Wettability Alteration Mechanisms in Enhanced Oil Recovery with Surfactants and Nanofluids: A Review with Microfluidic Applications
Abstract
:1. Introduction
2. Wettability Characteristics, Measurements, and Its Effect on Oil Recovery
2.1. Wettability Characteristics
2.2. Wettability Measurement Techniques
Reservoir Wettability | Amott–Harvey Index | USBM Index |
---|---|---|
Water-wet | (0.3)–(1) | >0 |
Mixed-wet | (−0.3)–(0.3) | ~0 |
Oil-wet | (−1)–(−0.3) | <0 |
2.3. Effect of Wettability Parameters on Oil Recovery
2.3.1. Relative Permeability
2.3.2. Capillary Pressure
3. Wettability Alteration by Surfactants
3.1. Surfactants for Wettability Alteration
3.1.1. Cationic Surfactants
3.1.2. Anionic Surfactants
3.1.3. Nonionic Surfactants
3.1.4. Zwitterionic Surfactants
3.1.5. Gemini Surfactant
3.2. Wettability Alteration Mechanism by Surfactants
3.2.1. Ion Pairing Mechanism
3.2.2. Surfactant Adsorption Mechanism
3.2.3. Micelle Formation Mechanism (Micelle Layer Solubilization)
4. Wettability Alteration by Nanofluids
4.1. Mechanisms for Wettability Alteration by Nanofluid
4.2. Control Parameters for Wettability Alternation
4.2.1. Stability
4.2.2. Salinity
4.2.3. Nanoparticle Concentration
4.2.4. Nanoparticle Size
4.2.5. Temperature
5. Discussion and Summary
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- International Energy Outlook—2021—U.S. Energy Information Administration (EIA). Available online: https://www.eia.gov/outlooks/ieo/narrative/introduction/sub-topic-01.php (accessed on 3 December 2023).
- Perera, M.S.A.; Gamage, R.P.; Rathnaweera, T.D.; Ranathunga, A.S.; Koay, A.; Choi, X. A Review of CO2-Enhanced Oil Recovery with a Simulated Sensitivity Analysis. Energies 2016, 9, 481. [Google Scholar] [CrossRef]
- Wu, Y.-S. Multiphase Fluid Flow in Porous and Fractured Reservoirs; Gulf Professional Publishing: Houston, TX, USA, 2016; pp. 15–27. [Google Scholar] [CrossRef]
- Rackley, S.A. Other geological storage options. In Carbon Capture Storage, 2nd ed.; Butterworth-Heinemann: Oxford, UK, 2017; pp. 471–488. [Google Scholar] [CrossRef]
- Ahmed, T. Principles of Waterflooding. Reserv. Eng. Handb. 2010, 909–1095. [Google Scholar] [CrossRef]
- Sun, X.; Zhang, Y.; Chen, G.; Gai, Z. Application of Nanoparticles in Enhanced Oil Recovery: A Critical Review of Recent Progress. Energies 2017, 10, 345. [Google Scholar] [CrossRef]
- Whatever Happened to Enhanced Oil Recovery?—Analysis—IEA. Available online: https://www.iea.org/commentaries/whatever-happened-to-enhanced-oil-recovery (accessed on 3 December 2023).
- Kamath, K.I.; Comberiati, J.R.; Zammerilli, A.M.; Kyle, C.C.; Taylor, B.D. Tertiary Oil Recovery by Flooding with Aqueous Chemical Solutions. In Society of Petroleum Engineers of AIME; SPE: Bakersfield, CA, USA, 1981; pp. 473–482. [Google Scholar] [CrossRef]
- Sanni, M. Petroleum Engineering: Principles, Calculations, and Workflows; John Wiley & Sons: Hoboken, NJ, USA, 2018. [Google Scholar]
- Mokheimer, E.M.; Hamdy, M.; Abubakar, Z.; Shakeel, M.R.; Habib, M.A.; Mahmoud, M. A comprehensive review of thermal en-hanced oil recovery: Techniques evaluation. J. Energy Resour. Technol. 2019, 141, 030801. [Google Scholar] [CrossRef]
- Khalilinezhad, S.S.; Cheraghian, G.; Karambeigi, M.S.; Tabatabaee, H.; Roayaei, E. Characterizing the Role of Clay and Silica Nanoparticles in Enhanced Heavy Oil Recovery During Polymer Flooding. Arab. J. Sci. Eng. 2016, 41, 2731–2750. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, H.; Yu, W.; Bai, B.; Song, X.; Zhang, J. Surfactant induced reservoir wettability alteration: Recent theoretical and experimental advances in enhanced oil recovery. Pet. Sci. 2011, 8, 463–476. [Google Scholar] [CrossRef]
- Mohammed, M.; Babadagli, T. Wettability alteration: A comprehensive review of materials/methods and testing the selected ones on heavy-oil containing oil-wet systems. Adv. Colloid Interface Sci. 2015, 220, 54–77. [Google Scholar] [CrossRef] [PubMed]
- Kamal, M.S.; Hussein, I.A.; Sultan, A.S. Review on Surfactant Flooding: Phase Behavior, Retention, IFT, and Field Applications. Energy Fuels 2017, 31, 7701–7720. [Google Scholar] [CrossRef]
- Eltoum, H.; Yang, Y.-L.; Hou, J.-R. The effect of nanoparticles on reservoir wettability alteration: A critical review. Pet. Sci. 2020, 18, 136–153. [Google Scholar] [CrossRef]
- Song, W.; de Haas, T.W.; Fadaei, H.; Sinton, D. Chip-off-the-old-rock: The study of reservoir-relevant geological processes with real-rock micromodels. Lab A Chip 2014, 14, 4382–4390. [Google Scholar] [CrossRef]
- Lee, S.G.; Lee, H.; Gupta, A.; Chang, S.; Doyle, P.S. Site-Selective In-Situ Grown Calcium Carbonate Micromodels with Tunable Geometry, Porosity, and Wettability. Adv. Funct. Mater. 2016, 26, 4896–4905. [Google Scholar] [CrossRef]
- Wang, W.; Chang, S.; Gizzatov, A. Toward Reservoir-on-a-Chip: Fabricating Reservoir Micromodels by in Situ Growing Calcium Carbonate Nanocrystals in Microfluidic Channels. ACS Appl. Mater. Interfaces 2017, 9, 29380–29386. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Lee, S.G.; Doyle, P.S. Photopatterned oil-reservoir micromodels with tailored wetting properties. Lab A Chip 2015, 15, 3047–3055. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.-S. Multiphase Fluid Flow in Porous and Fractured Reservoirs; Elsevier BV: Amsterdam, The Netherlands, 2016; ISBN 9780128038482. [Google Scholar]
- Civan, F. Reservoir Formation Damage: Fundamentals, Modeling, Assessment, and Mitigation; Gulf Professional Publishing: Cambridges, MA, USA, 2023. [Google Scholar]
- Bobek, J.; Mattax, C.; Denekas, M. Reservoir Rock Wettability—Its Significance and Evaluation. Trans. AIME 1958, 213, 155–160. [Google Scholar] [CrossRef]
- Moulin, P.; Roques, H. Zeta potential measurement of calcium carbonate. J. Colloid Interface Sci. 2003, 261, 115–126. [Google Scholar] [CrossRef] [PubMed]
