Comprehensive Review on Cooling of Permanent Magnet Synchronous Motors and Their Qualitative Assessment for Aerospace Applications
Abstract
:1. Introduction
1.1. Motor
1.2. Cooling Methods
2. Component Cooling
2.1. Shaft
2.2. Rotor Iron
2.3. Air Gap
2.4. Stator
2.5. End CAP Air
2.6. Windings
2.7. End Windings
2.8. Frame/Housing
Location | Name | Fluid | Combination | |
---|---|---|---|---|
Rotating | Shaft | Finned Hollow Shaft [10] Hollow Shaft [6,7,8,9,24] | Air [8,9,10] WEG [6,7,24] Oil [24] Insulation Oil C15 [8] | Cooling Jacket (Frame) [8,10] Cooling Jacket (Stator) [6,24] Flooded Cooling (EW) [6] |
Heat Pipe [7,11] | Gas or Liquid [7] Coolant [11] | |||
Rotor Iron | Heat Pipe [6,7] | WEG [6] | Cooling Jacket (Stator) [6] Flooded Cooling (EW) [6] | |
PCM [6] | Custom Material [6] | Cooling Jacket (Stator) [6] Flooded Cooling (EW) [6] | ||
Lamination Cooling [6] | WEG [6] | Cooling Jacket (Stator) [6] Flooded Cooling (EW) [6] | ||
Impingement Cooling [7] | Oil [7] | Cooling Jacket (Frame) [7] | ||
Ventilation Cooling [12] | Air [12] | Cooling Jacket (Stator) [12] | ||
Air Gap | Ventilation Cooling [6] | Air [6] | Cooling Jacket (Stator) [6] Flooded Cooling (EW) [6] | |
Non-Rotating | Stator | Cold Plates [32] | Water [32] | |
Cooling Jacket [6,12,18,19,20,21,22,23,24,40,43] | Water [19,20,21,23,24,39,43] Water Glycol [22] WEG [6,18] Oil [18,24,43] | Hollow Shaft [6,24] Heat Pipe (Rotor Iron) [6] PCM (Rotor Iron) [6] Lamination Cooling (Rotor Iron) [6] Ventilation Cooling (Air Gap) [6] Flooded Cooling (EW) [6] Ventilation Cooling (Rotor Iron) [12] Flooded Cooling (EW) [43] | ||
Flooded Cooling [25,26,27] | Oil [25,26,27] | |||
Ventilation Cooling [13,14,15,16] | Air [13] | Cooling Channel (Stator) [14] | ||
Heat Pipe [30,31] | Water [30] | Cooling Fins (Frame) [30] Potting Material (EW) [31] Cooling Jacket (Frame) [31] | ||
PCM [29] | Paraffin [29] | Cooling Fins (Frame) [29] | ||
Cooling Channel [14,17,28] | Water [14,17,28] Oil [28] | Ventilation Cooling (Stator) [14] | ||
End Cap Air/Area | Ventilation Cooling [33] | Air [33] | ||
Windings | Evaporation Cooling [36,37] | Dielectric Fluid (FC-84) [36] Novec-7200 [37] | ||
Cooling Channel [18,34,35,38] | Oil [18] Perfluoropolyether (Galden HT135) [34] Silicon Fluid (Syltherm 800) [34] Synthetic Hydrocarbon Fluid (TherminolD12) [34] Deionised Water [34] Deionised Water + Glycol [34] Water [38] WEG [35] | Cooling Jacket (Stator) [18] | ||
End Windings | Evaporation Cooling [18] | Oil [18] | ||
Impingement Cooling [42] | Oil [43] | Cooling Jacket (Stator) [43] | ||
Cooling Channel [40] | Water Glycol [40] | Cooling Jacket (Stator) [40] | ||
Potting Material [31,41,44] | Silicone Gelatin [31,41,43] Ceramacast 675N [41] | Cooling Jacket (Frame) [31,44] Heat Pipe [31] | ||
Ventilation Cooling [33] | Air [33] | |||
Flooded Cooling [6,24,28,37,42] | Oil [24,28,42] WEG [6] Novec–7200 [37] | Hollow Shaft [6,24] Cooling Jacket (Stator) [24] Cooling Channel (Stator) [28] | ||
Frame/Housing | Cooling Jacket [6,7,8,10,31,43,44,45] | Water [7,8,10,31,44] WEG [6] Oil [8,43,45] | Lamination Cooling [6] PCM (Rotor Iron) [6] Heat Pipe (Shaft) [6] Hollow Shaft [6,8] Impingement Cooling (Rotor Iron) [7] Finned Hollow Shaft [10] Heat Pipe (Stator) [31] Potting Material (EW) [31,44] Impingement Cooling (EW) [43] | |
PCM [29,47,48,49] | Paraffin [29,48,49,50] | Cooling Fins [29,48,49,50] | ||
Heat Pipe [51] | Water-Acetone [51] | |||
Cooling Fins [29,46,47,48,49,50] | Air [29,46,47,48,49,50] | Heat Pipe [30] PCM [29,48,49,50] |
3. Qualitative Assessment of Cooling Methods for Aerospace Applications
3.1. Assessment Parameters
3.1.1. Safety/Reliability
- Cooling system failure and its mitigation;
- Maintenance due to additional parts for cooling;
- Overall system reliability when multiple cooling methods are used.
