Real-Time Generation of Operational Characteristic Curves for Municipal Water Pumping Systems: An Approach to Energy Efficiency and Carbon Footprint
Abstract
:1. Introduction
2. Case Study
3. Methodology
3.1. Virtual Instrumentation
3.2. OC Curves Analysis
3.3. Proposed Pump Evaluation System
3.4. Software Programming
Hardware Configuration
4. Results and Discussion
4.1. Energy Saving and Carbon Footprint
4.2. LCC Analysis
- I.
- Vertical water pump works continuously for 4380 h/year.
- II.
- There is no decommissioning cost, downtime cost, environmental and disposal cost, or other associated yearly costs.
- III.
- The project’s useful life is 15 years.
- IV.
- According to CFE’s tariff database [46], it is estimated an energy inflation rate of 4%. The estimated electricity cost in Mexicali for the first year is 0.07 USD/kWh.
- V.
- The municipal water facility incurs an annual cost of USD 1000 for routine maintenance.
5. Conclusions
- I.
- Compliance with water policies by utilizing accurate indicators;
- II.
- Improved precision in forecasting future trends in water supply, energy demand, and carbon footprint;
- III.
- Immediate calculation of energy savings and carbon footprint reduction using dependable measurements;
- IV.
- Efficient scheduling of maintenance, optimization of operating conditions, or consideration of alternative pump models for units with declining efficiency;
- V.
- Assessment of the performance of new pumps to ensure alignment with the specified operational parameters.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Berndtsson, J.C.; Jinno, K. Sustainability of urban water system: Examples from Fukuoka, Japan. Water Policy 2010, 10, 501–513. [Google Scholar] [CrossRef]
- Waide, P.; Brunner, C.U. Energy-Efficiency Policy Opportunities for Electric Motor-Driven Systems. In International Energy Agency (IEA) Energy Efficiency Series; Working Paper; IEA: Paris, France, 2011; Available online: https://iea.blob.core.windows.net/assets/d69b2a76-feb9-4a74-a921-2490a8fefcdf/EE_for_ElectricSystems.pdf (accessed on 10 October 2022).
- Botto, S.; Niccolucci, V.; Rugani, B.; Nicolardi, V.; Bastianoni, S.; Gaggi, C. Towards lower carbon footprint patterns of consumption: The case of drinking water in Italy. Environ. Sci. Policy 2011, 14, 388–395. [Google Scholar] [CrossRef]
- Brown, L.E.; Mitchell, G.; Holden, J.; Folkard, A.; Wright, N.; Beharry-Borg, N.; Berry, G.; Brierley, B.; Chapman, P.; Clarke, S.J.; et al. Priority water research questions as determined by UK practitioners and policy makers. Sci. Total Environ. 2010, 409, 256–266. [Google Scholar] [CrossRef]
- UNESCO. Urban Water Management Programme. Available online: https://en.unesco.org/uwmp (accessed on 11 April 2023).
- Novara, D.; McNabola, A. A model for the extrapolation of the characteristic curves of Pumps as Turbines from a datum Best Efficiency Point. Energy Convers. Manag. 2018, 174, 1–7. [Google Scholar] [CrossRef]
- SIE. Electricity Sales, by Tariff. Available online: https://sie.energia.gob.mx/bdiController.do?action=cuadro&subAction=applyOptions (accessed on 10 March 2023).
- Hydraulic Institute (HI); Europump. U.S. Department of Energy (DOE). Variable Speed Pumping; 2004. Available online: https://energy.gov/sites/prod/files/2014/05/f16/variable_speed_pumping.pdf (accessed on 10 October 2022).
- OECD. OECD Environmental Outlook to 2050: The Consequences of Inaction. OECD Publishing, Paris. 2012. Available online: https://www.oecd-ilibrary.org/environment/oecd-environmental-outlook-to-2050_9789264122246-en (accessed on 21 February 2023).
