [Google Scholar] [CrossRef]
- Isaacs, J.D.; Schmitt, W.R. Ocean energy: Forms and prospects. Science 1980, 207, 265–273. [Google Scholar] [CrossRef]
- Chen, Z.; Yu, H.; Hu, M.; Meng, G.; Wen, C. A review of offshore wave energy extraction system. Adv. Mech. Eng. 2013, 5, 623020. [Google Scholar] [CrossRef]
- Falcao, A.F.O. Wave energy utilization: A review of the technologies. Renew. Sustain. Energy Rev. 2010, 14, 899–918. [Google Scholar] [CrossRef]
- Golbaz, D.; Asadi, R.; Amini, E.; Mehdipour, H.; Nasiri, M.; Etaati, B.; Naeeni, S.T.O.; Neshat, M.; Mirjalili, S.; Gandomi, A.H. Layout and design optimization of ocean wave energy converters: A scoping review of state-of-the-art canonical, hybrid, cooperative, and combinatorial optimization methods. Energy Rep. 2022, 8, 15446–15479. [Google Scholar] [CrossRef]
- Falcao, A.F.O.; Henriques, J.C.C. Oscillating-water-column wave energy converters and air turbines: A review. Renew. Energy 2016, 85, 1391–1424. [Google Scholar] [CrossRef]
- Langhamer, O.; Haikonen, K.; Sundberg, J. Wave power—Sustainable energy or environmentally costly? A review with special emphasis on linear wave energy converters. Renew. Sustain. Energy Rev. 2010, 14, 1329–1335. [Google Scholar] [CrossRef]
- Evans, D.V.; Newman, J.N. A wave energy converter with an internal water tank. In Proceedings of the 26th International Workshop on Water Waves and Floating Bodies, Athens, Greece, 17–20 April 2011. [Google Scholar]
- Falnes, J.; Kurniawan, A. Gravity Waves on Water, 2nd ed.; Cambridge Ocean Technology Series; Cambridge University Press: Cambridge, UK, 2020; Volume 8, pp. 62–120. [Google Scholar]
- Falnes, J.; Kurniawan, A. Oscillating Water Columns and Other Types of Wave-Energy Converters, 2nd ed.; Cambridge Ocean Technology Series; Cambridge University Press: Cambridge, UK, 2020; Volume 8, pp. 242–261. [Google Scholar]
- Evans, D.V.; Porter, R. Hydrodynamic characteristics of an oscillating water column device. Appl. Ocean. Res. 1995, 17, 155–164. [Google Scholar] [CrossRef]
- Lee, C.-H. WAMIT Theory Manual; MIT Report 95-2; Department of Ocean Engineering, Massachusetts Institute of Technology: Cambridge, MA, USA, 1995. [Google Scholar]
- Porter, R.; Evans, D.V. Complementary approximations to wave scattering by vertical barriers. J. Fluid Mech. 1995, 294, 155–180. [Google Scholar] [CrossRef]
- Martins-Rivas, H.; Mei, C.C. Wave power extraction from an oscillating water column at the tip of a breakwater. J. Fluid Mech. 2009, 626, 395–414. [Google Scholar] [CrossRef]
- Bingham, H.B.; Ducasse, D.; Nielsen, K.; Read, R. Hydrodynamic analysis of oscillating water column wave energy devices. J. Ocean. Eng. Mar. Energy 2015, 1, 405–419. [Google Scholar] [CrossRef]
- Jin, J.; Liu, Z.; Hyun, B.-S.; Hong, K. Effects of Wave Direction on Performance of Oscillating Water Column Type Wave Energy Converter. In Proceedings of the Twenty-second International Offshore and Polar Engineering Conference, Rhodes, Greece, 17–22 June 2012. [Google Scholar]
- Medina Rodríguez, A.A.; Martínez Flores, A.; Blanco Ilzarbe, J.M.; Silva Casarín, R. Interaction of Oblique Waves with an Oscillating Water Column Device. Ocean. Eng. 2021, 228, 108931. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, X.; Zou, Q.; Geng, J. Hydrodynamic Performance of Dual-Chamber Oscillating Water Column Array under Oblique Waves. Phys. Fluids 2022, 34, 117112. [Google Scholar] [CrossRef]
- Zhao, X.; Zou, Q.; Geng, J.; Zhang, Y.; Wang, Z. Influences of Wave Resonance on Hydrodynamic Efficiency and Loading of an OWC Array under Oblique Waves. Appl. Ocean. Res. 2022, 120, 103069. [Google Scholar] [CrossRef]
- Zhou, J.; Zhao, X.; Zang, J.; Geng, J.; Sun, S. Wave Power Extraction by an Oscillating Water Column Array Embedded in Comb-Type Breakwaters: Performance Analysis and Hydrodynamic Mechanism. Phys. Fluids 2023, 35, 077110. [Google Scholar]
