Density Functional Theory Optimization of Cobalt- and Nitrogen-Doped Graphene Catalysts for Enhanced Oxygen Evolution Reaction
Abstract
:1. Introduction
2. Computational Details
2.1. DFT Calculation
2.2. Molecular Orbital Calculation
3. Results and Discussion
3.1. Structure of H2O Adsorption
3.2. OER Performance
3.3. Electronic Characteristics
3.4. Bader Charge Analysis and Electronic Structure
3.5. Analysis of Frontier Molecular Orbitals
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yaqoob, L.; Noor, T.; Iqbal, N.; Nasir, H.; Sohail, M.; Zaman, N.; Usman, M. Nanocomposites of cobalt benzene tricarboxylic acid MOF with rGO: An efficient and robust electocatalyst for oxygen evaluation reaction (OER). Renew. Energy 2020, 156, 1040–1054. [Google Scholar] [CrossRef]
- Luque-Centeno, J.M.; Martinez-Huerta, M.V.; Sebastian, D.; Lemes, G.; Pastor, E.; Lazaro, M.J. Bifunctional N-doped graphene Ti and Co nanocomposites for the oxygen reduction and evolution reactions. Renew. Energy 2018, 125, 182–192. [Google Scholar] [CrossRef]
- Ghouri, Z.K.; Elsaid, K.; Nasef, M.M.; Badreldin, A.; Wubulikasimu, Y.; Abdel-Wahab, A. Incorporation of manganese carbonyl sulfide ((Mn2S2 (CO)7) and mixed metal oxides-decorated reduced graphene oxide (MnFeCoO4/rGO) as a selective anode toward efficient OER from seawater splitting under neutral pH conditions. Renew. Energy 2022, 190, 1029–1040. [Google Scholar] [CrossRef]
- Chen, X.; Lin, S.Y.; Zhang, H. Screening of single-atom catalysts sandwiched by boron nitride sheet and graphene for oxygen reduction and oxygen evolution. Renew. Energy 2022, 189, 502–509. [Google Scholar] [CrossRef]
- Xu, X.M.; Pan, Y.L.; Ge, L.; Chen, Y.B.; Mao, X.; Guan, D.Q.; Li, M.R.; Zhong, Y.J.; Hu, Z.W.; Peterson, V.K.; et al. High-Performance Perovskite Composite Electrocatalysts Enabled by Controllable Interface Engineering. Small 2021, 17, 2101573. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.Y.; Li, J.; Yang, Y.; Zhang, S.; Zhu, H.S.; Zhu, X.Q.; Xing, H.H.; Zhang, Y.L.; Huang, B.L.; Guo, S.J.; et al. Co3O4/Fe0.33Co0.66P Interface Nanowire for Enhancing Water Oxidation Catalysis at High Current Density. Adv. Mater. 2018, 30, 1803551. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Tu, W.G.; Zhang, B.W.; Yin, S.M.; Huang, Y.Z.; Kraft, M.; Xu, R. Nickel Nanoparticles Encapsulated in Few-Layer Nitrogen-Doped Graphene Derived from Metal–Organic Frameworks as Efficient Bifunctional Electrocatalysts for Overall Water Splitting. Adv. Mater. 2017, 29, 1605957. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.W.; Zheng, D.; Liu, D.; Harris, J.; Si, J.Y.; Ding, T.Y.; Qu, D.Y. Highly Efficient Ni-Fe Based Oxygen Evolution Catalyst Prepared by A Novel Pulse Electrochemical Approach. Electrochim. Acta 2017, 247, 722–729. [Google Scholar] [CrossRef]
- Xu, X.M.; Wang, W.; Zhou, W.; Shao, Z.P. Recent Advances in Novel Nanostructuring Methods of Perovskite Electrocatalysts for Energy-Related Applications. Small Methods 2018, 2, 1800071. [Google Scholar] [CrossRef]