3.1.2. Weight
3.1.3. Effectiveness
- Heat transfer enhancement;
- Distributed cooling;
- Relocation of the high-temperature zones.
3.1.4. Integrability
3.1.5. Complexity
3.1.6. Costs
3.2. Results
3.2.1. Selection of Cooling Methods
- Thermal behaviour of methods by keeping in mind localised cooling effect of these strategies, heat transfer phenomena and the choice of the working fluids;
- Motor parts involved in a cooling strategy inherently govern the complexity of the system and, hence, the safety;
- TRL to judge the industrial applicability of a cooling method.
- Cooling jacket;
- Cooling jacket + Potting material;
- Flooded stator with axial flow channels;
- Hollow shaft + End winding spray (liquid) cooling;
- Cooling jacket + Integral heat pipe on rotor side;
- Rotor lamination cooling (air) + End winding cooling channels.
3.2.2. Assessment of the Cooling Methods
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- European Commission. Fly the Green Deal, Europe’s Vision for Sustainable Aviation; Report of the Advisory Council for Aviation Research and Innovation in Europe (ACARE); European Commission: Brussels, Belgium, 2022. [Google Scholar]
- Novelli, P. IMOTHEP* European Project: An Investigation of Hybrid Electric Propulsion for Commercial Aircraft. In Proceedings of the AIAA AVIATION 2023 Forum, San Diego, CA, USA, 12–16 June 2023. [Google Scholar] [CrossRef]
- König, P.; Müller, P.; Höschler, K. Assessment of (Hybrid)-Electric Drive-Train Architectures for Future Aircraft Applications. J. Phys. Conf. Ser. 2023, 2526, 012023. [Google Scholar] [CrossRef]
- Sahoo, S.; Zhao, X.; Kyprianidis, K. A Review of Concepts, Benefits, and Challenges for Future Electrical Propulsion-Based Aircraft. Aerospace 2020, 7, 44. [Google Scholar] [CrossRef]
- Germar, M.; Bernd, P. Grundlagen Elektrischer Maschinen, 10th ed.; Wiley-VCH: Weinheim, Germany, 2014; ISBN 3-527-41205-1. [Google Scholar]
- Groschup, B.; Komissarov, M.; Stevic, S.; Hameyer, K. Operation Enhancement of Permanent Magnet Excited Motors with Advanced Rotor Cooling System. In Proceedings of the ITEC 2019–2019 IEEE Transportation Electrification Conference and Expo, Detroit, MI, USA, 19–21 June 2019; pp. 10–15. [Google Scholar] [CrossRef]
- Nonneman, J.; Van Der Sijpe, B.; T’Jollyn, I.; Vanhee, S.; Druant, J.; De Paepe, M. Evaluation of High Performance Rotor Cooling Techniques for Permanent Magnet Electric Motors. In Proceedings of the 2021 IEEE International Electric Machines and Drives Conference, IEMDC 2021, Hartford, CT, USA, 17–20 May 2021. [Google Scholar] [CrossRef]
- Lee, K.H.; Cha, H.R.; Kim, Y.B. Development of an Interior Permanent Magnet Motor through Rotor Cooling for Electric Vehicles. Appl. Therm. Eng. 2016, 95, 348–356. [Google Scholar] [CrossRef]
- Gai, Y.; Kimiabeigi, M.; Chong, Y.C.; Widmer, J.D.; Goss, J.; Sanandres, U.; Steven, A.; Staton, D.A. On the Measurement and Modeling of the Heat Transfer Coefficient of a Hollow-Shaft Rotary Cooling System for a Traction Motor. IEEE Trans. Ind. Appl. 2018, 54, 5978–5987. [Google Scholar] [CrossRef]
