A Novel Approach for Day-Ahead Hourly Building-Integrated Photovoltaic Power Prediction by Using Feature Engineering and Simple Weather Forecasting Service
Abstract
:1. Introduction
2. Methodology
2.1. Building and BIPV Specifications
2.2. Local Weather Forecasting Data
2.3. Feature Engineering
- (1)
- Data preprocessing: mapping on 1-hour of time-resolution in the dataset between online weather forecasting data (3 h), AL (1 h), and BIPV power output (1 h).
- (2)
- Feature extraction: Extraction of highly correlated forecasted weather feature with BIPV power output.
- (3)
- New feature generation: Generation of new features with the calculation of correlated weather features and BIPV power output based on a proposed equation.
- (4)
- New feature analysis: Sensitivity analysis for a new feature with hourly BIPV power output and correlation analysis between each feature, including the new feature.
- (5)
- New feature prediction: Prediction of new features using only weather forecasting data on 1-hour intervals.
- (6)
- Predicted new feature evaluation: Evaluation as predictor of short-term BIPV power prediction.
2.4. Nonlinear Autoregressive with Exogenous Input (NARX) Model
2.5. Performance Evaluation Indices
3. Results and Analysis
3.1. Derivation of New Feature
3.2. Characteristics of BIPV Power Output
3.3. Day-Ahead SC* Predictions
3.4. Performance BIPV Power Output Prediction Model under Different Model Configurations
3.4.1. Selection of Training Size
3.4.2. Sensitivity of Predictors
3.5. Long-Term Model Performance Tracking
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Furukakoi, M.; Adewuyi, O.B.; Matayoshi, H.; Howlader, A.M.; Senjyu, T. Multi objective unit commitment with voltage stability and PV uncertainty. Appl. Energy 2018, 228, 618–623. [Google Scholar] [CrossRef]
- Gallardo, I.; Amor, D.; Gutiérrez, Á. Recent Trends in Real-Time Photovoltaic Prediction Systems. Energies 2023, 16, 5693. [Google Scholar] [CrossRef]
- Nunes, H.G.G.; Pombo, J.A.N.; Mariano, S.J.P.S.; Calado, M.R.A.; De Souza, J.F. A new high performance method for determining the parameters of PV cells and modules based on guaranteed convergence particle swarm optimization. Appl. Energy 2018, 211, 774–791. [Google Scholar] [CrossRef]
- Elum, Z.A.; Momodu, A.S. Climate change mitigation and renewable energy for sustainable development in Nigeria: A discourse approach. Renew. Sustain. Energy Rev. 2017, 76, 72–80. [Google Scholar] [CrossRef]
- Gao, H.; Wang, X.; Wu, K.; Zheng, Y.; Wang, Q.; Shi, W.; He, M. A review of building carbon emission accounting and prediction models. Buildings 2023, 13, 1617. [Google Scholar] [CrossRef]
- Yu, K.; Liang, J.J.; Qu, B.Y.; Cheng, Z.; Wang, H. Multiple learning backtracking search algorithm for estimating parameters of photovoltaic models. Appl. Energy 2018, 226, 408–422. [Google Scholar] [CrossRef]
- Gassar, A.A.A.; Cha, S.H. Review of geographic information systems-based rooftop solar photovoltaic potential estimation approaches at urban scales. Appl. Energy 2021, 291, 116817. [Google Scholar] [CrossRef]
- Ghaithan, A.M.; Mohammed, A.; Al-Hanbali, A.; Attia, A.M.; Saleh, H. Multi-objective optimization of a photovoltaic-wind-grid connected system to power reverse osmosis desalination plant. Energy 2022, 251, 123888. [Google Scholar] [CrossRef]
- Sun, T.; Shan, M.; Rong, X.; Yang, X. Estimating the spatial distribution of solar photovoltaic power generation potential on different types of rural rooftops using a deep learning network applied to satellite images. Appl. Energy 2022, 315, 119025. [Google Scholar] [CrossRef]
- International Energy Agency (IEA). Renewables 2017- Executive summary. International Energy Agency (IEA). 2017. Available online: www.iea.org (accessed on 18 July 2023).
