Development of an Improved Decision Support Tool for Geothermal Site Selection in Nigeria Based on Comprehensive Criteria
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
3.1. Framework
3.2. Identification of Spatial Data Sets
3.3. Modelling of Spatial Datasets
- i is the site (i = 1, 2, 3…, 37).
- j is the criteria (j = 1, 2, 3…, 48).
- Gi is the total outcome of the ith site.
- Nij is the normalized value of the jth suitability criterion of the ith site.
4. Results and Discussion
4.1. Overall Geothermal Suitability
4.2. Discussion
4.3. Sensitivity Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix A.1. Land Surface Temperature
Appendix A.2. Moisture Transfer
Appendix A.3. Surface Emissivity
Appendix A.4. Reflectance
Appendix A.5. Radiant GHF
Appendix A.6. Thermal Variance Variation
Appendix A.7. Elevation
Appendix A.8. Slope and Aspect
Appendix A.9. Curie Point Depth
Appendix A.10. Heat Flow
Appendix A.11. Geothermal Gradient
Appendix A.12. Electrical Resistivity
Appendix A.13. Electrical Conductivity
Appendix A.14. Specific Heat Capacity
Appendix A.15. Thermal Conductivity
Appendix A.16. Magnetic Susceptibility
Appendix A.17. Borehole Diameter
Appendix A.18. Density of Earthquake
Appendix A.19. Magnitude of Earthquake
Appendix A.20. Bouguer Anomaly
Appendix A.21. Sediment Bed Thickness
Appendix A.22. Sediment Temperature
Appendix A.23. Wave Velocity
Appendix A.24. Density of Rock
Appendix A.25. Distance to Fault
Appendix A.26. Lineament Density
Appendix A.27. Porosity
Appendix A.28. Permeability
Appendix A.29. Land Displacement
Appendix A.30. Altitude
Appendix A.31. Sediment Depth
Appendix A.32. Turbidity
Appendix A.33. Area Resistivity
Appendix A.34. Pressure Gradient
Appendix A.35. Temperature Gradient
Appendix A.36. Drainage Density
Appendix A.37. Vegetation Density
Appendix A.38. Temperature
Appendix A.39. pH
Appendix A.40. Chloride
Appendix A.41. Fluoride
Appendix A.42. Hydrogen (H2)
Appendix A.43. Sodium (Na)
Appendix A.44. Silica (SiO2)
Appendix A.45. Total Dissolved Solids (TDS)
Appendix A.46. Carbon Dioxide (CO2)
Appendix A.47. Sulphates (SO42−)
Appendix A.48. Radon Gas (Rn-222)
Appendix B. Sensitivity Results of the Evaluated Sites in Nigeria
State | Baseline Scores | Double Weighting | Half Weights |
---|---|---|---|
Kano State | 0.34 | 0.29 | 0.34 |
Lagos State | 0.29 | 0.27 | 0.30 |
Kaduna State | 0.28 | 0.26 | 0.29 |
Katsina State | 0.33 | 0.34 | 0.33 |
Oyo State | 0.39 | 0.37 | 0.39 |
Rivers State | 0.35 | 0.35 | 0.36 |
Bauchi State | 0.41 | 0.40 | 0.42 |
Jigawa State | 0.25 | 0.23 | 0.26 |
Benue State | 0.34 | 0.32 | 0.34 |
Anambra State | 0.37 | 0.35 | 0.38 |
Borno State | 0.34 | 0.32 | 0.34 |
Delta State | 0.31 | 0.29 | 0.32 |
Imo State | 0.30 | 0.29 | 0.30 |
Niger State | 0.28 | 0.26 | 0.29 |
Akwa Ibom State | 0.28 | 0.25 | 0.29 |
Ogun State | 0.37 | 0.35 | 0.39 |
Sokoto State | 0.34 | 0.34 | 0.34 |
Ondo State | 0.33 | 0.32 | 0.33 |
Osun State | 0.33 | 0.30 | 0.34 |
Kogi State | 0.28 | 0.27 | 0.28 |
Zamfara State | 0.33 | 0.31 | 0.33 |
Enugu State | 0.30 | 0.30 | 0.30 |
Kebbi State | 0.27 | 0.25 | 0.28 |
Edo State | 0.34 | 0.33 | 0.34 |
Plateau State | 0.32 | 0.29 | 0.34 |
Adamawa State | 0.40 | 0.36 | 0.42 |
Cross River State | 0.30 | 0.29 | 0.31 |
Abia State | 0.32 | 0.30 | 0.32 |
Ekiti State | 0.35 | 0.36 | 0.35 |
Kwara State | 0.31 | 0.31 | 0.31 |
Gombe State | 0.33 | 0.32 | 0.34 |
Yobe State | 0.34 | 0.31 | 0.35 |
Taraba State | 0.42 | 0.42 | 0.41 |
Ebonyi State | 0.43 | 0.38 | 0.43 |
Nasarawa State | 0.40 | 0.39 | 0.41 |
Bayelsa State | 0.34 | 0.30 | 0.36 |
Abuja Federal Capital Territory | 0.45 | 0.43 | 0.46 |
References
- Kose, R. Geothermal energy potential for power generation in Turkey: A case study in Simav, Kutahya. Renew. Sustain. Energy Rev. 2007, 11, 497–511. [Google Scholar] [CrossRef]
- Noorollahi, Y.; Shabbir, M.S.; Siddiqi, A.F.; Ilyashenko, L.K.; Ahmadi, E. Review of two decade geothermal energy development in Iran, benefits, challenges, and future policy. Geothermics 2019, 77, 257–266. [Google Scholar] [CrossRef]
