Estimation of Battery State of Health Using the Two-Pulse Method for LiFePO4 Batteries
Abstract
:1. Introduction
2. State-of-the-Art
- Experimental techniques, which in turn are divided into direct measurement techniques and indirect evaluation techniques.
- Model-based techniques, which are divided into data-based techniques and adaptive filtering techniques.
2.1. Two Pulses
2.2. Coulomb or Ampere-Hour Counting
- : current state of charge;
- : initial state of charge;
- : nominal capacity in ampere-hours;
- : charge or discharge current;
- depth of discharge.
2.3. Internal Resistance
2.4. Total Discharge
2.5. Data-Driven
3. Method Selection Process
4. Battery Model
5. Materials and Methods
5.1. Two-Pulse Method
- Initially, the battery is left in an open circuit for 60 s. The initial voltage is taken, which is called V0.
- The first current pulse is applied for 10 s. The voltage is measured in the last second, which is called V1. Then, ΔV1 = V0 − V1.
- There is a wait time of 10 s and then the voltage is measured, Vmax.
- The second pulse is applied and the voltage at the last second is measured, obtaining Vmin. In this way, ΔV2 = Vmax − Vmin can be obtained.
- : state of charge;
- : maximum voltage;
- : empirical parameters;
- : minimum battery voltage when SOC = 0;
- : current rate;
- : voltage difference between Vmax and Vmin;
- : battery capacity;
- : current applied in the discharge pulse;
- : state of health.
5.2. Materials
6. Results and Discussion
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hannan, M.A.; Wali, S.B.; Ker, P.J.; Rahman, M.S.A.; Mansor, M.; Ramachandaramurthy, V.K.; Muttaqi, K.M.; Mahlia, T.M.I.; Dong, Z.Y. Battery energy-storage system: A review of technologies, optimization objectives, constraints, approaches, and outstanding issues. J. Energy Storage 2021, 42, 103023. [Google Scholar] [CrossRef]
- Unidad de Planeación Minero-Energética UPME. Proyección Demanda Energía Eléctrica Gas Natural y Combustibles Líquidos 2022–2036. 2022. Available online: https://repositoriobi.minenergia.gov.co/handle/123456789/2860 (accessed on 3 March 2023).
- European Commission. Directive 2001/77/EC on the promotion of electricity produced from renewable energy sources in the internal energy market. Off. J. Eur. Communities 2001, L 283, 33–40. [Google Scholar]
- Departamento Nacional de Planeación; Enersinc; Korea Green Goruth Paternship; World Bank Group. Energy Supply Situation in Colombia; Departamento Nacional de Planeación: Bogotá, Colombia, 2017; p. 165. Available online: https://www.dnp.gov.co/Crecimiento-Verde/Documents/ejes-tematicos/Energia/MCV-Energy Supply Situation vf.pdf (accessed on 3 March 2023).