- Somasundaran, P.; Agar, G.E. The zero point of charge of calcite. J. Colloid Interface Sci. 1967, 24, 433–440. [Google Scholar] [CrossRef]
- Hirasaki, G.J. Wettability: Fundamentals and Surface Forces. SPE Form. Eval. 1991, 6, 217–226. [Google Scholar] [CrossRef]
- Kovscek, A.R.; Wong, H.; Radke, C.J. A pore-level scenario for the development of mixed wettability in oil reservoirs. AIChE J. 1993, 39, 1072–1085. [Google Scholar] [CrossRef]
- Kaminsky, R.; Radke, C.J. Water Films, Asphaltenes, and Wettability Alteration; Lawrence Berkeley National Lab.: Berkeley, CA, USA, 1998. [Google Scholar] [CrossRef]
- Alotaibi, M.B.; Nasralla, R.A.; Nasr-El-Din, H.A. Wettability Challenges in Carbonate Reservoirs. Proc. SPE Symp. Improv. Oil Recovery 2010, 2, 1420–1439. [Google Scholar]
- Ivanova, A.; Orekhov, A.; Markovic, S.; Iglauer, S.; Grishin, P.; Cheremisin, A. Live imaging of micro and macro wettability varia-tions of carbonate oil reservoirs for enhanced oil recovery and CO2 trapping/storage. Sci. Rep. 2022, 12, 1262. [Google Scholar] [CrossRef]
- Skauge, A.; Spildo, K.; Høiland, L.; Vik, B. Theoretical and experimental evidence of different wettability classes. J. Pet. Sci. Eng. 2007, 57, 321–333. [Google Scholar] [CrossRef]
- Abdallah, W.; Buckley, J.S.; Carnegie, A.; Edwards, J.; Herold, B.; Fordham, E.; Graue, A.; Habashy, T.; Seleznev, N.; Signer, C.; et al. Fundamentals of wettability. Technology 1986, 38, 268. [Google Scholar]
- Nowak, E.; Robbins, P.; Combes, G.; Stitt, E.H.; Pacek, A.W. Measurements of contact angle between fine, non-porous particles with varying hydrophobicity and water and non-polar liquids of different viscosities. Powder Technol. 2013, 250, 21–32. [Google Scholar] [CrossRef]
- Kamal, M.S. A Review of Gemini Surfactants: Potential Application in Enhanced Oil Recovery. J. Surfactants Deterg. 2015, 19, 223–236. [Google Scholar] [CrossRef]
- Yu, D.I.; Kwak, H.J.; Park, C.; Choi, C.; Sapkal, N.P.; Hong, J.; Kim, M.H. Wetting criteria of intrinsic contact angle to distinguish between hydrophilic and hydrophobic micro-/nanotextured surfaces: Experimental and theoretical analysis with synchrotron X-ray imaging. Langmuir 2019, 35, 3607–3614. [Google Scholar] [CrossRef]
- Amott, E. Observations Relating to the Wettability of Porous Rock. Trans. AIME 1959, 216, 156–162. [Google Scholar] [CrossRef]
- McPhee, C.; Reed, J.; Zubizarreta, I. Wettability and Wettability Tests. Dev. Pet. Sci. 2015, 64, 313–345. [Google Scholar]
- Donaldson Member Aime, E.C.; Thomas, R.D.; Lorenz, P.B. Wettability Determination and Its Effect on Recovery Efficiency. Soc. Pet. Eng. J. 1969, 9, 13–20. [Google Scholar] [CrossRef]
- Domínguez, A.; Pérez-Aguilar, H.; Rojas, F.; Kornhauser, I. Mixed wettability: A numerical study of the consequences of porous media morphology. Colloids Surf. A Physicochem. Eng. Asp. 2001, 187–188, 415–424. [Google Scholar] [CrossRef]
- Sharma, M.; Wunderlich, R. The alteration of rock properties due to interactions with drilling-fluid components. J. Pet. Sci. Eng. 1987, 1, 127–143. [Google Scholar] [CrossRef]
- Anderson, W. Wettability Literature Survey—Part 2: Wettability Measurement. J. Pet. Technol. 1986, 38, 1246–1262. [Google Scholar] [CrossRef]
- Marmur, A.; Della Volpe, C.; Siboni, S.; Amirfazli, A.; Drelich, J.W. Contact angles and wettability: Towards common and accurate terminology. Surf. Innov. 2017, 5, 3–8. [Google Scholar] [CrossRef]
- Heib, F.; Schmitt, M. Statistical Contact Angle Analyses with the High-Precision Drop Shape Analysis (HPDSA) Approach: Basic Principles and Applications. Coatings 2016, 6, 57. [Google Scholar] [CrossRef]
- Thyne, G.D. A Review of the Measurement of Wettability. Available online: https://www.researchgate.net/publication/283055682_A_review_of_the_measurement_of_wettability (accessed on 3 December 2023).
- Deng, X.; Kamal, M.S.; Patil, S.; Hussain, S.M.S.; Zhou, X. A Review on Wettability Alteration in Carbonate Rocks: Wettability Modifiers. Energy Fuels 2019, 34, 31–54. [Google Scholar] [CrossRef]
- Fidjestol, P.; Lewis, R. Microsilica as an Addition. In Lea’s Chemistry of Cement and Concrete; Butterworth-Heinemann: Oxford, UK, 1998; pp. 679–712. [Google Scholar] [CrossRef]
- Baker, R.O.; Yarranton, H.W.; Jensen, J.L. Special Core Analysis—Rock–Fluid Interactions. In Practical Reservoir Engineering and Characterization; Elsevier: Amsterdam, The Netherlands, 2015; pp. 239–295. [Google Scholar] [CrossRef]
- Marsden, S.S. Wettability-Its Measurement and Application to Waterflooding. J. Jpn. Assoc. Pet. Technol. 1965, 30, 1–10. [Google Scholar] [CrossRef]
- Marsden, S.S. Wettability: The elusive key to waterflooding. Pet. Eng. 1965, 37. Available online: https://www.osti.gov/biblio/6220287 (accessed on 3 December 2023).
- Chatenever, A.; Calhoun, J.C., Jr. Visual examinations of fluid behavior in porous media-part I. J. Pet. Technol. 1952, 4, 149–156. [Google Scholar] [CrossRef]
- Jennings, B.H.Y.; Member, J. Effect of Laboratory Core Cleaning on Water-Oil Relative Permeability. In Society of Petroleum Engineers—Fall Meeting of the Society of Petroleum Engineers of AIME, FM; SPE: Dallas, TX, USA, 1957. [Google Scholar] [CrossRef]
- Warner, H. The Reservoir Engineering Aspects of Waterflooding; Society of Petroleum Engineers (SPE): Richardson, TX, USA, 2015; ISBN 9781613994214. [Google Scholar]
- Donaldson, E.C.; Thomas, R.D. Microscopic Observations of Oil Displacement in Water-Wet and Oil-Wet Systems. In Proceedings of the SPE Annual Technical Conference and Exhibition, New Orleans, LA, USA, 3–7 October 1971; SPE: Dallas, TX, USA, 1971. [Google Scholar] [CrossRef]
- Owens, W.; Archer, D. The Effect of Rock Wettability on Oil-Water Relative Permeability Relationships. J. Pet. Technol. 1971, 23, 873–878. [Google Scholar] [CrossRef]
- Donaldson, E.C. Oil-water-rock wettability measurement. Am. Chem. Soc. Div. Pet. Chem. 1981, 26. Available online: https://www.osti.gov/biblio/6760521 (accessed on 3 December 2023).