- Halldorsson, B.; Olafsson, S.; Snaebjörnsson, J.T.; Sigurosson, S.; Rupakhety, R.; Sigbjörnsson, R. On the effects of induced earthquakes due to fluid injection at hellisheidi geothermal power plant, Iceland. In Proceedings of the 15th WCEE, Lisbon, Portugal, 24–28 September 2012. [Google Scholar]
- Varet, J. Contribution to favorable geothermal site selection in the Afar triangle. In Proceedings of the Argeo Meeting, Djibouti, 22–25 November 2010. [Google Scholar]
- Shortall, R.; Davidsdottir, B.; Axelsson, G. Development of a sustainability assessment framework for geothermal energy projects. Energy Sustain. Dev. 2015, 27, 28–45. [Google Scholar] [CrossRef]
- Allahvirdizadeh, P. A review on geothermal wells: Well integrity issues. J. Clean. Prod. 2020, 275, 124009. [Google Scholar] [CrossRef]
- Yalcin, M.; Gul, F.K. A GIS-based multi criteria decision analysis approach for exploring geothermal resources: Akarcay basin (Afyonkarahisar). Geothermics 2017, 67, 18–28. [Google Scholar] [CrossRef]
- Yudha, S.W.; Tjahjono, B.; Longhurst, P. Unearthing the dynamics of Indonesia’s geothermal energy development. Energies 2022, 15, 5009. [Google Scholar] [CrossRef]
- Ciriaco, A.E. A Refined Methodology for Quantifying Estimates of Extractable Geothermal Energy: Experimental Design (ED) and Response Surface Methodology (RSM). Ph.D. Thesis, The University of Auckland, Auckland, New Zealand, 2021. [Google Scholar]
- Tester, J.W.; Beckers, K.F.; Hawkins, A.J.; Lukawski, M.Z. The evolving role of geothermal energy for decarbonizing the United States. Energy Environ. Sci. 2021, 14, 6211–6241. [Google Scholar] [CrossRef]
- Coro, G.; Trumpy, E. Predicting geographical suitability of geothermal power plants. J. Clean. Prod. 2020, 267, 121874. [Google Scholar] [CrossRef]
- Brahim, F.B.; Boughariou, E.; Makni, J.; Bouri, S. Evaluation of groundwater hydrogeochemical characteristics and delineation of geothermal potentialities using multi criteria decision analysis: Case of Tozeur region, Tunisia. Appl. Geochem. 2020, 113, 104504. [Google Scholar] [CrossRef]
- Rodriguez, F.; Pérez, N.M.; Padrón, E.; Melián, G.; Piña-Varas, P.; Dionis, S.; Barrancos, J.; Padilla, G.D.; Hernández, P.A.; Marrero, R. Surface geochemical and geophysical studies for geothermal exploration at the southern volcanic rift zone of Tenerife, Canary Islands, Spain. Geothermics 2015, 55, 195–206. [Google Scholar] [CrossRef]
- Yousefi, H.; Ehara, S.; Noorollahi, Y. Geothermal potential site selection using GIS in Iran. In Proceedings of the 32nd Workshop on Geothermal Reservoir Engineering, Stanford, CA, USA, 22–24 January 2007; pp. 174–182. [Google Scholar]
- Trumpy, E.; Donato, A.; Gianelli, G.; Gola, G.; Minissale, A.; Montanari, D.; Santilano, A.; Manzella, A. Data integration and favourability maps for exploring geothermal systems in Sicily, southern Italy. Geothermics 2015, 56, 1–16. [Google Scholar] [CrossRef]
- Faulds, J.; Hinz, N.; Coolbaugh, M.; dePolo, C.; Siler, D.; Shevenell, L.; Hammond, W.; Kreemer, C.; Queen, J. Discovering geothermal systems in the Great Basin region: An integrated geologic, geochemical, and geophysical approach for establishing geothermal play fairways. In Proceedings of the 41st Workshop on Geothermal Reservoir Engineering, Stanford, CA, USA, 22–24 February 2016; Nevada Bureau of Mines and Geology, University of Nevada: Reno, NV, USA, 2015. [Google Scholar]
- Abuzied, S.M.; Kaiser, M.F.; Shendi, E.-A.H.; Abdel-Fattah, M.I. Multi-criteria decision support for geothermal resources exploration based on remote sensing, GIS and geophysical techniques along the Gulf of Suez coastal area, Egypt. Geothermics 2020, 88, 101893. [Google Scholar] [CrossRef]
- Omwenga, B.M. Geothermal Well Site Suitability Selection Using Geographic Information Systems (GIS) and Remote Sensing: Case Study of the Eburru Geothermal Field. In Proceedings of the 45th Workshop on Geothermal Reservoir Engineering, Stanford, CA, USA, 10–12 February 2020; pp. 1–6. [Google Scholar]