- Zakeri, B.; Syri, S. Electrical energy storage systems: A comparative life cycle cost analysis. Renew. Sustain. Energy Rev. 2015, 42, 569–596. [Google Scholar] [CrossRef]
- May, G.J.; Davidson, A.; Monahov, B. Lead batteries for utility energy storage: A review. J. Energy Storage 2018, 15, 145–157. [Google Scholar] [CrossRef]
- Behabtu, H.A.; Messagie, M.; Coosemans, T.; Berecibar, M.; Anlay Fante, K.; Kebede, A.A.; Mierlo, J.V. A review of energy storage technologies’ application potentials in renewable energy sources grid integration. Sustainability 2020, 12, 10511. [Google Scholar] [CrossRef]
- Marchildon, J.; Doumbia, M.L.; Agbossou, K. SOC and SOH characterisation of lead acid batteries. In Proceedings of the IECON 2015—41st Annual Conference of the IEEE Industrial Electronics Society, Yokohama, Japan, 9–12 November 2015; pp. 1442–1446. [Google Scholar] [CrossRef]
- Sun, F.; Xiong, R.; He, H. Estimation of state-of-charge and state-of-power capability of lithium-ion battery considering varying health conditions. J. Power Sources 2014, 259, 166–176. [Google Scholar] [CrossRef]
- Coleman, M.; Hurley, W.G.; Lee, C.K. An improved battery characterization method using a two-pulse load test. IEEE Trans. Energy Convers. 2008, 23, 708–713. [Google Scholar] [CrossRef]
- Raju, A.D.J.; Manohar, S.S.; Beula, A.A.S. A Behavior Modelling and Analysis of Lithium Ion Battery. In Proceedings of the 2023 2nd International Conference for Innovation in Technology (INOCON), Bangalore, India, 3–5 March 2023; pp. 1–5. [Google Scholar] [CrossRef]
- Hammou, A.; Petrone, R.; Diallo, D.; Gualous, H. Estimating the Health Status of Li-ion NMC Batteries from Energy Characteristics for EV Applications. IEEE Trans. Energy Convers. 2023, 38, 2160–2168. [Google Scholar] [CrossRef]
- Li, M.; Cao, Y.; Wang, C.; Li, F. Evaluation and Analysis of Circuit Model for Lithium Batteries. In Proceedings of the 2022 41st Chinese Control Conference (CCC), Hefei, China, 25–27 July 2022; pp. 1343–1348. [Google Scholar] [CrossRef]
- Bobanac, V.; Basic, H.; Pandzic, H. Determining Lithium-ion Battery One-way Energy Efficiencies: Influence of C-rate and Coulombic Losses. In Proceedings of the IEEE EUROCON 2021—19th International Conference on Smart Technologies, Lviv, Ukraine, 6–8 July 2021; pp. 385–389. [Google Scholar] [CrossRef]
- Al Rasyid Ar, Z.J.; Firmansyah, E.; Wijaya, F.D. Modeling of Temperature Effect on SoC of Lithium Ion Battery Pack. In Proceedings of the 2021 3rd International Symposium on Material and Electrical Engineering Conference (ISMEE), Bandung, Indonesia, 10–11 November 2021; pp. 299–303. [Google Scholar] [CrossRef]
- Sun, Q.; Ye, X.; Li, H.; Li, W.; Yuan, R.; Zhai, G. Estimation of Lithium Primary Battery Capacity Based on Pulse Load Test. In Proceedings of the 2021 3rd International Conference on System Reliability and Safety Engineering (SRSE), Harbin, China, 26–28 November 2021; pp. 139–144. [Google Scholar] [CrossRef]
- Basic, H.; Pandzic, H.; Miletic, M.; Pavic, I. Experimental Testing and Evaluation of Lithium-Ion Battery Cells for a Special-Purpose Electric Vacuum Sweeper Vehicle. IEEE Access 2020, 8, 216308–216319. [Google Scholar] [CrossRef]
- Diaz, C.; Quintero, V.; Pérez, A.; Jaramillo, F.; Burgos-Mellado, C.; Rozas, H.; Orchard, M.E.; Sáez, D.; Cárdenas, R. Particle-Filtering-Based Prognostics for the State of Maximum Power Available in Lithium-Ion Batteries at Electromobility Applications. IEEE Trans. Veh. Technol. 2020, 69, 7187–7200. [Google Scholar] [CrossRef]