- United Nations (UN). Sustainable Development Goals. Available online: https://www.un.org/sustainabledevelopment/energy/ (accessed on 11 October 2022).
- U.S. Department of Energy (DOE). Energy Tips-Pumping Systems: Test for Pumping System Efficiency; DOF: Washington, DC, USA, 2005. Available online: https://energy.gov/sites/prod/files/2014/05/f16/test_pumping_system__pumping_systemts4.pdf (accessed on 3 October 2019).
- Casada, D.; McElhaney, K. Identifying Energy Savings Opportunities in Industrial Pumping Systems; Oak Ridge National Lab: Oak Ridge, TN, USA, 1999. [Google Scholar]
- Sowby, R.B.; Capener, A. Reducing Carbon Emissions through Water Conservation: An Analysis of 10 Major U.S. Cities. Energy Nexus 2022, 7, 100094. [Google Scholar] [CrossRef]
- Zib, L.; Byrne, D.M.; Marston, L.T.; Chini, C.M. Operational Carbon Footprint of the U.S. Water and Wastewater Sector’s Energy Consumption. J. Clean. Prod. 2021, 321, 128815. [Google Scholar] [CrossRef]
- Bevan, G.-S.; Wilson, W. The Carbon Footprint of Water. Available online: http://eec.ucdavis.edu/events/documents/water-energy_rivernetwork_carbon-footprint-of-water.pdf (accessed on 10 September 2020).
- Jennifer, R.S.; Horva, A. Energy and Air Emission Effects of Water Supply. Environ. Sci. Technol. 2009, 43, 2680–2687. [Google Scholar] [CrossRef]
- National Institute of Statistic and Geography. Population. Available online: http://cuentame.inegi.org.mx/monografias/informacion/bc/poblacion/ (accessed on 20 October 2022).
- National Institute of Statistic and Geography. Weather. Available online: https://cuentame.inegi.org.mx/monografias/informacion/bc/territorio/clima.aspx (accessed on 20 February 2023).
- National Instruments (NI). What Is LabVIEW? Available online: http://www.ni.com/en-us/shop/labview.html (accessed on 10 January 2020).
- Pérez, A.; Ramos, R.; Montero, G.; Coronado, M.; García, C.; Pérez, R. Virtual Instrument for Emissions Measurement of Internal Combustion Engines. J. Anal. Methods Chem. 2016, 2016, 13. [Google Scholar] [CrossRef]
- Bonilla, D.; Samaniego, M.G.; Ramos, R.; Campbell, H. Practical and low-cost monitoring tool for building energy management systems using virtual instrumentation. Sustain. Cities Soc. 2018, 39, 155–162. [Google Scholar] [CrossRef]
- Dahiya, R. Condition monitoring of wind turbine for rotor fault detection under non stationary conditions. Ain Shams Eng. J. 2018, 9, 2441–2452. [Google Scholar] [CrossRef]
- Mahfouz, A.; Gad, M.; El Fatih, A.; Emara, A. Comparative study of combustion characteristics and exhaust emissions of waste cooking-diesel oil blends. Ain Shams Eng. J. 2018, 9, 3123–3134. [Google Scholar] [CrossRef]
- Sheikh, M.F.; Kamal, K.; Rafique, F.; Sabir, S.; Zaheer, H.; Khan, K. Corrosion detection and severity level prediction using acoustic emission and machine learning based approach. Ain Shams Eng. J. 2021, 12, 3891–3903. [Google Scholar] [CrossRef]
- Mohsen, M.; Mohamed, A.M.; Ahmed, S.; Ibrahim, K. Bilateral control of a 2-dof teleoperated manipulator using udp scheme. Ain Shams Eng. J. 2022, 14, 102065. [Google Scholar] [CrossRef]
- El-Naggar, M.F.; Mosaad, M.I.; Hasanien, H.M.; AbdulFattah, T.A.; Bendary, A.F. Elephant herding algorithm-based optimal PI controller for LVRT enhancement of wind energy conversion systems. Ain Shams Eng. J. 2021, 12, 599–608. [Google Scholar] [CrossRef]
- Al-Amyal, F.; Számel, L.; Hamouda, M. An enhanced direct instantaneous torque control of switched reluctance motor drives using ant colony optimization. Ain Shams Eng. J. 2023, 14, 101967. [Google Scholar] [CrossRef]
- National Instruments (NI). Boeing Measures Reduced Aircraft Noise Emissions with NI PXI and LabVIEW. Available online: http://sine.ni.com/cs/app/doc/p/id/cs-684# (accessed on 11 October 2020).