- Dohaney, J.; Brogt, E.; Kennedy, B. Strategies and perceptions of students’ field note-taking skills: Insights from a geothermal field lesson. J. Geosci. Educ. 2015, 63, 233–249. [Google Scholar] [CrossRef]
- DiPippo, R. Geothermal Power Plants: Principles, Applications, Case Studies and Environmental Impact; Butterworth-Heinemann: Oxford, UK, 2012. [Google Scholar]
- Procesi, M.; Cantucci, B.; Buttinelli, M.; Armezzani, G.; Quattrocchi, F.; Boschi, E. Strategic use of the underground in an energy mix plan: Synergies among CO2, CH4 geological storage and geothermal energy. Latium Region case study (Central Italy). Appl. Energy 2013, 110, 104–131. [Google Scholar] [CrossRef]
- Lopez, S.; Hamm, V.; Le Brun, M.; Schaper, L.; Boissier, F.; Cotiche, C.; Giuglaris, E. 40 years of Dogger aquifer management in Ile-de-France, Paris Basin, France. Geothermics 2010, 39, 339–356. [Google Scholar] [CrossRef]
- Muther, T.; Syed, F.I.; Lancaster, A.T.; Salsabila, F.D.; Dahaghi, A.K.; Negahban, S. Geothermal 4.0: AI-Enabled geothermal reservoir development-current status, potentials, limitations, and ways forward. Geothermics 2022, 100, 102348. [Google Scholar] [CrossRef]
- Muñoz, G.; Bauer, K.; Moeck, I.; Schulze, A.; Ritter, O. Exploring the Groß Schönebeck (Germany) geothermal site using a statistical joint interpretation of magnetotelluric and seismic tomography models. Geothermics 2010, 39, 35–45. [Google Scholar] [CrossRef]
- Faulds, J.; Hinz, N.; Coolbaugh, M.; Ramelli, A.; Glen, J.; Ayling, B.; Wannamaker, P.; Deoreo, S.; Siler, D.; Craig, J. Vectoring into Potential Blind Geothermal Systems in the Granite Springs Valley Area, Western Nevada: Application of the Play Fairway Analysis at Multiple Scales. In Proceedings of the 44th Workshop on Geothermal Reservoir Engineering, Stanford, CA, USA, 11–13 February 2019; Nevada Bureau of Mines and Geology, University of Nevada: Reno, NV, USA, 2019. [Google Scholar]
- Vrijlandt, M.; Struijk, E.; Brunner, L.; Veldkamp, J.; Witmans, N.; Maljers, D.; Van Wees, J. ThermoGIS update: A renewed view on geothermal potential in the Netherlands. In Proceedings of the European Geothermal Congress, The Hague, The Netherlands, 11–14 June 2019; pp. 11–14. [Google Scholar]
- Kimball, S. Favourability Map of British Columbia Geothermal Resources. Ph.D. Thesis, University of British Columbia, Vancouver, BC, Canada, 2010. [Google Scholar]
- Rehman, A.U.; Abidi, M.H.; Umer, U.; Usmani, Y.S. Multi-criteria decision-making approach for selecting wind energy power plant locations. Sustainability 2019, 11, 6112. [Google Scholar] [CrossRef]
- Moraga, J.; Duzgun, H.; Cavur, M.; Soydan, H. The Geothermal Artificial Intelligence for geothermal exploration. Renew. Energy 2022, 192, 134–149. [Google Scholar] [CrossRef]
- Besser, H.; Mokadem, N.; Redhaounia, B.; Hadji, R.; Hamad, A.; Hamed, Y. Groundwater mixing and geochemical assessment of low-enthalpy resources in the geothermal field of southwestern Tunisia. Euro-Mediterr. J. Environ. Integr. 2018, 3, 16. [Google Scholar] [CrossRef]
- Abraham, E.M.; Obande, E.G.; Chukwu, M.; Chukwu, C.G.; Onwe, M.R. Estimating depth to the bottom of magnetic sources at Wikki Warm Spring region, northeastern Nigeria, using fractal distribution of sources approach. Turk. J. Earth Sci. 2015, 24, 494–512. [Google Scholar] [CrossRef]
- Nwankwo, L.I.; Shehu, A.T. Evaluation of Curie-point depths, geothermal gradients and near-surface heat flow from high-resolution aeromagnetic (HRAM) data of the entire Sokoto Basin, Nigeria. J. Volcanol. Geotherm. Res. 2015, 305, 45–55. [Google Scholar] [CrossRef]
- Noorollahi, Y.; Itoi, R.; Fujii, H.; Tanaka, T. GIS integration model for geothermal exploration and well siting. Geothermics 2008, 37, 107–131. [Google Scholar] [CrossRef]