- Song, H.; Liu, C.; Lao, J.; Wang, J.; Du, S.; Yu, M. Intelligent Microfluidics Research on Relative Permeability Measurement and Prediction of Two-Phase Flow in Micropores. Geofluids 2021, 2021, 1–12. [Google Scholar] [CrossRef]
- Purswani, P.; Karpyn, Z.T.; Enab, K.; Xue, Y.; Huang, X. Evaluation of image segmentation techniques for image-based rock property estimation. J. Pet. Sci. Eng. 2020, 195, 107890. [Google Scholar] [CrossRef]
- Gerami, A.; Armstrong, R.T.; Jing, Y.; Wahid, F.A.; Arandiyan, H.; Mostaghimi, P. Microscale insights into gas recovery from bright and dull bands in coal. J. Pet. Sci. Eng. 2018, 172, 373–382. [Google Scholar] [CrossRef]
- Arigbe, O.D.; Oyeneyin, M.B.; Arana, I.; Ghazi, M.D. Real-time relative permeability prediction using deep learning. J. Pet. Explor. Prod. Technol. 2018, 9, 1271–1284. [Google Scholar] [CrossRef]
- Gupta, R.; Smith, P.G.; Hu, L.; Willingham, T.W.; Cascio, M.L.; Shyeh, J.J.; Harris, C.R. Enhanced waterflood for middle east carbonate cores—Impact of injection water composition. In Proceedings of the SPE Middle East Oil and Gas Show and Conference, Manama, Bahrain, 25 September 2011; SPE: Dallas, TX, USA, 2011; p. SPE–142668. [Google Scholar]
- Masalmeh, S.K.; Sorop, T.G.; Suijkerbuijk, B.M.; Vermolen, E.C.; Douma, S.; Van Del Linde, H.A.; Pieterse, S.G. Low salinity flooding: Experimental evaluation and numerical interpretation. In Proceedings of the IPTC 2014: International Petroleum Technology Conference, Doha, Qatar, 19 January 2014; European Association of Geoscientists & Engineers: Bunnik, The Netherlands, 2014; p. cp-395. [Google Scholar]
- Suijkerbuijk, B.M.; Sorop, T.G.; Parker, A.R.; Masalmeh, S.K.; Chmuzh, I.V.; Karpan, V.M.; Volokitin, Y.E.; Skripkin, A.G. Low salinity waterflooding at West Salym: Laboratory experiments and field forecasts. In Proceedings of the SPE EOR Conference at Oil and Gas West Asia, Muscat, Oman, 31 March 2014; OnePetro: Richardson, TX, USA, 2014. [Google Scholar]
- Du, Y.; Xu, K.; Mejia, L.; Zhu, P.; Balhoff, M.T. Microfluidic Investigation of Low-Salinity Effects During Oil Recovery: A No-Clay and Time-Dependent Mechanism. SPE J. 2019, 24, 2841–2858. [Google Scholar] [CrossRef]
- Adamson, A.; Gast, A. Physical Chemistry of Surfaces; Interscience Publishers: New York, NY, USA, 1967. [Google Scholar]
- Dullien, F. Porous Media: Fluid Transport and Pore Structure; Academic Press: Cambridge, MA, USA, 2012. [Google Scholar]
- Albers, B. Modeling the hysteretic behavior of the capillary pressure in partially saturated porous media: A review. Acta Mech. 2014, 225, 2163–2189. [Google Scholar] [CrossRef]
- Vavra, C.L.; Kaldi, J.G.; Sneider, R.M. Geological Applications of Capillary Pressure: A Review. Am. Assoc. Pet. Geol. Bull. 1992, 76, 840–850. [Google Scholar]
- Andersen, P. Capillary Pressure Effects on Estimating the Enhanced-Oil-Recovery Potential During Low-Salinity and Smart Waterflooding. SPE J. 2019, 25, 481–496. [Google Scholar] [CrossRef]
- Anderson, W. Wettability Literature Survey—Part 4: Effects of Wettability on Capillary Pressure. J. Pet. Technol. 1987, 39, 1283–1300. [Google Scholar] [CrossRef]
- Kueper, B.H.; Frind, E.O. An overview of immiscible fingering in porous media. J. Contam. Hydrol. 1988, 2, 95–110. [Google Scholar] [CrossRef]
- Singh, A.; Singh, Y.; Pandey, K.M. Viscous fingering instabilities in radial Hele-Shaw cell: A review. Mater. Today Proc. 2020, 26, 760–762. [Google Scholar] [CrossRef]
- Homsy, G.M. Viscous fingering in porous media. Annu. Rev. Fluid Mech. 1987, 19, 271–311. [Google Scholar] [CrossRef]
- Lenormand, R.; Zarcone, C. Capillary fingering: Percolation and fractal dimension. Transp. Porous Media 1989, 4, 599–612. [Google Scholar] [CrossRef]
- An, S.; Erfani, H.; Godinez-Brizuela, O.E.; Niasar, V. Transition from Viscous Fingering to Capillary Fingering: Application of GPU-Based Fully Implicit Dynamic Pore Network Modeling. Water Resour. Res. 2020, 56, e2020WR028149. [Google Scholar] [CrossRef]
- Yang, W.; Brownlow, J.W.; Walker, D.L.; Lu, J. Effect of Surfactant-Assisted Wettability Alteration on Immiscible Displacement: A Microfluidic Study. Water Resour. Res. 2021, 57, e2020WR029522. [Google Scholar] [CrossRef]
- Chen, Y.F.; Fang, S.; Wu, D.S.; Hu, R. Visualizing and quantifying the crossover from capillary fingering to viscous fingering in a rough fracture. Water Resour. Res. 2017, 53, 7756–7772. [Google Scholar] [CrossRef]
- Lenormand, R.; Touboul, E.; Zarcone, C. Numerical models and experiments on immiscible displacements in porous media. J. Fluid Mech. 1988, 189, 165–187. [Google Scholar] [CrossRef]
- Zhang, C.; Oostrom, M.; Wietsma, T.W.; Grate, J.W.; Warner, M.G. Influence of Viscous and Capillary Forces on Immiscible Fluid Displacement: Pore-Scale Experimental Study in a Water-Wet Micromodel Demonstrating Viscous and Capillary Fingering. Energy Fuels 2011, 25, 3493–3505. [Google Scholar] [CrossRef]
- Guo, F.; Aryana, S.A. An Experimental Investigation of Flow Regimes in Imbibition and Drainage Using a Microfluidic Platform. Energies 2019, 12, 1390. [Google Scholar] [CrossRef]
- Daripa, P.; Dutta, S. Modeling and simulation of surfactant–polymer flooding using a new hybrid method. J. Comput. Phys. 2017, 335, 249–282. [Google Scholar] [CrossRef]