- Jaeger, M.; Ruf, A.; Hameyer, K.; Tongeln, T.G. Von Thermal Analysis of an Electrical Traction Motor with an Air Cooled Rotor. In Proceedings of the 2018 IEEE Transportation and Electrification Conference and Expo, ITEC 2018, Long Beach, CA, USA, 13–15 June 2018; pp. 194–200. [Google Scholar] [CrossRef]
- Denkena, B.; Bergmann, B.; Klemme, H. Cooling of Motor Spindles—A Review. Int. J. Adv. Manuf. Technol. 2020, 110, 3273–3294. [Google Scholar] [CrossRef]
- Lee, J.; Lee, N.; Um, S. Thermofluidic Analysis of Interior Permanent Magnet Synchronous Motors with Internal Air Circulation by Protrusion-Shaped Flow Inducers for Effective Thermal Management. J. Mech. Sci. Technol. 2020, 34, 3415–3426. [Google Scholar] [CrossRef]
- Fei, W.; Luk, P.C.K.; Wu, D.; Xia, B. Approximate Three-Dimensional Finite Element Analysis of Large Permanent Magnet Sychronous Generators with Stator Radial Ventilating Ducts. In Proceedings of the IECON 2013-39th Annual Conference of the IEEE Industrial Electronics Society, Vienna, Austria, 10–13 November 2013; pp. 7313–7318. [Google Scholar] [CrossRef]
- Wan, Y.; Li, Q.; Guo, J.; Cui, S. Thermal Analysis of a Gramme-Ring-Winding High-Speed Permanent-Magnet Motor for Pulsed Alternator Using CFD. IET Electr. Power Appl. 2020, 14, 2202–2211. [Google Scholar] [CrossRef]
- Tang, H.; Zhang, M.; Dong, Y.; Li, W.; Li, L. Influence of the Opening Width of Stator Semi-Closed Slot and the Dimension of the Closed Slot on the Magnetic Field Distribution and Temperature Field of the Permanent Magnet Synchronous Motor. IET Electr. Power Appl. 2020, 14, 1642–1652. [Google Scholar] [CrossRef]
- Cao, Z.; Li, W.; Zhang, X.; Fan, Y.; Zeng, J. Influence of Single/Dual Ventilation Path on Fluid Field and Temperature Field of HVLSSR-PMSM with Air-Cooled Hybrid Ventilation Systems. Energies 2018, 11, 1343. [Google Scholar] [CrossRef]
- Li, L.; Zhu, G.; Zhao, Y.; Jia, N.; Xue, M.; Li, Y.; Rd, B.; District, X. Design and Analysis of Different Cooling Schemes of a Flux-Modulated Permanent Magnet in-Wheel Motor for Electric Vehicle Applications. IET Electr. Power Appl. 2021, 15, 348–358. [Google Scholar] [CrossRef]
- El-Refaie, A.M.; Alexander, J.P.; Galioto, S.; Reddy, P.; Huh, K.K.; De Bock, P.; Shen, X. Advanced High Power-Density Interior Permanent Magnet Motor for Traction Applications. In Proceedings of the 2013 IEEE Energy Conversion Congress and Exposition, ECCE 2013, Denver, Colorado, USA, 15–19 September 2013; pp. 581–590. [Google Scholar] [CrossRef]
- Wan, Z.; Sun, B.; Wang, X.; Wen, W.; Tang, Y. Waterway Design of an External Rotor Permanent Magnet Synchronous Generator. Heat Mass Transf. 2020, 56, 1249–1261. [Google Scholar] [CrossRef]
- Tang, Y.; Sun, S.; Yu, W.; Hua, W. Thermal Analysis of Water-Cooling Permanent Magnet Synchronous Machine for Port Traction Electric Vehicle. Electronics 2023, 12, 734. [Google Scholar] [CrossRef]
- Wu, S.; Zhou, J.; Zhang, X.; Yu, J. Design and Research on High Power Density Motor of Integrated Motor Drive System for Electric Vehicles. Energies 2022, 15, 3542. [Google Scholar] [CrossRef]