- Gouareh, A.; Settou, N.; Khalfi, A.; Recioui, B.; Negrou, B.; Rahmouni, S.; Dokkar, B. GIS-based analysis of hydrogen production from geothermal electricity using CO2 as working fluid in Algeria. Int. J. Hydrogen Energy 2015, 40, 15244–15253. [Google Scholar] [CrossRef]
- Moghaddam, M.K.; Samadzadegan, F.; Noorollahi, Y.; Sharifi, M.A.; Itoi, R. Spatial analysis and multi-criteria decision making for regional-scale geothermal favorability map. Geothermics 2014, 50, 189–201. [Google Scholar] [CrossRef]
- Carranza, E.J.M.; Wibowo, H.; Barritt, S.D.; Sumintadireja, P. Spatial data analysis and integration for regional-scale geothermal potential mapping, West Java, Indonesia. Geothermics 2008, 37, 267–299. [Google Scholar] [CrossRef]
- Mostafaeipour, A.; Hosseini Dehshiri, S.J.; Hosseini Dehshiri, S.S.; Jahangiri, M.; Techato, K. A thorough analysis of potential geothermal project locations in Afghanistan. Sustainability 2020, 12, 8397. [Google Scholar] [CrossRef]
- Raos, S.; Hranić, J.; Rajšl, I.; Bär, K. An extended methodology for multi-criteria decision-making process focused on enhanced geothermal systems. Energy Convers. Manag. 2022, 258, 115253. [Google Scholar] [CrossRef]
- Cook, D.; Fazeli, R.; Davíðsdóttir, B. The need for integrated valuation tools to support decision-making—The case of cultural ecosystem services sourced from geothermal areas. Ecosyst. Serv. 2019, 37, 100923. [Google Scholar] [CrossRef]
- Mwaura, D.W. Exploration and Optimized Siting of Geothermal Wells Using a Web-Based Spatial Decision Support System. Ph.D. Thesis, Technische Universität Berlin, Berlin, Germany, 2018. [Google Scholar]
- Ejiga, E.G.; Yusoff, I.; Ismail, N.E.H.; Kumar, R. Geothermal energy assessment through the Curie point depth, geothermal gradient, and heat flow around the Akiri hot spring region in Central Nigeria. Environ. Earth Sci. 2022, 81, 115. [Google Scholar] [CrossRef]
- Bamisile, O.; Huang, Q.; Xu, X.; Hu, W.; Liu, W.; Liu, Z.; Chen, Z. An approach for sustainable energy planning towards 100% electrification of Nigeria by 2030. Energy 2020, 197, 117172. [Google Scholar] [CrossRef]
- Abdullahi, B.; Rai, J.; Olaitan, O.; Musa, Y. A Review of the Correlation between Geology and Geothermal Energy in North-Eastern Nigeria. IOSR J. Appl. Geol. Geophys 2014, 2, 74–83. [Google Scholar] [CrossRef]
- Abraham, E.; Nkitnam, E. Review of geothermal energy research in Nigeria: The geoscience front. Int. J. Earth Sci. Geophys. 2017, 3, 015. [Google Scholar]
- Eyinla, D.S.; Oladunjoye, M.A.; Ogunribido, T.H.; Odundun, O.A. An overview of geothermal energy resources in Nigeria. Environtropica 2016, 12, 61–71. [Google Scholar]
- Amoo, O.M. Thermodynamic based resource classification of renewable geothermal energy in Nigeria. J. Renew. Sustain. Energy 2014, 6, 033129. [Google Scholar] [CrossRef]
- Zira, A.M. Challenges and prospects of geophysical exploration of geothermal system for national development. Acad. J. Interdiscip. Stud. 2013, 2, 137. [Google Scholar] [CrossRef]
- Meng, F.; Liang, X.; Xiao, C.; Wang, G. Geothermal resource potential assessment utilizing GIS-based multi criteria decision analysis method. Geothermics 2021, 89, 101969. [Google Scholar] [CrossRef]
- Zayed, M.E.; Shboul, B.; Yin, H.; Zhao, J.; Zayed, A.A. Recent advances in geothermal energy reservoirs modeling: Challenges and potential of thermo-fluid integrated models for reservoir heat extraction and geothermal energy piles design. J. Energy Storage 2023, 62, 106835. [Google Scholar] [CrossRef]
- Mwaura, D.; Kada, M. Developing a web-based spatial decision support system for geothermal exploration at the Olkaria geothermal field. Int. J. Digit. Earth 2017, 10, 1118–1145. [Google Scholar] [CrossRef]
- Kiavarz, M.; Jelokhani-Niaraki, M. Geothermal prospectivity mapping using GIS-based Ordered Weighted Averaging approach: A case study in Japan’s Akita and Iwate provinces. Geothermics 2017, 70, 295–304. [Google Scholar] [CrossRef]
- Azizi, S.; Shakibi, H.; Shokri, A.; Chitsaz, A.; Yari, M. Multi-aspect analysis and RSM-based optimization of a novel dual-source electricity and cooling cogeneration system. Appl. Energy 2023, 332, 120487. [Google Scholar] [CrossRef]