- Delshad, M.; Najafabadi, N.F.; Anderson, G.A.; Pope, G.A.; Sepehrnoori, K. Modeling Wettability Alteration by Surfactants in Naturally Fractured Reservoirs. SPE Reserv. Eval. Eng. 2009, 12, 361–370. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, Y.; Valocchi, A.J. Lattice boltzmann simulation of immiscible fluid displacement in porous media: Ho-mogeneous versus heterogeneous pore network. Phys. Fluids 2015, 27. [Google Scholar] [CrossRef]
- Sheng, J.J. Surfactant Enhanced Oil Recovery in Carbonate Reservoirs. In Enhanced Oil Recovery Field Case Studies; Gulf Professional Publishing: Cambridges, MA, USA, 2013; pp. 281–299. [Google Scholar] [CrossRef]
- Chilingar, G.V.; Yen, T.F. Some Notes on Wettability and Relative Permeabilities of Carbonate Reservoir Rocks, II. Energy Sources 1983, 7, 67–75. [Google Scholar] [CrossRef]
- Chen, P.; Mohanty, K.K. Surfactant-Mediated Spontaneous Imbibition in Carbonate Rocks at Harsh Reservoir Conditions. SPE J. 2013, 18, 124–133. [Google Scholar] [CrossRef]
- Yao, Y.; Wei, M.; Kang, W. A review of wettability alteration using surfactants in carbonate reservoirs. Adv. Colloid Interface Sci. 2021, 294, 102477. [Google Scholar] [CrossRef] [PubMed]
- Standnes, D.C.; Austad, T. Wettability alteration in chalk 2. Mechanism for wettability alteration from oil-wet to water-wet using surfactants. J. Pet. Sci. Eng. 2000, 28, 123–143. [Google Scholar] [CrossRef]
- Jarrahian, K.; Seiedi, O.; Sheykhan, M.; Sefti, M.V.; Ayatollahi, S. Wettability alteration of carbonate rocks by surfactants: A mechanistic study. Colloids Surf. A Physicochem. Eng. Asp. 2012, 410, 1–10. [Google Scholar] [CrossRef]
- Souayeh, M.; Al-Maamari, R.S.; Aoudia, M.; Karimi, M.; Hadji, M. Experimental Investigation of Wettability Alteration of Oil-Wet Carbonates by a Non-ionic Surfactant. Energy Fuels 2018, 32, 11222–11233. [Google Scholar] [CrossRef]
- Cai, B.; Dong, J.; Cheng, L.; Jiang, Z.; Yang, Y.; Li, X. Adsorption and micellization of gemini surfactants with pyrrolidinium head groups: Effect of the spacer length. Soft Matter 2013, 9, 7637–7646. [Google Scholar] [CrossRef]
- Kumar, N.; Tyagi, R. Industrial Applications of Dimeric Surfactants: A Review. J. Dispers. Sci. Technol. 2014, 35, 205–214. [Google Scholar] [CrossRef]
- Hou, J.; Han, M.; Wang, J. Manipulation of surface charges of oil droplets and carbonate rocks to improve oil recovery. Sci. Rep. 2021, 11, 14518. [Google Scholar] [CrossRef]
- Hilner, E.; Andersson, M.P.; Hassenkam, T.; Matthiesen, J.; Salino, P.A.; Stipp, S.L.S. The effect of ionic strength on oil adhesion in sandstone—The search for the low salinity mechanism. Sci. Rep. 2015, 5, 9933. [Google Scholar] [CrossRef]
- Massarweh, O.; Abushaikha, A.S. The use of surfactants in enhanced oil recovery: A review of recent advances. Energy Rep. 2020, 6, 3150–3178. [Google Scholar] [CrossRef]
- Austad, T.; Milter, J. Spontaneous Imbibition of Water into Low Permeable Chalk at Different Wettabilities Using Surfactants. In Proceedings of the SPE International Symposium on Oilfield Chemistry, Houston, TX, USA, 18 February 1997; SPE: Dallas, TX, USA, 1997; pp. 257–266. [Google Scholar] [CrossRef]
- Salehi, M.; Johnson, S.J.; Liang, J.T. Mechanistic study of wettability alteration using surfactants with applications in naturally fractured reservoirs. Langmuir 2008, 24, 14099–14107. [Google Scholar] [CrossRef] [PubMed]
- Hammond, P.S.; Unsal, E. Spontaneous Imbibition of Surfactant Solution into an Oil-Wet Capillary: Wettability Restoration by Surfactant−Contaminant Complexation. Langmuir 2011, 27, 4412–4429. [Google Scholar] [CrossRef] [PubMed]
- Hou, B.; Wang, Y.; Cao, X.; Zhang, J.; Song, X.; Ding, M.; Chen, W. Surfactant-Induced Wettability Alteration of Oil-Wet Sandstone Surface: Mechanisms and Its Effect on Oil Recovery. J. Surfactants Deterg. 2015, 19, 315–324. [Google Scholar] [CrossRef]
- Sugar, A.; Serag, M.F.; Torrealba, V.A.; Buttner, U.; Habuchi, S.; Hoteit, H. Visualization of polymer retention mechanisms in porous media using microfluidics. In Proceedings of the SPE Europec featured at EAGE Conference and Exhibition, Virtual, 1–3 December 2020; SPE: Dallas, TX, USA, 2020; p. D021S010R004. [Google Scholar]
- Deljooei, M.; Zargar, G.; Nooripoor, V.; Takassi, M.A.; Esfandiarian, A. Novel green surfactant made from L-aspartic acid as enhancer of oil production from sandstone reservoirs: Wettability, IFT, microfluidic, and core flooding assessments. J. Mol. Liq. 2020, 323, 115037. [Google Scholar] [CrossRef]
- Kiani, S.; Jones, D.R.; Alexander, S.; Barron, A.R. New insights into the interactions between asphaltene and a low surface energy anionic surfactant under low and high brine salinity. J. Colloid Interface Sci. 2020, 571, 307–317. [Google Scholar] [CrossRef]
- Schick, M. Nonionic Surfactants: Physical Chemistry; CRC Press: Boca Raton, FL, USA, 1987. [Google Scholar]
- Cutler, W.G.; Davis, R.C. Detergency; Theory and Test Methods; Part 1; Marcel Dekker: New York, NY, USA, 1972; ISBN 9780824711139. Available online: https://books.google.co.in/books?id=z6L0xQEACAAJ (accessed on 3 December 2023).