- Roy, P.; Bourgault, A.J.; Towhidi, M.; Song, P.; Li, Z.; Mukundan, S.; Rankin, G.; Kar, N.C. An Algorithm for Effective Design and Performance Investigation of Active Cooling System for Required Temperature and Torque of PM Traction Motor. IEEE Trans. Magn. 2021, 57, 8201507. [Google Scholar] [CrossRef]
- Wu, P.S.; Hsieh, M.F.; Cai, W.L.; Liu, J.H.; Huang, Y.T.; Caceres, J.F.; Chang, S.W. Heat Transfer and Thermal Management of Interior Permanent Magnet Synchronous Electric Motor. Inventions 2019, 4, 69. [Google Scholar] [CrossRef]
- Lehmann, R.; Künzler, M.; Moullion, M.; Gauterin, F. Comparison of Commonly Used Cooling Concepts for Electrical Machines in Automotive Applications. Machines 2022, 10, 442. [Google Scholar] [CrossRef]
- La Rocca, A.; Xu, Z.; Arumugam, P.; Pickering, S.J.; Eastwick, C.N.; Gerada, C.; Bozhko, S. Thermal Management of a High Speed Permanent Magnet Machine for an Aeroengine. In Proceedings of the 22nd International Conference on Electrical Machines, ICEM 2016, Lausanne, Switzerland, 4–7 September 2016; pp. 2732–2737. [Google Scholar] [CrossRef]
- Wang, R.; Fan, X.; Li, D.; Qu, R.; Li, L.; Zou, T. Convective Heat Transfer Characteristics on End-Winding of Stator Immersed Oil-Cooled Electrical Machines for Aerospace Applications. IEEE Trans. Transp. Electrif. 2022, 8, 4265–4278. [Google Scholar] [CrossRef]
- Ullah, S.; Winterborne, D.; Lambert, S.M. Next-Generation Integrated Drive: A High Power Density Permanent Magnet Synchronous Drive with Flooded Stator Cooling. J. Eng. 2019, 2019, 4231–4235. [Google Scholar] [CrossRef]
- Guo, F.; Zhang, C. Oil-Cooling Method of the Permanent Magnet Synchronous Motor for Electric Vehicle. Energies 2019, 12, 2984. [Google Scholar] [CrossRef]
- Wang, J.X.; Li, Y.Z.; Wang, S.N.; Zhang, H.S.; Ning, X.; Guo, W. Experimental Investigation of the Thermal Control Effects of Phase Change Material Based Packaging Strategy for On-Board Permanent Magnet Synchronous Motors. Energy Convers. Manag. 2016, 123, 232–242. [Google Scholar] [CrossRef]
- Fang, G.; Yuan, W.; Yan, Z.; Sun, Y.; Tang, Y. Thermal Management Integrated with Three-Dimensional Heat Pipes for Air-Cooled Permanent Magnet Synchronous Motor. Appl. Therm. Eng. 2019, 152, 594–604. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, S.; Chen, G.; Tang, Y.; Liang, F. Experimental and Numerical Investigation on a Novel Heat Pipe Based Cooling Strategy for Permanent Magnet Synchronous Motors. Appl. Therm. Eng. 2020, 170, 114970. [Google Scholar] [CrossRef]
- Fan, X.; Li, D.; Qu, R.; Wang, C.; Fang, H. Water Cold Plates for Efficient Cooling: Verified on a Permanent-Magnet Machine with Concentrated Winding. IEEE Trans. Ind. Electron. 2020, 67, 5325–5336. [Google Scholar] [CrossRef]
- Hyeon, S.; Kim, C.; Lee, K.S. Thermal Enhancement of an Air-Cooled Motor with a Flow Guide. Int. J. Heat Mass Transf. 2022, 183, 122228. [Google Scholar] [CrossRef]
- Wohlers, C.; Juris, P.; Kabelac, S.; Ponick, B. Design and Direct Liquid Cooling of Tooth-Coil Windings. Electr. Eng. 2018, 100, 2299–2308. [Google Scholar] [CrossRef]