- Ma, L.; Li, Y.; Wang, J.; Li, S.; Zhao, J.; Li, W.; Zayed, M.E.; Shao, Q.; Sun, M. A thermal-dissipation correction method for in-situ soil thermal response test: Experiment and simulation under multi-operation conditions. Energy Build. 2019, 194, 218–231. [Google Scholar] [CrossRef]
- Dung-Gwom, J.Y.; Jugu, A.S. Characteristics and planning challenges of hilltop settlements in Jos Metropolis, Nigeria. UPLanD—J. Urban Plan. Landsc. Environ. Des. 2017, 2, 129–149. [Google Scholar]
- Idris, S. Effect of Long-Term Flooding and Landuse under Different Soil Types: On Selected Soil and Groundwater Properties of Hadejia-Nguru Wetland, Nigeria; LAP Lambert Academic Publishing: Saarbrücken, Germany, 2020. [Google Scholar]
- Andersen, I.; Golitzen, K.G. The Niger River Basin: A Vision for Sustainable Management; World Bank Publications: Washington, DC, USA, 2005. [Google Scholar]
- Macaulay, B. Land degradation in Northern Nigeria: The impacts and implications of human-related and climatic factors. Afr. J. Environ. Sci. Technol. 2014, 8, 267–273. [Google Scholar]
- Akinsunmade, A.; Nguyen Dinh, C.; Wojas, A.; Tomecka-Suchoń, S. Characterization of lithological zones of the Isanlu sheet 225, North Central Nigeria, using aerogeophysical datasets. Acta Geophys. 2020, 68, 651–665. [Google Scholar] [CrossRef]
- Ekwok, S.E.; Akpan, A.E.; Kudamnya, E.A.; Ebong, E.D. Assessment of groundwater potential using geophysical data: A case study in parts of Cross River State, south-eastern Nigeria. Appl. Water Sci. 2020, 10, 144. [Google Scholar] [CrossRef]
- Ejiga, E.G.; Ismail, N.E.H.; Yusoff, I. Implementing digital edge enhancers on improved high-resolution aeromagnetic signals for structural-depth analysis around the middle benue Trough, Nigeria. Minerals 2021, 11, 1247. [Google Scholar] [CrossRef]
- Yetano Roche, M.; Verolme, H.; Agbaegbu, C.; Binnington, T.; Fischedick, M.; Oladipo, E.O. Achieving Sustainable Development Goals in Nigeria’s power sector: Assessment of transition pathways. Clim. Policy 2020, 20, 846–865. [Google Scholar] [CrossRef]
- Fekete, H.; Kuramochi, T.; Roelfsema, M.; den Elzen, M.; Forsell, N.; Höhne, N.; Luna, L.; Hans, F.; Sterl, S.; Olivier, J. A review of successful climate change mitigation policies in major emitting economies and the potential of global replication. Renew. Sustain. Energy Rev. 2021, 137, 110602. [Google Scholar] [CrossRef]
- Iwayemi, A. Investment in electricity generation and transmission in Nigeria: Issues and options. Int. Assoc. Energy Econ. 2008, 7, 37–42. [Google Scholar]
- Emovon, I.; Samuel, O.D.; Mgbemena, C.O.; Adeyeri, M.K. Electric Power generation crisis in Nigeria: A Review of causes and solutions. Int. J. Integr. Eng. 2018, 10, 47–56. [Google Scholar] [CrossRef]
- Igberaese, T. The Effect of Oil Dependency on Nigeria’s Economic Growth. Master’s Thesis, International Institute of Social Sciences, The Hague, The Netherlands, 2013. [Google Scholar]
- Anyaehie, M.C.; Areji, A.C. Economic diversification for sustainable development in Nigeria. Open J. Political Sci. 2015, 5, 87. [Google Scholar] [CrossRef]
- Eko-Raphaels, M.U.; Aruwei, P.; Enaruna, D.V.; Ajiboye, A.O.; Apinoko, R. Natural Gas Logistics, Utilization and Impact on Nigeria’s Economic Health: A Simple Empirics. Int. Res. J. Financ. Econ. 2022, 10, 98–105. [Google Scholar]
- Ohimain, E.I. Emerging bio-ethanol projects in Nigeria: Their opportunities and challenges. Energy Policy 2010, 38, 7161–7168. [Google Scholar] [CrossRef]
- Jalloh, M. Natural resources endowment and economic growth: The West African Experience. J. Nat. Resour. Dev. 2013, 3, 66–84. [Google Scholar] [CrossRef]
- Igwe, C.; Adebayo, M.; Olakanmi, O.; Ogbonna, I.; Aina, O. Promoting Wealth and Job Creation in Nigeria—Review of the Role of Entrepreneurship. J. Sustain. Dev. Stud. 2013, 3, 80–100. [Google Scholar]