- Kao, R.; Wasan, D.; Nikolov, A.; Edwards, D. Mechanisms of oil removal from a solid surface in the presence of anionic micellar solutions. Colloids Surf. 1989, 34, 389–398. [Google Scholar] [CrossRef]
- Kumar, K.; Dao, E.K.; Mohanty, K.K. Atomic Force Microscopy Study of Wettability Alteration by Surfactants. SPE J. 2008, 13, 137–145. [Google Scholar] [CrossRef]
- Alvarez, J.O.; Schechter, D.S. Wettability Alteration and Spontaneous Imbibition in Unconventional Liquid Reservoirs by Surfactant Additives. SPE Reserv. Eval. Eng. 2016, 20, 107–117. [Google Scholar] [CrossRef]
- Zhao, X.; Zhan, F.; Liao, G.; Liu, W.; Su, X.; Feng, Y. In situ micro-emulsification during surfactant enhanced oil recovery: A mi-crofluidic study. J. Colloid Interface Sci. 2022, 620, 465–477. [Google Scholar] [CrossRef] [PubMed]
- Seo, S.; Mastiani, M.; Mosavati, B.; Peters, D.M.; Mandin, P.; Kim, M. Performance evaluation of environmentally benign nonionic biosurfactant for enhanced oil recovery. Fuel 2018, 234, 48–55. [Google Scholar] [CrossRef]
- Liu, Z.; Li, Y.; Luan, H.; Gao, W.; Guo, Y.; Chen, Y. Pore scale and macroscopic visual displacement of oil-in-water emulsions for enhanced oil recovery. Chem. Eng. Sci. 2019, 197, 404–414. [Google Scholar] [CrossRef]
- Zhao, X.; Feng, Y.; Liao, G.; Liu, W. Visualizing in-situ emulsification in porous media during surfactant flooding: A microfluidic study. J. Colloid Interface Sci. 2020, 578, 629–640. [Google Scholar] [CrossRef] [PubMed]
- Guo, F.; Aryana, S.A. Improved sweep efficiency due to foam flooding in a heterogeneous microfluidic device. J. Pet. Sci. Eng. 2018, 164, 155–163. [Google Scholar] [CrossRef]
- Nilsson, M.A.; Kulkarni, R.; Gerberich, L.; Hammond, R.; Singh, R.; Baumhoff, E.; Rothstein, J.P. Effect of fluid rheology on enhanced oil recovery in a microfluidic sandstone device. J. Non-Newton. Fluid Mech. 2013, 202, 112–119. [Google Scholar] [CrossRef]
- He, K.; Xu, L.; Gao, Y.; Yin, X.; Neeves, K.B. Evaluation of surfactant performance in fracturing fluids for enhanced well productivity in unconventional reservoirs using Rock-on-a-Chip approach. J. Pet. Sci. Eng. 2015, 135, 531–541. [Google Scholar] [CrossRef]
- Saadat, M.; Yang, J.; Dudek, M.; Øye, G.; Tsai, P.A. Microfluidic investigation of enhanced oil recovery: The effect of aqueous floods and network wettability. J. Pet. Sci. Eng. 2021, 203, 108647. [Google Scholar] [CrossRef]
- Nandwani, S.K.; Malek, N.I.; Lad, V.N.; Chakraborty, M.; Gupta, S. Study on interfacial properties of Imidazolium ionic liquids as surfactant and their application in enhanced oil recovery. Colloids Surf. A Physicochem. Eng. Asp. 2017, 516, 383–393. [Google Scholar] [CrossRef]
- Zhao, X.-Z.; Liao, G.-Z.; Gong, L.-Y.; Luan, H.-X.; Chen, Q.-S.; Liu, W.-D.; Liu, D.; Feng, Y.-J. New insights into the mechanism of surfactant enhanced oil recovery: Micellar solubilization and in-situ emulsification. Pet. Sci. 2021, 19, 870–881. [Google Scholar] [CrossRef]
- Xu, F.; Chen, Q.; Ma, M.; Wang, Y.; Yu, F.; Li, J. Displacement mechanism of polymeric surfactant in chemical cold flooding for heavy oil based on microscopic visualization experiments. Adv. Geo-Energy Res. 2020, 4, 77–85. [Google Scholar] [CrossRef]
- Kiani, S.; Rogers, S.E.; Sagisaka, M.; Alexander, S.; Barron, A.R. A New Class of Low Surface Energy Anionic Surfactant for Enhanced Oil Recovery. Energy Fuels 2019, 33, 3162–3175. [Google Scholar] [CrossRef]
- Chávez-Miyauchi, T.E.; Firoozabadi, A.; Fuller, G.G. Nonmonotonic Elasticity of the Crude Oil–Brine Interface in Relation to Improved Oil Recovery. Langmuir 2016, 32, 2192–2198. [Google Scholar] [CrossRef] [PubMed]
- Yun, W.; Chang, S.; Cogswell, D.A.; Eichmann, S.L.; Gizzatov, A.; Thomas, G.; Al-Hazza, N.; Abdel-Fattah, A.; Wang, W. Toward res-ervoir-on-a-chip: Rapid performance evaluation of enhanced oil recovery surfactants for carbonate reservoirs using a cal-cite-coated micromodel. Sci. Rep. 2020, 10, 782. [Google Scholar] [CrossRef] [PubMed]
- Vavra, E.; Puerto, M.; Biswal, S.L.; Hirasaki, G.J. A systematic approach to alkaline-surfactant-foam flooding of heavy oil: Microfluidic assessment with a novel phase-behavior viscosity map. Sci. Rep. 2020, 10, 12930. [Google Scholar] [CrossRef] [PubMed]
- Pryazhnikov, M.I.; Minakov, A.V.; Pryazhnikov, A.I.; Denisov, I.A.; Yakimov, A.S. Microfluidic Study of the Effect of Nanosuspensions on Enhanced Oil Recovery. Nanomaterials 2022, 12, 520. [Google Scholar] [CrossRef]
- Lim, S.; Horiuchi, H.; Nikolov, A.D.; Wasan, D. Nanofluids Alter the Surface Wettability of Solids. Langmuir 2015, 31, 5827–5835. [Google Scholar] [CrossRef]
- Li, K.; Wang, D.; Jiang, S. Review on enhanced oil recovery by nanofluids. Oil Gas Sci. Technol. Rev. D’ifp Energ. Nouv. 2018, 73, 37. [Google Scholar] [CrossRef]
- De Gennes, P.G. Wetting: Statics and dynamics. Rev. Mod. Phys. 1985, 57, 827–863. [Google Scholar] [CrossRef]
- Wasan, D.; Nikolov, A.; Kondiparty, K. The wetting and spreading of nanofluids on solids: Role of the structural disjoining pressure. Curr. Opin. Colloid Interface Sci. 2011, 16, 344–349. [Google Scholar] [CrossRef]
- Lim, S.; Wasan, D. Structural disjoining pressure induced solid particle removal from solid substrates using nanofluids. J. Colloid Interface Sci. 2017, 500, 96–104. [Google Scholar] [CrossRef] [PubMed]
- Bazazi, P.; Sanati-Nezhad, A.; Hejazi, S.H. Wetting Phase Disintegration and Detachment: Three-Dimensional Confocal Imaging of Two-Phase Distributions. Phys. Rev. Appl. 2019, 11, 014042. [Google Scholar] [CrossRef]
- Cheraghian, G.; Hendraningrat, L. A review on applications of nanotechnology in the enhanced oil recovery part A: Effects of nanoparticles on interfacial tension. Int. Nano Lett. 2016, 6, 129–138. [Google Scholar] [CrossRef]