- National Instruments (NI). NASA Uses NI LabVIEW to Save Time, Reduce Costs in Automated Testing of Microshutters. Available online: http://sine.ni.com/cs/app/doc/p/id/cs-632 (accessed on 13 October 2020).
- Wang, Z.; Andiroglu, E.; Wang, G.; Song, L. Accuracy improvement of virtual pump water flow meters using calibrated characteristics curves at various frequencies. Energy Build. 2019, 191, 143–150. [Google Scholar] [CrossRef]
- Liu, M.; Tan, L.; Cao, S. Theoretical model of energy performance prediction and BEP determination for centrifugal pump as turbine. Energy 2019, 172, 712–732. [Google Scholar] [CrossRef]
- Thongkruer, P.; Aree, P. Power-flow initialization of fixed-speed pump as turbines from their characteristic curves using unified Newton-Raphson approach. Electr. Power Syst. Res. 2023, 218, 109214. [Google Scholar] [CrossRef]
- Hanafizadeh, P.; Raffiee, A.H.; Saidi, M.H. Experimental investigation of characteristic curve for gas-lift pump. J. Pet. Sci. Eng. 2014, 116, 19–27. [Google Scholar] [CrossRef]
- Gupta, A.K.; Roach, D.C.; Rinehart, S.M.; Best, L.A. Decision-Making Impacts on Energy Consumption Display Design. Energy Technol. Policy 2015, 2, 133–142. [Google Scholar] [CrossRef]
- Sabogal, B.R.; Palacios, J.A.; Pantoja, C.L. Optimización de energía en sistemas de bombeo. Infor. Téc. 2013, 77, 47–58. [Google Scholar] [CrossRef]
- Sunela, M.I.; Puust, R. Simple Visual Tool to Analyze Pump Battery Efficiencies for Various Pump Combinations. Procedia Eng. 2014, 89, 525–532. [Google Scholar] [CrossRef]
- Kaya, D.; Alptekin, E.; Suleyman, K.; Canka, F.; Salih, A.; Celik, C. Energy efficiency in pumps. Energy Convers. Manag. 2008, 49, 1662–1673. [Google Scholar] [CrossRef]
- Quezada, J.C.; Flores, E.; Bautista, J.; Quezada, V. Diseño e implementación de un sistema de control y monitoreo basado en MMI-PLC para un pozo de agua potable. Ing. Investig. Y Tecnol. 2014, 15, 41–50. Available online: http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1405-77432014000100005&lng=es&tlng=es (accessed on 10 September 2023).
- Hydraulic Institute. Flow Modeling Tools. Available online: http://pumps.org/Education/Free_Pump_Software.aspx (accessed on 10 September 2023).
- Suez. Suezsmartsolutions, AquadvancedTM. Available online: https://www.suezsmartsolutions.com/en/gamme-fiche-produits/smart-operations/our-solutions/aquadvanced-R-well-watch (accessed on 20 September 2023).
- Inter-American Development Bank (IDB). Evaluation of Water Pumping Systems: Energy Efficiency Assessment Manual, 1st ed.; IDB: Washington, DC, USA, 2011; pp. 12–45. Available online: https://publications.iadb.org/handle/11319/2814 (accessed on 20 October 2018).