- Damulak, D.D. Nigeria Solid Mineral Resource Potentials: An Overview; University of Nigeria Nsukka: Nsukka, Nigeria, 2017; pp. 5–10. [Google Scholar]
- Metu, A.; Nwogwugwu, U.; Okeyika, K. Overview of the Structure of the Nigerian Economy. In Structure and Problems of the Nigerian Economy; Nnamdi Azikiwe University: Akwa, Nigeria, 2019. [Google Scholar]
- Jakada, A.H.; Mahmood, S. An asymmetric effect of economic growth, foreign direct investment and financial development on the quality of environment in Nigeria. J. Manag. Theory Pract. (JMTP) 2020, 1, 5–13. [Google Scholar] [CrossRef]
- Enahoro, J.A. Design and Bases of Environmrntal Accounting in Oil & Gas and Manufacturing Sector in Nigeria. Ph.D. Thesis, Covenant University, Ota, Nigeria, 2009. [Google Scholar]
- Oyedepo, S.O. Towards achieving energy for sustainable development in Nigeria. Renew. Sustain. Energy Rev. 2014, 34, 255–272. [Google Scholar] [CrossRef]
- Oji, J.; Idusuyi, N.; Kareem, B. Coal power utilization as an energy mix option for Nigeria: A review. Am. Acad. Sch. Res. J. 2012, 4, 14–19. [Google Scholar]
- Ohunakin, O.S.; Adaramola, M.S.; Oyewola, O.M.; Fagbenle, R.O. Solar energy applications and development in Nigeria: Drivers and barriers. Renew. Sustain. Energy Rev. 2014, 32, 294–301. [Google Scholar] [CrossRef]
- Oyedepo, S.O.; Babalola, O.P.; Nwanya, S.C.; Kilanko, O.; Leramo, R.O.; Aworinde, A.K.; Adekeye, T.; Oyebanji, J.A.; Abidakun, A.O.; Agberegha, O.L. Towards a sustainable electricity supply in Nigeria: The role of decentralized renewable energy system. Eur. J. Sustain. Dev. Res. 2018, 2, 40. [Google Scholar] [CrossRef] [PubMed]
- Odu, G. Weighting methods for multi-criteria decision making technique. J. Appl. Sci. Environ. Manag. 2019, 23, 1449–1457. [Google Scholar] [CrossRef]
- Radmehr, B. Preliminary Design of a Proposed Geothermal Power Plant in NW-Sabalan Area, Azerbaijan-Iran; United Nations University: Tokyo, Japan, 2005. [Google Scholar]
- Abubakar, A.J.; Hashim, M.; Pour, A.B.; Shehu, K. A review of geothermal mapping techniques using remotely sensed data. Sci. World J. 2017, 12, 72–82. [Google Scholar]
- Wambo, J.D.T.; Pour, A.B.; Ganno, S.; Asimow, P.D.; Zoheir, B.; dos Reis Salles, R.; Nzenti, J.P.; Pradhan, B.; Muslim, A.M. Identifying high potential zones of gold mineralization in a sub-tropical region using Landsat-8 and ASTER remote sensing data: A case study of the Ngoura-Colomines goldfield, eastern Cameroon. Ore Geol. Rev. 2020, 122, 103530. [Google Scholar] [CrossRef]
- Vaughan, R.G.; Lowenstern, J.B.; Keszthelyi, L.P.; Jaworowski, C.; Heasler, H. Mapping temperature and radiant geothermal heat flux anomalies in the Yellowstone geothermal system using ASTER thermal infrared data. GRC Trans. 2012, 36, 1403–1410. [Google Scholar]
- Handcock, R.N.; Torgersen, C.E.; Cherkauer, K.A.; Gillespie, A.R.; Tockner, K.; Faux, R.N.; Tan, J.; Carbonneau, P. Thermal infrared remote sensing of water temperature in riverine landscapes. Fluv. Remote Sens. Sci. Manag. 2012, 1, 85–113. [Google Scholar]
- Ramirez, R.; Lee, S.-R.; Kwon, T.-H. Long-term remote monitoring of ground deformation using sentinel-1 interferometric Synthetic Aperture Radar (InSAR): Applications and insights into geotechnical engineering practices. Appl. Sci. 2020, 10, 7447. [Google Scholar] [CrossRef]
- Rosen, P.A.; Hensley, S.; Joughin, I.R.; Li, F.K.; Madsen, S.N.; Rodriguez, E.; Goldstein, R.M. Synthetic aperture radar interferometry. Proc. IEEE 2000, 88, 333–382. [Google Scholar] [CrossRef]
- Han, J.-Y.; Forster, R.; Moser, D.; Ford, A.; Ramirez-Hernandez, J.; Tiampo, K. The spatial and temporal subsidence variability of the East Mesa Geothermal Field, California, USA, and its potential impact on the All American Canal System. Int. J. Remote Sens. 2011, 32, 3427–3449. [Google Scholar] [CrossRef]
- Saada, S.A. Curie point depth and heat flow from spectral analysis of aeromagnetic data over the northern part of Western Desert, Egypt. J. Appl. Geophys. 2016, 134, 100–111. [Google Scholar] [CrossRef]