- Qu, L.T.; Liu, Y.; Baek, J.-B.; Dai, L.M. Nitrogen-Doped Graphene as Efficient Metal-Free Electrocatalyst for Oxygen Reduction in Fuel Cells. ACS Nano 2010, 4, 1321–1326. [Google Scholar] [CrossRef]
- Cui, X.J.; Ren, P.J.; Deng, D.H.; Deng, J.; Bao, X.H. Single layer graphene encapsulating non-precious metals as high-performance electrocatalysts for water oxidation. Energy Environ. Sci. 2016, 9, 123–129. [Google Scholar] [CrossRef]
- Ghuge, A.D.; Shirode, A.R.; Kadam, V.J. Graphene: A comprehensive review. Curr. Drug Targets 2017, 18, 724–733. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Z.K.; Li, J.; Yang, M.J.; Fang, Z.S.; Jian, J.H.; Yu, D.S.; Chen, X.D.; Dai, L.M. Ultrathin Black Phosphorus-on-Nitrogen Doped Graphene for Efficient Overall Water Splitting: Dual Modulation Roles of Directional Interfacial Charge Transfer. J. Am. Chem. Soc. 2019, 141, 4972–4979. [Google Scholar] [CrossRef]
- Li, X.Y.; Su, Z.H.; Zhao, Z.F.; Cai, Q.H.; Li, Y.F.; Zhao, J.X. Single Ir atom anchored in pyrrolic-N4 doped graphene as a promising bifunctional electrocatalyst for the ORR/OER: A computational study. J. Colloid Interf. Sci. 2022, 607, 1005–1013. [Google Scholar] [CrossRef]
- Lee, W.J.; Maiti, U.N.; Lee, J.M.; Lim, J.; Han, T.H.; Kim, S.O. Nitrogen-doped carbon nanotubes and graphene composite structures for energy and catalytic applications. Chem. Commun. 2014, 50, 6818–6830. [Google Scholar] [CrossRef]
- Li, S.; Yang, Y.; Liu, L.; Zhao, Q. Electron transfer-induced catalytic enhancement over bismuth nanoparticles supported by N-doped graphene. Chem. Eng. J. 2018, 334, 1691–1698. [Google Scholar] [CrossRef]
- Wu, X.J.; Feng, B.M.; Li, W.; Niu, Y.L.; Yu, Y.N.; Lu, S.Y.; Zhong, C.Y.; Liu, P.Y.; Tian, Z.Q.; Chen, L.; et al. Metal-support interaction boosted electrocatalysis of ultrasmall iridium nanoparticles supported on nitrogen doped graphene for highly efficient water electrolysis in acidic and alkaline media. Nano Energy 2019, 62, 117–126. [Google Scholar] [CrossRef]
- Tang, J.H.; Xu, X.M.; Tang, T.; Zhong, Y.J.; Shao, Z.P. Perovskite-Based Electrocatalysts for Cost-Effective Ultrahigh-Current-Density Water Splitting in Anion Exchange Membrane Electrolyzer Cell. Small Methods 2022, 6, 2201099. [Google Scholar] [CrossRef]
- Deng, X.H.; Tüysüz, H. Cobalt-Oxide-Based Materials as Water Oxidation Catalyst: Recent Progress and Challenges. ACS Catal. 2014, 4, 3701–3714. [Google Scholar] [CrossRef]
- Zhao, R.G.; Ni, B.X.; Wu, L.M.; Sun, P.C.; Chen, T.H. Carbon-based iron-cobalt phosphate FeCoP/C as an effective ORR/OER/HER trifunctional electrocatalyst. Colloids. Surf. A. 2022, 635, 128118. [Google Scholar] [CrossRef]
- Liang, Y.Y.; Li, Y.G.; Wang, H.L.; Zhou, J.G.; Wang, J.; Regier, T.; Dai, H.J. Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat. Mater. 2011, 10, 780–786. [Google Scholar] [CrossRef]
- Hou, Y.; Wen, Z.H.; Cui, S.M.; Ci, S.Q.; Mao, S.; Chen, J.H. An Advanced Nitrogen-Doped Graphene/Cobalt-Embedded Porous Carbon Polyhedron Hybrid for Efficient Catalysis of Oxygen Reduction and Water Splitting. Adv. Funct. Mater. 2015, 25, 872–882. [Google Scholar] [CrossRef]