- Hirt, C.W.; Nichols, B.D. Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries. J. Comput. Phys. 1981, 39, 201–225. [Google Scholar] [CrossRef]
- Schlichting, H.; Gersten, K. Boundary-Layer Theory; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Hubner, R.G.; Fragassa, C.; Paiva, M.d.S.; Oleinik, P.H.; Gomes, M.d.N.; Rocha, L.A.O.; dos Santos, E.D.; Machado, B.N.; Isoldi, L.A. Numerical analysis of an overtopping wave energy converter subjected to the incidence of irregular and regular waves from realistic sea states. J. Mar. Sci. Eng. 2022, 10, 1084. [Google Scholar] [CrossRef]
- Martins, J.C.; Fragassa, C.; Goulart, M.M.; dos Santos, E.D.; Isoldi, L.A.; Gomes, M.N.; Rocha, L.A.O. Constructural design of an overtopping wave energy converter incorporated in a breakwater. J. Mar. Sci. Eng. 2022, 10, 471. [Google Scholar] [CrossRef]
- Willebrand, J. Energy transport in a nonlinear and inhomogeneous random gravity wave field. J. Fluid Mech. 1975, 70, 113–126. [Google Scholar] [CrossRef]
- Phillips, O.M. Dynamics of the Upper Ocean, 2nd ed.; Cambridge University Press: Cambridge, UK, 1977. [Google Scholar]
- Bretherton, F.P.; Garret, C.I.R. Wavetrains in Inhomogeneous Moving Media; Springer: Berlin/Heidelberg, Germany, 1970; pp. 211–236. [Google Scholar]
- Fouquet, T. TOMAWAC User Manual Release 7.1; Open TELEMAC-MASCARET: Ottawa, ON, Canada, 2016. [Google Scholar]
- Seadawy, A.R. Stability analysis for Zakharov-Kuznetsov equation of weakly nonlinear ion-acoustic waves in plasma. Comput. Math. Appl. 2014, 67, 172–180. [Google Scholar] [CrossRef]
- Celik, N.; Seadawy, A.R.; Ozkan, Y.S.; Yasar, E. A model of solitary waves in a nonlinear elastic circular rod: Abundant different type exact solutions and conservation laws. Chaos Solitons Fractals 2021, 143, 110486. [Google Scholar] [CrossRef]
- Kuschke, M.; Strunz, K. Transient cable overvoltage calculation and filter design: Application to onshore converter station for hydrokinetic energy harvesting. IEEE Trans. Power Deliv. 2013, 28, 1322–1329. [Google Scholar] [CrossRef]
- Kavousi-Fard, A.; Su, W. A combined prognostic model based on machine learning for tidal current prediction. IEEE Trans. Geosci. Remote Sens. 2017, 55, 3108–3114. [Google Scholar] [CrossRef]
- Kavousi-Fard, A. A hybrid accurate model for tidal current prediction. IEEE Trans. Geosci. Remote Sens. 2017, 55, 112–118. [Google Scholar] [CrossRef]
- Khooban, M.H.; Gheisarnejad, M. Islanded microgrid frequency regulations concerning the integration of tidal power units: Real-time implementation. IEEE Trans. Circuits Syst. II Express Briefs 2020, 67, 1099–1103. [Google Scholar] [CrossRef]
- Jonsdottir, G.M.; Milano, F. Modeling of short-term tidal power fluctuations. IEEE Trans. Sustain. Energy 2020, 11, 2337–2344. [Google Scholar] [CrossRef]
- Zhang, T.; Hanousek, N.; Qadrdan, M.; Ahmadian, R. A day-ahead scheduling model of power systems incorporating multiple tidal range power stations. IEEE Trans. Sustain. Energy 2023, 14, 826–836. [Google Scholar] [CrossRef]
- Deokar, D.N.; Lingayat, N.S.; Khaparde, S.A.; Sukhatme, S.P. Modeling tidal power plant at Saphale. In Proceedings of the IEEE TENCON 1998, New Delhi, India, 17–19 December 1998. [Google Scholar]
- De Boer, G.J.; Pietrzak, J.D.; Winterwero, J.C. Using the potential energy anomaly equation to investigate tidal straining and advection of stratification in a region of freshwater influence. Ocean Model. 2008, 22, 1–11. [Google Scholar] [CrossRef]
- Sewell, E.G.; Manea, V.C. Solving the Laplace tidal equation using freely available, easily extendable finite element software. Comput. Geosci. 2021, 155, 104865. [Google Scholar] [CrossRef]
- Available online: https://en.wikipedia.org/wiki/Theory_of_tides (accessed on 3 September 2023).
- Gajic, Z.; Awan, A.; Memon, Z. (Eds.) Optimization in Smart Grids of Electric Power Systems, Special Issue, Energies. March 2024. Available online: https://www.mdpi.com/journal/energies/special_issues/J5DGLKB677 (accessed on 31 September 2023).