- Elbarbary, S.; Zaher, M.A.; Mesbah, H.; El-Shahat, A.; Embaby, A. Curie point depth, heat flow and geothermal gradient maps of Egypt deduced from aeromagnetic data. Renew. Sustain. Energy Rev. 2018, 91, 620–629. [Google Scholar] [CrossRef]
- Bibby, H.; Risk, G.; Caldwell, T.; Bennie, S. Misinterpretation of electrical resistivity data in geothermal prospecting: A case study from the Taupo Volcanic Zone. In Proceedings of the Geological and Nuclear Sciences: Proceedings, World Geothermal Congress, Antalya, Turkey, 24–29 April 2005; pp. 1–8. [Google Scholar]
- Munoz, G. Exploring for geothermal resources with electromagnetic methods. Surv. Geophys. 2014, 35, 101–122. [Google Scholar] [CrossRef]
- Kana, J.D.; Djongyang, N.; Raïdandi, D.; Nouck, P.N.; Dadjé, A. A review of geophysical methods for geothermal exploration. Renew. Sustain. Energy Rev. 2015, 44, 87–95. [Google Scholar] [CrossRef]
- Schiel, K.; Baume, O.; Caruso, G.; Leopold, U. GIS-based modelling of shallow geothermal energy potential for CO2 emission mitigation in urban areas. Renew. Energy 2016, 86, 1023–1036. [Google Scholar] [CrossRef]
- van der Meer, F.; Hecker, C.; van Ruitenbeek, F.; van der Werff, H.; de Wijkerslooth, C.; Wechsler, C. Geologic remote sensing for geothermal exploration: A review. Int. J. Appl. Earth Obs. Geoinf. 2014, 33, 255–269. [Google Scholar] [CrossRef]
- Mohammadzadeh Moghaddam, M.; Mirzaei, S.; Nouraliee, J.; Porkhial, S. Integrated magnetic and gravity surveys for geothermal exploration in Central Iran. Arab. J. Geosci. 2016, 9, 506. [Google Scholar] [CrossRef]
- Ask, M.V.; Ask, D.; Elvebakk, H.; Olesen, O. Stress Analysis in Boreholes Drag Bh and Leknes Bh, Nordland, North Norway. Rock Mech. Rock Eng. 2015, 48, 1475–1484. [Google Scholar] [CrossRef]
- Akiishi, M.; Isikwue, B.; Tyovenda, A. Mapping of Depth to Basement in Masu Area of Nigerian Sector of Chad Basin, Using Aeromagnetic and Aerogravity Data. IOSR J. Appl. Geol. Geophys. (IOSR-JAGG) 2018, 6, 36–45. [Google Scholar]
- Mohamed, H.S.; Abdel Zaher, M.; Senosy, M.M.; Saibi, H.; El Nouby, M.; Fairhead, J.D. Correlation of aerogravity and BHT data to develop a geothermal gradient map of the Northern Western Desert of Egypt using an artificial neural network. Pure Appl. Geophys. 2015, 172, 1585–1597. [Google Scholar] [CrossRef]
- Simiyu, S.M.; Keller, G.R. Seismic monitoring of the Olkaria Geothermal area, Kenya Rift valley. J. Volcanol. Geotherm. Res. 2000, 95, 197–208. [Google Scholar] [CrossRef]
- Schmelzbach, C.; Greenhalgh, S.; Reiser, F.; Girard, J.-F.; Bretaudeau, F.; Capar, L.; Bitri, A. Advanced seismic processing/imaging techniques and their potential for geothermal exploration. Interpretation 2016, 4, SR1–SR18. [Google Scholar] [CrossRef]
- Young, K.; Reber, T.; Witherbee, K. Hydrothermal exploration best practices and geothermal knowledge exchange on OpenEI. In Proceedings of the 37th Workshop on Geothermal Reservoir Engineering, Stanford, CA, USA, 30 January–1 February 2012; pp. 1–13. [Google Scholar]
- Schill, E.; Meixner, J.; Meller, C.; Grimm, M.; Grimmer, J.C.; Stober, I.; Kohl, T. Criteria and geological setting for the generic geothermal underground research laboratory, GEOLAB. Geotherm. Energy 2016, 4, 7. [Google Scholar] [CrossRef]
- Gasperikova, E.; Cumming, W. How geophysics can help the geothermal industry. In Proceedings of the SEG International Exposition and Annual Meeting, Virtual, 11–16 October 2020; OnePetro: Richardson, TX, USA, 2020. [Google Scholar]
- Sabrian, P.G.; Saepuloh, A.; Kashiwaya, K.; Koike, K. Combined SBAS-InSAR and geostatistics to detect topographic change and fluid paths in geothermal areas. J. Volcanol. Geotherm. Res. 2021, 416, 107272. [Google Scholar] [CrossRef]
- Mia, M.B.; Nishijima, J.; Fujimitsu, Y. Exploration and monitoring geothermal activity using Landsat ETM+ images: A case study at Aso volcanic area in Japan. J. Volcanol. Geotherm. Res. 2014, 275, 14–21. [Google Scholar] [CrossRef]