- Khilar, K.C.; Fogler, H.S. Migrations of Fines in Porous Media; Springer: Dordrecht, The Netherlands, 1998; ISBN 9783030018054. [Google Scholar]
- Zhang, T.; Murphy, M.; Yu, H.; GBagaria, H.; Yoon, K.Y.; Nielson, B.M.; Bielawski, C.W.; Johnston, K.P.; Huh, C.; Bryant, S.L. Investi-gation of nanoparticle adsorption during transport in porous media. In Proceedings of the SPE Annual Technical Conference and Exhibition, New Orleans, LA, USA, 30 September–2 October 2013; SPE: Dallas, TX, USA, 2013; p. D021S020R005. [Google Scholar]
- Li, S.; Torsæter, O.; Lau, H.C.; Hadia, N.J.; Stubbs, L.P. The Impact of Nanoparticle Adsorption on Transport and Wettability Alteration in Water-Wet Berea Sandstone: An Experimental Study. Front. Phys. 2019, 7, 74. [Google Scholar] [CrossRef]
- Lei, W.; Lu, X.; Wang, M. Multiphase displacement manipulated by micro/nanoparticle suspensions in porous media via microfluidic experiments: From interface science to multiphase flow patterns. Adv. Colloid Interface Sci. 2023, 311, 102826. [Google Scholar] [CrossRef]
- Kazemzadeh, Y.; Shojaei, S.; Riazi, M.; Sharifi, M. Review on application of nanoparticles for EOR purposes: A critical review of the opportunities and challenges. Chin. J. Chem. Eng. 2019, 27, 237–246. [Google Scholar] [CrossRef]
- Skauge, T.; Hetland, S.; Spildo, K.; Skauge, A. Nano-sized particles for EOR. In Proceedings of the SPE Improved Oil Recovery Symposium, Tulsa, OK, USA, 24–28 April 2010; OnePetro: Dallas, TX, USA, 2010. [Google Scholar]
- Chakraborty, S.; Panigrahi, P.K. Stability of nanofluid: A review. Appl. Therm. Eng. 2020, 174, 115259. [Google Scholar] [CrossRef]
- Shamsijazeyi, H.; Miller, C.A.; Wong, M.S.; Tour, J.M.; Verduzco, R. Polymer-coated nanoparticles for enhanced oil recovery. J. Appl. Polym. Sci. 2014, 131, 40576. [Google Scholar] [CrossRef]
- Olayiwola, S.O.; Dejam, M. A comprehensive review on interaction of nanoparticles with low salinity water and surfactant for enhanced oil recovery in sandstone and carbonate reservoirs. Fuel 2019, 241, 1045–1057. [Google Scholar] [CrossRef]
- Mahmoudi, S.; Jafari, A.; Javadian, S. Temperature effect on performance of nanoparticle/surfactant flooding in enhanced heavy oil recovery. Pet. Sci. 2019, 16, 1387–1402. [Google Scholar] [CrossRef]
- Nap, R.J.; Park, S.H.; Szleifer, I. On the stability of nanoparticles coated with polyelectrolytes in high salinity solutions. J. Polym. Sci. Part B Polym. Phys. 2014, 52, 1689–1699. [Google Scholar] [CrossRef]
- Rostami, P.; Sharifi, M.; Aminshahidy, B.; Fahimpour, J. Enhanced oil recovery using silica nanoparticles in the presence of salts for wettability alteration. J. Dispers. Sci. Technol. 2019, 41, 402–413. [Google Scholar] [CrossRef]
- Dehaghani, A.H.S.; Daneshfar, R. How much would silica nanoparticles enhance the performance of low-salinity water flooding? Pet. Sci. 2019, 16, 591–605. [Google Scholar] [CrossRef]
- Mohammad Salehi, M.; Omidvar, P.; Naeimi, F. Salinity of injection water and its impact on oil recovery absolute perme-ability, residual oil saturation, interfacial tension and capillary pressure. Egypt. J. Pet. 2017, 26, 301–312. [Google Scholar] [CrossRef]
- Maghzi, A.; Mohammadi, S.; Ghazanfari, M.H.; Kharrat, R.; Masihi, M. Monitoring wettability alteration by silica nano-particles during water flooding to heavy oils in five-spot systems: A pore-level investigation. Exp. Therm. Fluid Sci. 2012, 40, 168–176. [Google Scholar] [CrossRef]
- Bhuiyan, M.; Saidur, R.; Amalina, M.; Mostafizur, R.; Islam, A. Effect of Nanoparticles Concentration and Their Sizes on Surface Tension of Nanofluids. Procedia Eng. 2015, 105, 431–437. [Google Scholar] [CrossRef]
- Masoud Hosseini, S.; Vafajoo, L.; Ghasemi, E.; Salman, B.H. Experimental investigation the effect of nanoparticle con-centration on the rheological behavior of paraffin-based nickel ferrofluid. Int. J. Heat Mass Transf. 2016, 93, 228–234. [Google Scholar] [CrossRef]
- Hojjat, M.; Etemad, S.; Bagheri, R.; Thibault, J. Rheological characteristics of non-Newtonian nanofluids: Experimental investigation. Int. Commun. Heat Mass Transf. 2010, 38, 144–148. [Google Scholar] [CrossRef]
- Al-Anssari, S.; Barifcani, A.; Wang, S.; Maxim, L.; Iglauer, S. Wettability alteration of oil-wet carbonate by silica nanofluid. J. Colloid Interface Sci. 2015, 461, 435–442. [Google Scholar] [CrossRef]
- Hendraningrat, L.; Torsæter, O. Unlocking the Potential of Metal Oxides Nanoparticles to Enhance the Oil Recovery. Proc. Annu. Offshore Technol. Conf. 2014, 1, 211–222. [Google Scholar]
- Xu, K.; Zhu, P.; Huh, C.; Balhoff, M.T. Microfluidic Investigation of Nanoparticles’ Role in Mobilizing Trapped Oil Droplets in Porous Media. Langmuir 2015, 31, 13673–13679. [Google Scholar] [CrossRef]
- Bolandtaba, S.F.; Skauge, A. Network Modeling of EOR Processes: A Combined Invasion Percolation and Dynamic Model for Mobilization of Trapped Oil. Transp. Porous Media 2011, 89, 357–382. [Google Scholar] [CrossRef]
- Manzari Tavakoli, H.; Jamialahmadi, M.; Kord, S.; Daryasafar, A. Experimental investigation of the effect of silica nano-particles on the kinetics of barium sulfate scaling during water injection process. J. Pet. Sci. Eng. 2018, 169, 344–352. [Google Scholar] [CrossRef]
- Gbadamosi, A.O.; Junin, R.; Manan, M.A.; Agi, A.; Yusuff, A.S. An overview of chemical enhanced oil recovery: Recent advances and prospects. Int. Nano Lett. 2019, 9, 171–202. [Google Scholar] [CrossRef]
- Li, X.; Zhu, D.; Wang, X. Experimental investigation on viscosity of Cu-H2O nanofluids. J. Wuhan Univ. Technol. Sci. Ed. 2009, 24, 48–52. [Google Scholar] [CrossRef]