- Chattopadhyay, R.; Islam, M.S.; Jung, J.; Mikail, R.; Husain, I. Winding Embedded Liquid Cooling for Slotless Motors in Transportation Applications. IEEE Trans. Ind. Appl. 2022, 58, 7110–7120. [Google Scholar] [CrossRef]
- Tikadar, A.; Kim, J.W.; Joshi, Y.; Kumar, S. Flow-Assisted Evaporative Cooling for Electric Motor. IEEE Trans. Transp. Electrif. 2022, 8, 1128–1143. [Google Scholar] [CrossRef]
- Smith, R.; Tikadar, A.; Kumar, S.; Joshi, Y. Evaporative Cooling of High Power Density Motors: Design and Analysis. In Proceedings of the Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, iTHERM; IEEE Computer Society, San Diego, CA, USA, 31 May–3 June 2022; Volume 2022-May. [Google Scholar]
- Sixel, W.; Liu, M.; Nellis, G.; Sarlioglu, B. Cooling of Windings in Electric Machines via 3-D Printed Heat Exchanger. IEEE Trans. Ind. Appl. 2020, 56, 4718–4726. [Google Scholar] [CrossRef]
- Thabuis, A.; Ren, X.; Perriard, Y. Enhanced Electric Motors Using Multi-Functional 3D Printed Winding With Integrated Heat Sinks. IEEE Trans. Energy Convers. 2023, 38, 849–858. [Google Scholar] [CrossRef]
- Madonna, V.; Giangrande, P.; Walker, A.; Galea, M. On the Effects of Advanced End-Winding Cooling on the Design and Performance of Electrical Machines. In Proceedings of the 23rd International Conference on Electrical Machines, ICEM 2018, Alexandroupoli, Greece, 3–6 September 2018; pp. 311–317. [Google Scholar] [CrossRef]
- Polikarpova, M.; Lindh, P.; Gerada, C.; Rilla, M.; Naumanen, V.; Pyrhönen, J. Thermal Effects of Stator Potting in an Axial-Flux Permanent Magnet Synchronous Generator. Appl. Therm. Eng. 2015, 75, 421–429. [Google Scholar] [CrossRef]
- Zhou, R.; Li, G.J.; Zhu, Z.Q.; Foster, M.P.; Stone, D.A.; Jia, C.J.; McKeever, P. Novel Liquid Cooling Technology for Modular Consequent-Pole PM Machines. In Proceedings of the 2021 IEEE International Electric Machines and Drives Conference, IEMDC 2021; Institute of Electrical and Electronics Engineers Inc., Hartford, CT, USA, 17–20 May 2021. [Google Scholar]
- Ha, T.; Kang, Y.; Kim, N.S.; Park, S.H.; Lee, S.H.; Kim, D.K.; Ryou, H.S. Cooling Effect of Oil Cooling Method on Electric Vehicle Motors with Hairpin Winding. J. Mech. Sci. Technol. 2021, 35, 407–415. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, S.; Yuan, W.; Tang, Y.; Li, J.; Tang, K. Applicability Study of the Potting Material Based Thermal Management Strategy for Permanent Magnet Synchronous Motors. Appl. Therm. Eng. 2019, 149, 1370–1378. [Google Scholar] [CrossRef]
- Zhou, C.; Qu, Z.; Hu, B.; Li, S. Thermal Network Model and Experimental Validation for a Motorized Spindle Including Thermal–Mechanical Coupling Effect. Int. J. Adv. Manuf. Technol. 2021, 115, 487–501. [Google Scholar] [CrossRef]
- Hruska, K.; Kindl, V.; Pechanek, R. Design of a High-Speed Permanent Magnet Synchronous Motor for Electric Kart. Electr. Eng. 2017, 99, 1141–1150. [Google Scholar] [CrossRef]
- Christie, R.J.; Dubois, A.; Derlaga, J.M. Cooling of Electric Motors Used for Propulsion on SCEPTOR; NASA: Washington, DC, USA, 2017. [Google Scholar]