- Didana, Y.; Thiel, S.; Heinson, G. Three dimensional conductivity model of the Tendaho high enthalpy geothermal field, NE Ethiopia. J. Volcanol. Geotherm. Res. 2015, 290, 53–62. [Google Scholar] [CrossRef]
- Macharia, M.W.; Gachari, M.K.; Kuria, D.N.; Mariita, N.O. Low Cost Geothermal Energy Indicators and Exploration Methods in Kenya; Geothermal Energy Training and Research Institute (GeTRI): Vadodara, India, 2017. [Google Scholar]
- Majumdar, D.; Devi, A. Oilfield geothermal resources of the Upper Assam Petroliferous Basin, NE India. Energy Geosci. 2021, 2, 246–253. [Google Scholar] [CrossRef]
- Grant, M. Geothermal Reservoir Engineering; Elsevier: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Sircar, A.; Shah, M.; Sahajpal, S.; Vaidya, D.; Dhale, S.; Chaudhary, A. Geothermal exploration in Gujarat: Case study from Dholera. Geotherm. Energy 2015, 3, 22. [Google Scholar] [CrossRef]
- Arnous, M.O. Groundwater potentiality mapping of hard-rock terrain in arid regions using geospatial modelling: Example from Wadi Feiran basin, South Sinai, Egypt. Hydrogeol. J. 2016, 24, 1375–1392. [Google Scholar] [CrossRef]
- Noorollahi, Y.; Itoi, R.; Fujii, H.; Tanaka, T.; Motooka, N.-k. Geothermal resources exploration and wellsite selection with environmental consideration using GIS in Sabalan geothermal area, Iran. In Proceedings of the 32nd Workshop on Geothermal Reservoir Engineering, Stanford, CA, USA, 22–24 January 2007; pp. 22–24. [Google Scholar]
- Dürrast, H.; Ngansom, W. Integrated geophysical and geochemical investigations on the high-salinity geothermal waters of the Khlong Thom Hot Spring tourist attraction in Krabi, southern Thailand. Geosci. J. 2022, 26, 621–635. [Google Scholar] [CrossRef]
- Elbarbary, S.; Abdel Zaher, M.; Saibi, H.; Fowler, A.-R.; Saibi, K. Geothermal renewable energy prospects of the African continent using GIS. Geotherm. Energy 2022, 10, 8. [Google Scholar] [CrossRef]
- Engle, M.A.; Nye, C.W.; Neupane, G.; Quillinan, S.A.; McLaughlin, J.F.; McLing, T.; Martín-Fernández, J.A. Predicting Rare Earth Element Potential in Produced and Geothermal Waters of the United States via Emergent Self-Organizing Maps. Energies 2022, 15, 4555. [Google Scholar] [CrossRef]
- Murray, J.; Clément, A.; Fritz, B.; Schmittbuhl, J.; Bordmann, V.; Fleury, J.M. Abiotic hydrogen generation from biotite-rich granite: A case study of the Soultz-sous-Forêts geothermal site, France. Appl. Geochem. 2020, 119, 104631. [Google Scholar] [CrossRef]
- Güleç, N.; Hilton, D.R. Turkish geothermal fields as natural analogues of CO2 storage sites: Gas geochemistry and implications for CO2 trapping mechanisms. Geothermics 2016, 64, 96–110. [Google Scholar] [CrossRef]
- Aich, A. Preliminary studies on soil radon activity at geothermal hotspot of Bakreswar-Tantloi. IOP SciNotes 2022, 3, 025201. [Google Scholar] [CrossRef]
Scenario | Criteria 1–5 | Criteria 6–48 |
---|---|---|
1 | 0.020833 | 0.020833 |
2 | 0.041667 | 0.018411 |
3 | 0.010417 | 0.022045 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nwaiwu, U.; Leach, M.; Liu, L. Development of an Improved Decision Support Tool for Geothermal Site Selection in Nigeria Based on Comprehensive Criteria. Energies 2023, 16, 7602. https://doi.org/10.3390/en16227602
Nwaiwu U, Leach M, Liu L. Development of an Improved Decision Support Tool for Geothermal Site Selection in Nigeria Based on Comprehensive Criteria. Energies. 2023; 16(22):7602. https://doi.org/10.3390/en16227602
Chicago/Turabian StyleNwaiwu, Uchechukwu, Matthew Leach, and Lirong Liu. 2023. "Development of an Improved Decision Support Tool for Geothermal Site Selection in Nigeria Based on Comprehensive Criteria" Energies 16, no. 22: 7602. https://doi.org/10.3390/en16227602
APA StyleNwaiwu, U., Leach, M., & Liu, L. (2023). Development of an Improved Decision Support Tool for Geothermal Site Selection in Nigeria Based on Comprehensive Criteria. Energies, 16(22), 7602. https://doi.org/10.3390/en16227602