- Schmidt, A.J.; Chiesa, M.; Torchinsky, D.H.; Johnson, J.A.; Boustani, A.; McKinley, G.H.; Nelson, K.A.; Chen, G. Experimental investi-gation of nanofluid shear and longitudinal viscosities. Appl. Phys. Lett. 2008, 92. [Google Scholar] [CrossRef]
- Turgut, A.; Tavman, I.; Chirtoc, M.; Schuchmann, H.P.; Sauter, C.; Tavman, S. Thermal Conductivity and Viscosity Measurements of Water-Based TiO2 Nanofluids. Int. J. Thermophys. 2009, 30, 1213–1226. [Google Scholar] [CrossRef]
- Pak, B.C.; Cho, Y.I. Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp. Heat Transf. 1998, 11, 151–170. [Google Scholar] [CrossRef]
- Gupta, R.; Mohanty, K.K. Wettability Alteration Mechanism for Oil Recovery from Fractured Carbonate Rocks. Transp. Porous Media 2011, 87, 635–652. [Google Scholar] [CrossRef]
- Buonomo, B.; Manca, O.; Marinelli, L.; Nardini, S. Effect of temperature and sonication time on nanofluid thermal con-ductivity measurements by nano-flash method. Appl. Therm. Eng. 2015, 91, 181–190. [Google Scholar] [CrossRef]
- Al-Anssari, S.; Wang, S.; Barifcani, A.; Lebedev, M.; Iglauer, S. Effect of temperature and SiO2 nanoparticle size on wettability alteration of oil-wet calcite. Fuel 2017, 206, 34–42. [Google Scholar] [CrossRef]
- Bahraminejad, H.; Manshad, A.K.; Iglauer, S.; Keshavarz, A. NEOR mechanisms and performance analysis in car-bonate/sandstone rock coated microfluidic systems. Fuel 2022, 309, 122327. [Google Scholar] [CrossRef]
- Elyaderani, S.M.G.; Jafari, A. Microfluidics experimental study in porous media applied for nanosilica/alkaline flooding. J. Pet. Sci. Eng. 2018, 173, 1289–1303. [Google Scholar] [CrossRef]
- Betancur, S.; Olmos, C.M.; Pérez, M.; Lerner, B.; Franco, C.A.; Riazi, M.; Gallego, J.; Carrasco-Marín, F.; Cortés, F.B. A microfluidic study to investigate the effect of magnetic iron core-carbon shell nanoparticles on displacement mechanisms of crude oil for chemical enhanced oil recovery. J. Pet. Sci. Eng. 2020, 184, 106589. [Google Scholar] [CrossRef]
- Xu, K.; Agrawal, D.K.; Darugar, Q. Hydrophilic Nanoparticle-Based Enhanced Oil Recovery: Microfluidic Investigations on Mechanisms. Energy Fuels 2018, 32, 11243–11252. [Google Scholar] [CrossRef]
- Omran, M.; Akarri, S.; Torsaeter, O. The Effect of Wettability and Flow Rate on Oil Displacement Using Polymer-Coated Silica Nanoparticles: A Microfluidic Study. Processes 2020, 8, 991. [Google Scholar] [CrossRef]
- Hasani, M.; Jafari, A. Electromagnetic field’s effect on enhanced oil recovery using magnetic nanoparticles: Microfluidic experimental approach. Fuel 2021, 307, 121718. [Google Scholar] [CrossRef]
- Xu, K.; Zhu, P.; Colon, T.; Huh, C.; Balhoff, M. A Microfluidic Investigation of the Synergistic Effect of Nanoparticles and Surfactants in Macro-Emulsion-Based Enhanced Oil Recovery. SPE J. 2016, 22, 459–469. [Google Scholar] [CrossRef]
- Li, S.; Dan, D.; Lau, H.C.; Hadia, N.J.; Torsæter, O.; Stubbs, L.P. Investigation of wettability alteration by silica nanoparticles through advanced surface-wetting visualization techniques. In Proceedings of the SPE Annual Technical Conference and Exhibition, Calgary, AB, Canada, 30 September–2 October 2019; SPE: Dallas, TX, USA, 2019; p. D031S040R002. [Google Scholar]
- Omran, M.; Akarri, S.; Bila, A.; Torsæter, O. Screening of Nanoparticles with Considering the Pore Structure and Initial Oil Connectivity Effects. In Proceedings of the Society of Petroleum Engineers—SPE Norway Subsurface Conference, Virtual, 2–3 November 2020; OnePetro: Dallas, TX, USA, 2020. [Google Scholar] [CrossRef]
- Li, S.; Sng, A.; Daniel, D.; Lau, H.C.; Torsæter, O.; Stubbs, L.P. Visualizing and Quantifying Wettability Alteration by Silica Nanofluids. ACS Appl. Mater. Interfaces 2021, 13, 41182–41189. [Google Scholar] [CrossRef]
- Rostami, P.; Sharifi, M.; Aminshahidy, B.; Fahimpour, J. The effect of nanoparticles on wettability alteration for enhanced oil recovery: Micromodel experimental studies and CFD simulation. Pet. Sci. 2019, 16, 859–873. [Google Scholar] [CrossRef]
- Ahmadi, M.A.; Shadizadeh, S.R. Nano-surfactant flooding in carbonate reservoirs: A mechanistic study. Eur. Phys. J. Plus 2017, 132, 246. [Google Scholar] [CrossRef]
- Ahmadi, M.A.; Shadizadeh, S.R. Spotlight on the New Natural Surfactant Flooding in Carbonate Rock Samples in Low Salinity Condition. Sci. Rep. 2018, 8, 10985. [Google Scholar] [CrossRef] [PubMed]
- Emeka, O.J.; Chikwe, A.; Onyejekwe, I.; Oguamah, I.; Okoli, N.; Daniel, O.C. Metallic Oxides Nanoparticles: The New Frontier in EOR. Am. J. Appl. Sci. Res. 2020, 6, 61. [Google Scholar] [CrossRef]
- Negin, C.; Ali, S.; Xie, Q. Application of nanotechnology for enhancing oil recovery—A review. Petroleum 2016, 2, 324–333. [Google Scholar] [CrossRef]
- Peng, B.; Zhang, L.; Luo, J.; Wang, P.; Ding, B.; Zeng, M.; Cheng, Z. A review of nanomaterials for nanofluid enhanced oil recovery. RSC Adv. 2017, 7, 32246–32254. [Google Scholar] [CrossRef]
Detailed Methods | EOR Mechanism | Challenges | |
---|---|---|---|
Thermal methods |
|
|
|
Chemical methods |
|
|
|
Gas methods |
|
|
|
Reservoir Wettability | Contact Angle (Degree) |
---|---|
Water-wet | 0–80 |
Intermediate-wet | 80–100 |
Oil-wet | 100–160 |
Strongly oil-wet | 160–180 |
No. | Surfactant | Type of Oil | Reservoir Type | Micromodel Type | Micromodel Geometry |
---|---|---|---|---|---|
1 [107] | Biosurfactant and SDS | Texas light crude oil; Pennsylvania crude oil | Sandstone | PDMS and Poly (methyl methacrylate) (PMMA) | 75 µm depth; 355 µm grain size; 62% porosity |
2 [100] | Anionic low surface energy surfactant (LSES) (iC_18S(FO-180)) | N/A | Sandstone (oil-wet) | Glass micromodel | 15% porosity; 7.5 mD permeability |
3 [108] | KPS-202 anionic surfactant and Polymer HPAM 3640D | Stock tank oil with 0.81 g/cm3 density and 18 cP viscosity | Oil-wet | PDMS | 25 µm depth with 200–300 µm pore diameter size |