- Radisavljevic-Gajic, V.; Karagiannis, D.; Cheng, M.-B.; Su, W.-C. Recent trends in stabilization and control of distributed parameter dynamic systems. In Proceedings of the ASME World Congress, Montreal, QC, Canada, 14–20 November 2014. [Google Scholar]
- Karagiannis, D.; Radisavljevic-Gajic, V. Sliding mode boundary control for an Euler-Bernoulli beam subject to disturbances. IEEE Trans. Autom. Control 2018, 63, 3442–3448. [Google Scholar] [CrossRef]
- Karagiannis, D.; Radisavljevic-Gajic, V. Exponential stability for a class of boundary conditions on an Euler-Bernoulli beam subject to disturbances via boundary control. J. Sound Vib. 2019, 446, 387–411. [Google Scholar] [CrossRef]
- Karagiannis, D.; Radisavljevic-Gajic, V. A backstepping boundary observer for a simple supported beam. IEEE Trans. Autom. Control 2019, 64, 3809–3816. [Google Scholar] [CrossRef]
- Tsubakino, D.; Oliveira, T.R.; Krstic, M. Extremum seeking for distributed delays. Automatica 2023, 153, 111044. [Google Scholar] [CrossRef]
- Karafyllis, I.; Vokos, F.; Krstic, M. Output feedback control of viscous liquid-tank system and its numerical approximation. Automatica 2023, 149, 110827. [Google Scholar] [CrossRef]
- Xu, X.; Liu, L.; Krstic, M.; Feng, G. Stabilization of chains of linear parabolic PDE-ODE cascades. Automatica 2023, 148, 110763. [Google Scholar] [CrossRef]
- Yu, H.K.; Krstic, M. Traffic Congestion Control by PDE Backstepping; Birkhauser: Boston, MA, USA, 2023. [Google Scholar]
- Wang, J.; Krstic, M. PDE Control of String-Actuated Motion; Princeton University Press: Princeton, NJ, USA, 2022. [Google Scholar]
- Qin, W.; Cui, B.; Lou, X. Tracking control of disturbed crowd dynamic system using unit sliding mode control and feedback linearization. Nonlinear Dyn. 2019, 98, 2247–2260. [Google Scholar] [CrossRef]
- Gu, J.J.; Wang, J.M. Sliding mode control for N-coupled reaction-diffusion PDEs with boundary input disturbances. Int. J. Robust Nonlinear Control 2019, 29, 1437–1461. [Google Scholar] [CrossRef]
- Han, F.; Jia, Y. Sliding mode boundary control for a planar two-link rigid-flexible manipulator with input disturbances. Int. J. Control Autom. Syst. 2020, 18, 351–362. [Google Scholar] [CrossRef]
- He, W.; Tang, X.; Wang, T.; Liu, Z. Trajectory tracking control for a three-dimensional flexible wing. IEEE Trans. Control Syst. Technol. 2022, 30, 2243–2250. [Google Scholar] [CrossRef]
- Wang, J.W.; Wang, J.M. Spatiotemporal adaptive state feedback control of a linear parabolic partial differential equation. Int. J. Robust Nonlinear Control 2023, 33, 3850–3873. [Google Scholar] [CrossRef]
- Yiming, N.; Guo, B.Z. Asymptotic behavior of a retrial queueing system with server breakdowns. J. Math. Anal. 2023, 520, 126867. [Google Scholar] [CrossRef]
- Lions, J.L. Control of Distributed Singular Systems; Gauthier-Villars: Paris, France, 1985. [Google Scholar]
- Fursikov, A.V. Optimal Control of Distributed Systems. American Mathematical Society: Providence, RI, USA, 2000. [Google Scholar]
- Christofides, P.D. Nonlinear and Robust Control of PDE Systems: Methods and Applications to Transport-Reaction Processes; Birkhauser: Boston, MA, USA, 2001. [Google Scholar]
- Leveque, R.J. Finite-Volume Methods for Hyperbolic Problems; Cambridge University Press: Cambridge, UK, 2002. [Google Scholar]
- Seadawy, A.R.; Rizvi, S.T.R.; Ahmad, S.; Younis, M.; Baleanu, D. Lump, lump-one stripe, multiwave and breather solutions for the Hunter-Saxton equation. Open Phys. 2021, 19, 1–10. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Radisavljevic-Gajic, V.; Karagiannis, D.; Gajic, Z. The Modeling and Control of (Renewable) Energy Systems by Partial Differential Equations—An Overview. Energies 2023, 16, 8042. https://doi.org/10.3390/en16248042
Radisavljevic-Gajic V, Karagiannis D, Gajic Z. The Modeling and Control of (Renewable) Energy Systems by Partial Differential Equations—An Overview. Energies. 2023; 16(24):8042. https://doi.org/10.3390/en16248042
Chicago/Turabian StyleRadisavljevic-Gajic, Verica, Dimitri Karagiannis, and Zoran Gajic. 2023. "The Modeling and Control of (Renewable) Energy Systems by Partial Differential Equations—An Overview" Energies 16, no. 24: 8042. https://doi.org/10.3390/en16248042
APA StyleRadisavljevic-Gajic, V., Karagiannis, D., & Gajic, Z. (2023). The Modeling and Control of (Renewable) Energy Systems by Partial Differential Equations—An Overview. Energies, 16(24), 8042. https://doi.org/10.3390/en16248042