- Singh, A.K.; Ji, S.; Singh, B.; Das, C.; Choi, H.; Menezes, P.W.; Indra, A. Alkaline oxygen evolution: Exploring synergy between fcc and hcp cobalt nanoparticles entrapped in N-doped graphene. Mater. Today Chem. 2022, 23, 100668. [Google Scholar] [CrossRef]
- Wang, J.; Zhong, H.H.; Estudillo-Wong, L.A.; Li, H.Y.; Alonso-Vante, N.; Li, D.Q.; Tang, P.G.; Feng, Y.J. Synthesis and electrocatalytic performance of N-doped graphene embedded with Co/CoO nanoparticles towards oxygen evolution and reduction reactions. Catal. Commun. 2022, 164, 106428. [Google Scholar] [CrossRef]
- Zhang, J.K.; Cui, B.L.; Jiang, S.; Liu, H.T.; Dou, M.L. Construction of three-dimensional cobalt sulfide/multi-heteroatom co-doped porous carbon as an efficient trifunctional electrocatalyst. Nanoscale 2022, 14, 9849–9859. [Google Scholar] [CrossRef] [PubMed]
- Sun, D.F.; Lin, S.M.; Yu, Y.; Meng, F.Y.; Du, G.H.; Xu, B.S. In situ phosphating Co@Nitrogen-doping graphene boosts overall water splitting under alkaline condition. J. Electroanal. Chem. 2022, 904, 115882. [Google Scholar] [CrossRef]
- Wang, H.B.; Maiyalagan, T.; Wang, X. Review on Recent Progress in Nitrogen-Doped Graphene: Synthesis, Characterization, and Its Potential Applications. ACS Catal. 2012, 2, 781–794. [Google Scholar] [CrossRef]
- Kim, S.; Ji, S.; Yang, H.; Son, H.; Choi, H.; Kang, J.; Li, O.L. Near surface electric field enhancement: Pyridinic-N rich few-layer graphene encapsulating cobalt catalysts as highly active and stable bifunctional ORR/OER catalyst for seawater batteries. Appl. Catal. B. 2022, 310, 121361. [Google Scholar] [CrossRef]
- Chu, W.H.; Yu, Y.; Sun, D.F.; Qu, Y.N.; Meng, F.Y.; Qiu, Y.Y.; Lin, S.M.; Huang, L.Y.; Ren, J.; Su, Q.M.; et al. Uniform cobalt nanoparticles embedded in nitrogen-doped graphene with abundant defects as high-performance bifunctional electrocatalyst in overall water splitting. Int. J. Hydrog. Energy 2022, 47, 21191–21203. [Google Scholar] [CrossRef]
- Gao, Y.; Kong, D.B.; Cao, F.L.; Teng, S.; Liang, T.; Luo, B.; Wang, B.; Yang, Q.-H.; Zhi, L.J. Synergistically tuning the graphitic degree, porosity, and the configuration of active sites for highly active bifunctional catalysts and Zn-air batteries. Nano Res. 2022, 15, 7959–7967. [Google Scholar] [CrossRef]
- Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B. 1999, 59, 1758–1775. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef] [PubMed]
- Cai, Z.; Bi, Y.M.; Hu, E.Y.; Liu, W.; Dwarica, N.; Tian, Y.; Li, X.L.; Kuang, Y.; Li, Y.P.; Yang, X.-Q.; et al. Single-Crystalline Ultrathin Co3O4 Nanosheets with Massive Vacancy Defects for Enhanced Electrocatalysis. Adv. Energy Mater. 2018, 8, 1701694. [Google Scholar] [CrossRef]
- Thang, H.V.; Pacchioni, G. Oxygen Vacancy in Wurtzite ZnO and Metal-Supported ZnO/M(111) Bilayer Films (M = Cu, Ag and Au). J. Phys. Chem. C. 2018, 122, 20880–20887. [Google Scholar] [CrossRef]