- Akkinepally, B.; Reddy, I.N.; Manjunath, V.; Reddy, M.V.; Mishra, Y.K.; Ko, T.J.; Zaghib, K.; Shim, J. Temperature effect and kinetics, LiZr2(PO4)3 and Li1.2Al0.2Zr1.8(PO4)3 and electrochemical properties for rechargeable ion batteries. Int. J. Energy Res. 2022, 46, 14116–14132. [Google Scholar] [CrossRef]
- Wang, S.E.; Kim, M.J.; Lee, J.W.; Chun, J.; Choi, J.; Roh, K.C.; Kang, Y.C.; Jung, D.S. A Novel High-Performance TiO2−x/TiO1−yNy Coating Material for Silicon Anode in Lithium-Ion Batteries. Small Methods 2022, 6, 2200430. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Zhang, C.; Du, J.; Cong, X.; Zhang, L.; Jiang, Y.; Wang, L. Fault diagnosis for lithium-ion batteries in electric vehicles based on signal decomposition and two-dimensional feature clustering. Green Energy Intell. Transp. 2022, 1, 100009. [Google Scholar] [CrossRef]
- Quintero, V.; Che, O.; Ching, E.; Auciello, O.; de Obaldia, E. Baterías de Ion Litio: Características y aplicaciones. Lithium Ion Batteries: Features and applications. Rev. I+D Tecnol. 2021, 17, 14–22. [Google Scholar]
- Rahimi-Eichi, H.; Ojha, U.; Baronti, F.; Chow, M.Y. Battery management system: An overview of its application in the smart grid and electric vehicles. IEEE Ind. Electron. Mag. 2013, 7, 4–16. [Google Scholar] [CrossRef]
- Hou, J.; Li, T.; Zhou, F.; Zhao, D.; Zhong, Y.; Yao, L.; Zeng, L. A Review of Critical State Joint Estimation Methods of Lithium-Ion Batteries in Electric Vehicles. World Electr. Veh. J. 2022, 13, 159. [Google Scholar] [CrossRef]
- Pradhan, S.K.; Chakraborty, B. Battery management strategies: An essential review for battery state of health monitoring techniques. J. Energy Storage 2022, 51, 104427. [Google Scholar] [CrossRef]
- Jiang, S.; Song, Z. A review on the state of health estimation methods of lead-acid batteries. J. Power Sources 2022, 517, 230710. [Google Scholar] [CrossRef]
- Contreras Sillero, A.A. Estimación de los Estados de Carga y Salud de Una Batería de Ion-Litio. Master’s Thesis, Instituto Tecnológico de Celaya, Celaya, Mexico, 2018. [Google Scholar]
- Iglesias, R.; Lago, A.; Nogueiras, A.; Martínez-Peñalver, C.; Marcos, J.; Quintans, C.; Moure, M.J.; Valdés, M.D. Modelado y Simulación de Una Batería de Ion-Litio Comercial Multicelda. In Proceedings of the SAAEI 2012, Guimarães, Portugal, 11–13 July 2012; pp. 464–469. Available online: https://www.researchgate.net/publication/234588217_MODELADO_Y_SIMULACION_DE_UNA_BATERIA_DE_ION-LITIO_COMERCIAL_MULTICELDA (accessed on 16 January 2023).
- Pico, J.D. Diseño de un Sistema de Gestión para Baterías de Alto Rendimiento. Master’s Thesis, Pontificia Universidad Javeriana, Bogotá, Colombia, 2019. [Google Scholar]
Author | Description | Year | Refs. |
---|---|---|---|
Raju et al. | Approaches to study the performance of a lithium-ion (Li-Ion) battery. | 2023 | [10] |
Hammou et al. | Estimating capacity and direct current internal resistance for li-ion batteries from available current and voltage measurements. | 2023 | [11] |
Li et al. | Evaluation and analysis of circuit model for lithium batteries. | 2022 | [12] |
Bobanac et al. | Influence of Crate and coulombic losses in lithium-ion battery efficiencies. | 2021 | [13] |