- Legarreta, A.E.; Figueroa, J.H.; Bortolin, J.A. An IEC 61000-4-30 class a—Power quality monitor: Development and performance analysis. In Proceedings of the 11th International Conference on Electrical Power Quality and Utilization, Lisbon, Portugal, 17–19 October 2011; pp. 1–6. [Google Scholar] [CrossRef]
- Curve No. 06-008A; Pump Performance Curve. American-Marsh Pumps: Collierville, TN, USA, 2006.
- Secretary of Environment and Natural Resources (SEMARNAT). National Emissions Registry. 2023. Available online: https://www.gob.mx/cms/uploads/attachment/file/807500/aviso_fesen_2022.pdf (accessed on 17 January 2023).
- Tolvanen, J. Life cycle energy cost savings through careful system design and pump selection. World Pumps 2007, 34, 36–37. [Google Scholar] [CrossRef]
- Comisión Federal de Electricidad (CFE). Esquema Tarifario Vigente. Available online: https://app.cfe.mx/Aplicaciones/CCFE/Tarifas/TarifasCREIndustria/Industria.aspx (accessed on 10 September 2020).
Type of Pump | Vertical Turbine |
---|---|
Manufacturer | American-Marsh |
Model | 28SCLCZ-2 |
Suction and discharge diameters | 17.625″ and 18″ |
Number of stages | 2 |
Impeller’s diameter | 17.625 in (0.447 m) |
Rated flow | 7925 GPM (1799.7 m3/h) |
Rated head | 147 ft (44.8 m) |
Motor’s rated speed | 1190 |
Motor’s size | 400 Hp (298.28 kW) |
Motor’s rated voltage | 460 V |
Motor’s full load amps | 447 A |
Motor’s nominal efficiency | 95.8% |
Service factor | 1 |
Line frequency | 60 Hz |
Input | Option A: Replacement | Option B: No Change |
---|---|---|
Investment cost, USD | 125,000 | 0 |
Initial energy price, USD/kWh | 0.07 | |
Energy inflation rate, % | 4 | |
Weighted average power, kW | 256.5 | 278.3 |
Operation, hours/year | 4380 | |
Energy cost, USD | 78,642.9 | * 100,173.6 |
Maintenance cost, USD | 500 | 1000 |
Lifetime, years | 15 | |
Output present LCC value, USD | −$1,707,213 | −$2,020,834 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bonilla Garcia, D.R.; Ramos, M.G.S.; García, C.; Perez-Sanchez, A.; Coronado, M. Real-Time Generation of Operational Characteristic Curves for Municipal Water Pumping Systems: An Approach to Energy Efficiency and Carbon Footprint. Energies 2023, 16, 7532. https://doi.org/10.3390/en16227532
Bonilla Garcia DR, Ramos MGS, García C, Perez-Sanchez A, Coronado M. Real-Time Generation of Operational Characteristic Curves for Municipal Water Pumping Systems: An Approach to Energy Efficiency and Carbon Footprint. Energies. 2023; 16(22):7532. https://doi.org/10.3390/en16227532
Chicago/Turabian StyleBonilla Garcia, Diego Ramon, Margarita Gil Samaniego Ramos, Conrado García, Armando Perez-Sanchez, and Marcos Coronado. 2023. "Real-Time Generation of Operational Characteristic Curves for Municipal Water Pumping Systems: An Approach to Energy Efficiency and Carbon Footprint" Energies 16, no. 22: 7532. https://doi.org/10.3390/en16227532
APA StyleBonilla Garcia, D. R., Ramos, M. G. S., García, C., Perez-Sanchez, A., & Coronado, M. (2023). Real-Time Generation of Operational Characteristic Curves for Municipal Water Pumping Systems: An Approach to Energy Efficiency and Carbon Footprint. Energies, 16(22), 7532. https://doi.org/10.3390/en16227532