- Monkhorst, H.J.; Pack, J.D. Special points for Brillouin-zone integrations. Phys. Rev. B. 1976, 13, 5188–5192. [Google Scholar] [CrossRef]
- Li, M.T.; Zhang, L.P.; Xu, Q.; Niu, J.B.; Xia, Z.H. N-doped graphene as catalysts for oxygen reduction and oxygen evolution reactions: Theoretical considerations. J. Catal. 2014, 314, 66–72. [Google Scholar] [CrossRef]
- Mamand, D. Theoretical calculations and spectroscopic analysis of gaussian computational examination-NMR, FTIR, UV-Visible, MEP on 2, 4, 6-Nitrophenol. J. Phys. Chem. Funct. Mater. 2019, 2, 77–86. [Google Scholar]
- Liu, M.J.; Lee, J.; Yang, T.C.; Zheng, F.Y.; Zhao, J.; Yang, C.M.; Lee, L.Y.S. Synergies of Fe Single Atoms and Clusters on N-Doped Carbon Electrocatalyst for pH-Universal Oxygen Reduction. Small Methods 2021, 5, 2001165–2001174. [Google Scholar] [CrossRef]
- Yang, J.; Fan, Y.; Liu, P.F. Theoretical insights into heterogeneous single-atom Fe1 catalysts supported by graphene-based substrates for water splitting. Appl. Surf. Sci. 2020, 540, 148245. [Google Scholar] [CrossRef]
- Zhang, L.P.; Xia, Z.H. Mechanisms of Oxygen Reduction Reaction on Nitrogen-Doped Graphene for Fuel Cells. J. Phys. Chem. C. 2011, 115, 11170–11176. [Google Scholar] [CrossRef]
- Han, Y.H.; Wang, Y.G.; Chen, W.X.; Xu, R.R.; Zheng, L.R.; Zhang, J.; Luo, J.; Shen, R.A.; Zhu, Y.Q.; Cheong, W.C.; et al. Hollow N-Doped Carbon Spheres with Isolated Cobalt Single Atomic Sites: Superior Electrocatalysts for Oxygen Reduction. J. Am. Chem. Soc. 2017, 139, 17269–17272. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.; Pan, C.; He, C.T.; Han, Y.H.; Ma, W.J.; Wei, H.; Ji, W.L.; Chen, W.X.; Mao, J.J.; Yu, P.; et al. Single-Atom Co-N4 Electrocatalyst Enabling Four-Electron Oxygen Reduction with Enhanced Hydrogen Peroxide Tolerance for Selective Sensing. J. Am. Chem. Soc. 2020, 142, 16861–16867. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; He, H.; Cai, W.; Yang, C.; Wu, Y.; Zhang, H.; Liu, R.; Cheng, H. Density Functional Theory Optimization of Cobalt- and Nitrogen-Doped Graphene Catalysts for Enhanced Oxygen Evolution Reaction. Energies 2023, 16, 7981. https://doi.org/10.3390/en16247981
Wang J, He H, Cai W, Yang C, Wu Y, Zhang H, Liu R, Cheng H. Density Functional Theory Optimization of Cobalt- and Nitrogen-Doped Graphene Catalysts for Enhanced Oxygen Evolution Reaction. Energies. 2023; 16(24):7981. https://doi.org/10.3390/en16247981
Chicago/Turabian StyleWang, Jiatang, Huawei He, Weiwei Cai, Chao Yang, Yu Wu, Houcheng Zhang, Rui Liu, and Hansong Cheng. 2023. "Density Functional Theory Optimization of Cobalt- and Nitrogen-Doped Graphene Catalysts for Enhanced Oxygen Evolution Reaction" Energies 16, no. 24: 7981. https://doi.org/10.3390/en16247981
APA StyleWang, J., He, H., Cai, W., Yang, C., Wu, Y., Zhang, H., Liu, R., & Cheng, H. (2023). Density Functional Theory Optimization of Cobalt- and Nitrogen-Doped Graphene Catalysts for Enhanced Oxygen Evolution Reaction. Energies, 16(24), 7981. https://doi.org/10.3390/en16247981