Al Rasyid et al. | Effect of temperature on series and parallel cell configuration inside a lithium-ion battery pack. | 2021 | [14] |
Sun et al. | Method using the back propagation neural network to accurately estimate the ampere-hour capacity of lithium primary batteries based on pulse load test. | 2021 | [15] |
Basic et al. | Methodology for selecting optimal lithium-ion battery cell for compact urban vacuum sweepers. | 2020 | [16] |
Diaz et al. | Particle-filtering-based prognostics for the state of maximum power available in lithium-ion batteries at electromobility applications. | 2020 | [17] |
Method | Advantages | Disadvantages |
---|---|---|
Two pulses | No historical data required. Accurate. Easy to implement. | May require additional testing to characterize the battery. Does not allow real-time estimation. |
Coulomb or ampere-hour counting | Fully accurate. Suitable for laboratory conditions. Easy to implement. | Long test time. Requires full charge and discharge. May cause loss of capacity or reduction in service life. Does not allow real time estimation. Sensitive to ambient temperature. Requires historical data. |
Internal resistance | Quick to obtain. Easy to implement. Low computational complexity. | Not fully accurate. Sensitive to temperature. It is qualitative. To obtain a SOH value requires other methods. Must consider the effect of SOC. |
Total discharge | Easy to implement. | May shorten service life. Long testing time. Requires interpolation if performed under conditions different from manufacturer’s conditions. |
Data-Driven | High precision. Flexible and adaptable. No battery characterization required. Real-time estimation. | Excessive cost. Computing complexity. Requires historical data. |
# of Criteria | Criteria | Percentage of Relevance | Justification |
---|---|---|---|
1 | Historical requirement | 30 | This criterion refers to the need for information or earlier measurements of the batteries. In this case, no such information is available since the batteries purchased are new. The rating scale defines how much information the method requires, where five is for the method that requires the least prior information and one is for the method that requires the most information. |
2 | Accuracy | 30 | The estimated SOH is desired to be close to the actual SOH value, enabling decisions that prolong the battery lifespan. The assessment scale determines how accurate the method is, with five being highly accurate and one being less accurate. |
3 | Simplicity | 20 | This criterion evaluates the ease of implementation, including the equipment required, the space needed, and the complexity of the connections and accessories. Likewise, the prototype is small-scale in the laboratory. There are no plans for a complex implementation system that could entail higher costs. The rating scale determines how easily the prototype can be implemented considering the aspects mentioned above, where five is quite easy to implement and one is not easy to implement. |
4 | Influence of ambient temperature | 20 | A method that is not influenced by ambient temperature is preferable because it is not possible to control it in the laboratory. The rating scale defines how much influence the temperature has on the method, where five is for the method least influenced by temperature and one is for the method most influenced by temperature. |
Method | Historical | % | Accuracy | % | Facility | % | Temperature | % | Total |