4 [109] | Sodium dodecyl benzenesulfonate (SDBS) | Paraffin oil | Oil-wet and Water-wet | Glass micromodel | 44.3% porosity and 8.8 D permeability |
5 [110] | Lauramidopropyl betaine and alpha-olefin sulfonate | Crude oil with 45.9 cP viscosity and 0.9029 g/cm3 density | sandstone | Borofloat glass micromodel | permeability zone with variation from 0.13 to 0.28 D, 34 to 43% porosity |
6 [111] | CTAB (hexadecyltrimethylammonium bromide) | Miglyol oil 840 | Sandstone | PDMS | 48% porosity and 60 D permeability |
7 [112] | Non-emulsifying surfactant (NES) and Weakly emulsifying surfactant (WES) | Crude oil with a density of 0.816 g/mL and viscosity of 7.5 cP. | Oil-wet | PDMS | 20% porosity |
8 [113] | SDBS, Sodium dioctyl sulfosuccinate (AOT) | Two crude oils with 19.2 and 23 API, respectively | Oil-wet and water-wet | PDMS | 52–57% porosity |
9 [114] | 1-hexadecyl-3-methylimidazolium bromide (C20H39BrN2), Cationic surfactant (CTAB) | Paraffin liquid light oil | N/A | PDMS | N/A |
10 [115] | Naphthenic aryl sulfonate (NAS) | alkanes and aromatics from the crude oil with a viscosity of 24 and 44 mPa·s | N/A | Glass micromodels | 2 models with 44.3 and 40% porosity and 8.8 and 3.9 D permeability, respectively |
11 [116] | Osmotic modified oil displacing agent (polymeric surfactant) | Heavy oil with 0.196 g/cm3 density and 173.5 mPa.s viscosity (shengli Gudao oil field) | N/A | N/A | N/A |
13 [117] | Low surface energy surfactant (LSES) (iC_18S(FO-180) | N/A | Oil-wet | Glass | 22% porosity and 6.3 mD permeability |
14 [118] | Ethoxylated resin (Nonionic surfactant) | Crude oil from the Gulf of Mexico (0.87 g/mL) density and 36.5 APICrude oil from the Middle East (0.84 g/mL) density and 37.1 API | N/A | Glass micromodels | 35.2 µL pore volume |
16 [119] | Alkylbenzene sulfonate (0.2 wt%) and Cocamidopropyl hydroxylamine and alkylbenzene sulfonate mixture. | Crude oil containing 33.1% saturates, 47.3% aromatics, 8.7% resins (polar I), and 10.9% asphaltenes (polar II) | Carbonate, oil-wet | 2.4 µL pore volume; 60% porosity | |
17 [120] | Internal olefin sulfonate 15–18 and lauryl betaine | Heavy crude oil from Kuwait | Mixed-wet | NOA 81 polymer | 1.1 µL pore volume, 2.4 D permeability, and 37% porosity |
No. | Type of Nanoparticle | Concentrations | Base Fluid | Oil Type | Reservoir Condition | Microchannel Type | Microchannel Geometry |
---|---|---|---|---|---|---|---|
1 [160] | Copper oxide (CuO), Titanium dioxide (TiO2), Polyacrylamide | 200 ppm, 1500 ppm | Deionized (DI) water | light dead oil | Carbonate and Sandstone | Glass | N/A |
2 [161] | Silica nanoparticles | 0.8, 1, 2 and 3 wt% | Alkali solutions (sodium carbonate; sodium hydroxide) | Heavy oil | Oil-wet | Glass | 0.22 cm3. pore volume; 38% porosity |
3 [162] | Magnetic iron core-carbon shell nanoparticles | 100 mg/L | Synthetic brine with hydrophilic and lipophilic surfactants | Colombian intermediate crude oil | Mixed-wet | PDMS | 23.9 µL pore volume; 70.9% porosity. |
4 [163] | Hydrophilic silica nanoparticles (negative charged coated with hydroxyl group and positive charged coated with amine-terminated) | 2000 ppm | Synthetic Seawater | Light, sweet crude oil | N/A | Glass | 4.4 µL pore volume with 1.1 D permeability. |
5 [164] | Polymer-coated silica nanoparticles (PSiNPs) | 0.1 wt% | Synthetic Seawater | Dead oil from a field of North Sea | Oil-wet, Intermediate-wet, and water-wet | Glass | 57% porosity; 2.5 D permeability |
6 [165] | Iron oxide nanoparticles (Fe3O4) and Manganese oxide nanoparticles (Mn2O3) | 0.1, 0.3 and 0.5 wt% | DI water | Heavy oil (Iranian heavy oil reservoir) | Oil-wet | Glass | 38% porosity; 890 mD permeability |
7 [166] | Silica nanoparticles | 2 wt% | DI water with nonionic surfactants (polyoxyethlenesorbitan monopalmitate) (0.05 wt%) | Decane | Sandstone | Glass | 20% porosity |
9 [167] | Hydrophilic silica fumed nanoparticle (FNP) | (0.05, 0.1 and 0.5 wt.%) | Brine solution with 3 wt% NaCl | N/A | Oil-wet | Glass | 2.3 µL pore volume, 57% porosity, and 2.5 D permeability |
10 [168] | Polymer-coated silica nanoparticles | (0.1 wt%) | Synthetic seawater | Dead oil from the North Sea | Water-wet | Glass | 57% porosity and 2.5 Darcy permeability. The total pore volume was 2.3 µL pore volume. |
11 [169] | Fumed silica nanoparticles | 0.02, 0.1 and 0.5 wt.% | Brine (3 wt.% NaCl with DI water) | Crude oil with 0.89 g/mL density and 41 mPa·s viscosity | N/A | Glass | 2.5 D permeability |
12 [127] | Silica nanoparticles | 1, 2 and 4 wt% | DI water, Surfactant solutions (Tween 20, Silwet and SDS) | Heavy mineral oil | N/A | PDMS | 0.22 µL pore volume |
13 [170] | Silicon oxide nanoparticles | (0.05, 0.1, 0.15, and 0.2 wt.%) | DI water | N/A | Water-wet, Intermediate-wet, and oil-wet | Glass | 36% porosity |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ratanpara, A.; Kim, M. Wettability Alteration Mechanisms in Enhanced Oil Recovery with Surfactants and Nanofluids: A Review with Microfluidic Applications. Energies 2023, 16, 8003. https://doi.org/10.3390/en16248003
Ratanpara A, Kim M. Wettability Alteration Mechanisms in Enhanced Oil Recovery with Surfactants and Nanofluids: A Review with Microfluidic Applications. Energies. 2023; 16(24):8003. https://doi.org/10.3390/en16248003
Chicago/Turabian StyleRatanpara, Abhishek, and Myeongsub Kim. 2023. "Wettability Alteration Mechanisms in Enhanced Oil Recovery with Surfactants and Nanofluids: A Review with Microfluidic Applications" Energies 16, no. 24: 8003. https://doi.org/10.3390/en16248003
APA StyleRatanpara, A., & Kim, M. (2023). Wettability Alteration Mechanisms in Enhanced Oil Recovery with Surfactants and Nanofluids: A Review with Microfluidic Applications. Energies, 16(24), 8003. https://doi.org/10.3390/en16248003