- Wang, S.; Li, Y.Z.; Liu, Y.; Zhou, H.; Li, Y.; Guo, W.; Xiao, X. Temperature Control of Permanent-Magnet Synchronous Motor Using Phase Change Material. In Proceedings of the IEEE/ASME International Conference on Advanced Intelligent Mechatronics, AIM, Busan, Republic of Korea, 7–11 July 2015; Volume 2015-August, pp. 1635–1640. [Google Scholar] [CrossRef]
- Wang, S.; Li, Y.; Li, Y.Z.; Wang, J.; Xiao, X.; Guo, W. Transient Cooling Effect Analyses for a Permanent-Magnet Synchronous Motor with Phase-Change-Material Packaging. Appl. Therm. Eng. 2016, 109, 251–260. [Google Scholar] [CrossRef]
- Wang, S.; Li, Y.; Li, Y.Z.; Wang, J.; Xiao, X.; Guo, W. Conception and Experimental Investigation of a Hybrid Temperature Control Method Using Phase Change Material for Permanent Magnet Synchronous Motors. Exp. Therm. Fluid Sci. 2017, 81, 9–20. [Google Scholar] [CrossRef]
- Sundar, M.; Swathi, S.; Prem, K.S.; Chithrakumar, V.K. Thermal Management System Based on Closed-Loop Pulsating Heat Pipe for Electric Motors. Heat Mass Transf. 2021, 58, 601–611. [Google Scholar] [CrossRef]
- Verein Deutscher Ingenieure. VDI 2225 Blatt 3—Design Engineering Methodics—Engineering Design at Optimum Cost-Valuation of Costs; VDI: Düsseldorf, Germany, 1998; Volume 18. [Google Scholar]
- Ehrlenspiel, K.; Meerkamm, H. Integrierte Produktentwicklung, 6th ed.; Carl Hanser Verlag: Munich, Germany, 2017; ISBN 978-3-446-44089-0. [Google Scholar]
- Grote, K.; Feldhusen, J. Pahl/Beitz Konstruktionslehre, 8th ed.; Springer: Berlin/Heidelberg, Germany, 2013; ISBN 9783642295683. [Google Scholar]
- Subekti, M.; Sunaryo, G.R. Reliability Analysis of RSG-GAS Primary Cooling System to Support Aging Management Program. J. Phys. Conf. Ser. 2018, 962, 012002. [Google Scholar]
- Polikarpova, M.; Semken, S.; Pyrhonen, J. Reliability Analysis of a Direct-Liquid Cooling System of Direct Drive Permanent Magnet Synchronous Generator. In Proceedings of the Annual Reliability and Maintainability Symposium, Orlando, FL, USA, 28–31 January 2013. [Google Scholar]
- VDI-Gesellschaft Verfahrenstechnik und Chemieingenieurwesen. VDI-Wärmeatlas; 11. Auflag; Springer Vieweg: Düsseldorf, Germany, 2013; ISBN 978-3-642-19980-6. [Google Scholar]
- Müller, G.; Vogt, K.; Ponick, B. Berechnung Elektrischer Maschinen; John Wiley & Sons: Hoboken, NJ, USA, 2008; ISBN 9783527405251. [Google Scholar]
- Patrick McCluskey, F.; Saadon, Y.; Yao, Z.; Camacho, A. Cooling for Electric Aircraft Motors. In Proceedings of the InterSociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, ITHERM, Las Vegas, NV, USA, 28–31 May 2019; Volume 2019-May, pp. 1134–1138. [Google Scholar] [CrossRef]
- Zhu, Z.-Q.; Liang, D.; Zhu, Z.-Q.; Liang, D. Perspective of Thermal Analysis and Management for Permanent Magnet Machines, with Particular Reference to Hotspot Temperatures. Energies 2022, 15, 8189. [Google Scholar] [CrossRef]
Heat Transfer Mechanism | Method | Description |
---|---|---|
Conduction | Potting Material | Thermally conductive material filling the open cavities |