---|---|---|---|---|---|---|---|---|---|
Two-pulse method | 5 | 1.5 | 4 | 1.2 | 4 | 0.8 | 4 | 0.8 | 4.3 |
Coulomb counting | 5 | 1.5 | 4 | 1.2 | 2 | 0.4 | 4 | 0.8 | 3.9 |
Internal resistance | 3 | 0.9 | 2 | 0.6 | 5 | 1.0 | 1 | 0.2 | 2.7 |
Total discharge | 5 | 1.5 | 4 | 1.2 | 2 | 0.4 | 3 | 0.6 | 3.7 |
Data-Driven | 1 | 0.3 | 5 | 1.5 | 1 | 0.2 | 5 | 1.0 | 3 |
Parameters | Test 1 | Test 2 | Test 3 | Test 4 | Test 5 | Test 6 |
---|---|---|---|---|---|---|
V0 [V] | 3.2760 | 3.288 | 3.295 | 3.302 | 3.311 | 3.31 |
V1 [V] | 3.2660 | 3.279 | 3.286 | 3.293 | 3.302 | 3.301 |
Vmax [V] | 3.2760 | 3.287 | 3.295 | 3.301 | 3.31 | 3.31 |
Vmin [V] | 3.2660 | 3.277 | 3.285 | 3.293 | 3.303 | 3.301 |
β | 0.1080 | |||||
α | 0.1641 | |||||
Emin [V] | 3.1849 | |||||
δ | 25.553 | |||||
γ | −0.054 | |||||
dV2 [V] | 0.0100 | 0.0100 | 0.0100 | 0.0080 | 0.0070 | 0.0090 |
SOC | 1.2133 | 1.2803 | 1.3291 | 1.3656 | 1.4205 | 1.4205 |
Cr | 0.2007 | 0.2007 | 0.2007 | 0.1496 | 0.1241 | 0.1752 |
I [A] | 6 | |||||
AHC [Ah] | 29.890 | 29.890 | 29.890 | 40.100 | 48.359 | 34.251 |
AHCnom [Ah] | 26 | |||||
SOH [%] | 114.96 | 114.96 | 114.96 | 154.23 | 186.00 | 131.73 |
Test 2A | Test 4A | Test 6A | Test 8A | Test 9A | |
---|---|---|---|---|---|
V0 [V] | 3.2458 | 3.2242 | 3.2343 | 3.1885 | 3.1918 |
V1 [V] | 3.2413 | 3.2159 | 3.2217 | 3.1686 | 3.1699 |
Vmax [V] | 3.2437 | 3.2220 | 3.2281 | 3.1793 | 3.1805 |
Vmin [V] | 3.2397 | 3.2138 | 3.2162 | 3.1635 | 3.1635 |
Parameters | Test 2A | Test 4A | Test 6A | Test 8A | Test 9A |
---|---|---|---|---|---|
SOH [%] | 165.16 | 98.78 | 92.56 | 87.74 | 90.64 |
SOC [%] | 101.65 | 89.00 | 92.17 | 62.41 | 63.16 |
BDE [%] | 1.19 | 1.38 | 1.19 | 1.38 | 1.38 |
BTE [°C] | 26.37 | 26.37 | 26.46 | 26.46 | 26.37 |
SEM [%] | 8.5 | 5.04 | 3.82 | 1.29 | 3.68 |
Parameters | Cell 26393_4-1-3 |
---|---|
V0 [V] | 3.176575 |
V1 [V] | 3.141785 |
Vmax [V] | 3.11615 |
Vmin [V] | 2.817688 |
SOH [%] | 3.05 |
SOC [%] | 23.92 |
Parameters | Cell 26370_6-2-3 | Cell 26250_2-4-1 | Cell 26216_2-2-1 | Cell 26280_5-3-2 | Cell 26320_1-3-1 | Cell 26333_1-4-3 |
---|---|---|---|---|---|---|
V0 [V] | 3.2016 | 3.1445 | 3.1894 | 3.1537 | 3.1448 | 3.1335 |
V1 [V] | 3.1900 | 3.1296 | 3.1747 | 3.1415 | 3.1287 | 3.1241 |
Vmax [V] | 3.1967 | 3.1363 | 3.1818 | 3.1506 | 3.1360 | 3.1329 |
Vmin [V] | 3.1845 | 3.1235 | 3.1695 | 3.1387 | 3.1210 | 3.1232 |
SOH [%] | 73.01 | 36.19 | 63.90 | 44.93 | 36.01 | 78.40 |
SOC [%] | 89.75 | 84.61 | 59.38 | 61.24 | 46.65 | 34.15 |
SEM [%] | 6.20 | 14.66 | 1.28 | 1.04 | 13.23 | 0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zuluaga, C.; Zuluaga, C.A.; Restrepo, J.V. Estimation of Battery State of Health Using the Two-Pulse Method for LiFePO4 Batteries. Energies 2023, 16, 7734. https://doi.org/10.3390/en16237734
Zuluaga C, Zuluaga CA, Restrepo JV. Estimation of Battery State of Health Using the Two-Pulse Method for LiFePO4 Batteries. Energies. 2023; 16(23):7734. https://doi.org/10.3390/en16237734
Chicago/Turabian StyleZuluaga, Carolina, Carlos A. Zuluaga, and José V. Restrepo. 2023. "Estimation of Battery State of Health Using the Two-Pulse Method for LiFePO4 Batteries" Energies 16, no. 23: 7734. https://doi.org/10.3390/en16237734
APA StyleZuluaga, C., Zuluaga, C. A., & Restrepo, J. V. (2023). Estimation of Battery State of Health Using the Two-Pulse Method for LiFePO4 Batteries. Energies, 16(23), 7734. https://doi.org/10.3390/en16237734