Convection | (Finned) Hollow Shaft | Coolant or air pumped through the hollow shaft (with or without fins) |
Cold Plate | A base supporting plate for motor with coolant flow passages | |
Impingement Cooling | Directing the coolant or air onto the surface, preferably by using nozzles | |
Lamination Cooling | Rotor or stator laminations with fluid flow passages | |
Ventilation Cooling | Rotor or stator with internal air ventilation passages | |
Cooling Jackets and Channels | Coolant flow through pipes or channels | |
Flooded Cooling | Stationary parts submerged in the coolant | |
Cooling Fins | Air cooling assisted with flow-enhancing fin structures | |
Heat Pipes | Two-phase heat transfer by fluid movement (with or without a wick) from one end (evaporator) to another (condenser) and back | |
Evaporation Cooling | Coolant phase change along the flow path | |
Phase Change Material (PCM) | Utilising latent heat capacity of PCM |
Fluid | Convection Heat Transfer Coefficient (W/(m2 °C)) |
---|---|
Free convection of gases | 2–25 |
Free convection of liquids | 10–1000 |
Forced convection of gases | 25–250 |
Forced convection of liquids | 50–20,000 |
Boiling and condensation | 2500–100,000 |
Assessment Parameter | Safety | Weight | Effectiveness | Integrability | Complexity | Costs | Number of “+” | Weighting Factor | Cooling Jacket | Cooling Jacket + Potting | Flooded Stator | Hollow Shaft + EW Evaporation | Cooling Jacket + Heat Pipes | Rotor Ventilation + EW Cooling Channel |
Safety | o | + | + | + | + | + | 5 | 0.33 | 3 | 3 | 2 | 2 | 3 | 3 |
Weight | − | o | + | + | + | + | 4 | 0.27 | 3 | 3 | 4 | 4 | 3 | 3 |
Effectiveness | − | − | o | + | + | + | 3 | 0.20 | 3 | 4 | 3 | 5 | 4 | 4 |
Integrability | − | − | − | o | + | + | 2 | 0.13 | 5 | 4 | 3 | 3 | 4 | 3 |
Complexity | − | − | − | − | o | + | 1 | 0.07 | 4 | 4 | 3 | 2 | 3 | 3 |
Costs | − | − | − | − | − | o | 0 | 0.00 | 3 | 3 | 3 | 2 | 3 | 3 |
Final Score | 3.33 | 3.40 | 2.93 | 3.27 | 3.33 | 3.20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
König, P.; Sharma, D.; Konda, K.R.; Xie, T.; Höschler, K. Comprehensive Review on Cooling of Permanent Magnet Synchronous Motors and Their Qualitative Assessment for Aerospace Applications. Energies 2023, 16, 7524. https://doi.org/10.3390/en16227524
König P, Sharma D, Konda KR, Xie T, Höschler K. Comprehensive Review on Cooling of Permanent Magnet Synchronous Motors and Their Qualitative Assessment for Aerospace Applications. Energies. 2023; 16(22):7524. https://doi.org/10.3390/en16227524
Chicago/Turabian StyleKönig, Paul, Dikshant Sharma, Karunakar Reddy Konda, Tianxiao Xie, and Klaus Höschler. 2023. "Comprehensive Review on Cooling of Permanent Magnet Synchronous Motors and Their Qualitative Assessment for Aerospace Applications" Energies 16, no. 22: 7524. https://doi.org/10.3390/en16227524
APA StyleKönig, P., Sharma, D., Konda, K. R., Xie, T., & Höschler, K. (2023). Comprehensive Review on Cooling of Permanent Magnet Synchronous Motors and Their Qualitative Assessment for Aerospace Applications. Energies, 16(22), 7524. https://doi.org/10.3390/en16227524