- Shi, K.; Li, C.; Koo, C. A Techno-Economic Feasibility Analysis of Mono-Si and Poly-Si Photovoltaic Systems in the Rooftop Area of Commercial Building under the Feed-In Tariff Scheme. Sustainability 2021, 13, 4709. [Google Scholar] [CrossRef]
- Gawley, D.; McKenzie, P. Investigating the suitability of GIS and remotely-sensed datasets for photovoltaic modelling on building rooftops. Energy Build. 2022, 265, 112083. [Google Scholar] [CrossRef]
- Pillai, D.S.; Shabunko, V.; Krishna, A. A comprehensive review on building integrated photovoltaic systems: Emphasis to technological advancements, outdoor testing, and predictive maintenance. Renew. Sustain. Energy Rev. 2022, 156, 111946. [Google Scholar] [CrossRef]
- Liu, J.; Zhou, Y.; Yang, H.; Wu, H. Net-zero energy management and optimization of commercial building sectors with hybrid renewable energy systems integrated with energy storage of pumped hydro and hydrogen taxis. Appl. Energy 2022, 321, 119312. [Google Scholar] [CrossRef]
- Hasan, J.; Fung, A.S.; Horvat, M. A comparative evaluation on the case for the implementation of building integrated photovoltaic/thermal (BIPV/T) air based systems on a typical mid-rise commercial building in Canadian cities. J. Build. Eng. 2021, 44, 103325. [Google Scholar] [CrossRef]
- Raza, M.Q.; Nadarajah, M.; Ekanayake, C. Demand forecast of PV integrated bioclimatic buildings using ensemble framework. Appl. Energy 2017, 208, 1626–1638. [Google Scholar] [CrossRef]
- Li, Y.; Liu, C. Techno-economic analysis for constructing solar photovoltaic projects on building envelopes. Build. Environ. 2018, 127, 37–46. [Google Scholar] [CrossRef]
- Fekkak, B.; Menaa, M.; Boussahoua, B. Control of transformerless grid-connected PV system using average models of power electronics converters with MATLAB/Simulink. Sol. Energy 2018, 173, 804–813. [Google Scholar] [CrossRef]
- Kuhn, T.E.; Erban, C.; Heinrich, M.; Eisenlohr, J.; Ensslen, F.; Neuhaus, D.H. Review of technological design options for building integrated photovoltaics (BIPV). Energy Build. 2021, 231, 110381. [Google Scholar] [CrossRef]
- Park, H. A Stochastic Planning Model for Battery Energy Storage Systems Coupled with Utility-Scale Solar Photovoltaics. Energies 2021, 14, 1244. [Google Scholar] [CrossRef]
- Zhang, Y.; Vand, B.; Baldi, S. A Review of Mathematical Models of Building Physics and Energy Technologies for Environmentally Friendly Integrated Energy Management Systems. Buildings 2022, 12, 238. [Google Scholar] [CrossRef]
- Netsanet, S.; Zheng, D.; Zhang, J.; Hui, M. Predictors Selection and Accuracy Enhancement Techniques in PV Forecasting Using Artificial Neural Network. In Proceedings of the IEEE International Conference on Power and Renewable Energy, Melaka, Malaysia, 21–23 October 2016. [Google Scholar] [CrossRef]
- Abdel-Nasser, M.; Mahmoud, K. Accurate photovoltaic power forecasting models using deep LSTM-RNN. Neural Comput. Appl. 2019, 31, 2727–2740. [Google Scholar] [CrossRef]
- Li, Y.; He, Y.; Su, Y.; Shu, L. Forecasting the daily power output of a grid-connected photovoltaic system based on multivariate adaptive regression splines. Appl. Energy 2016, 180, 392–401. [Google Scholar] [CrossRef]
- Chiang, P.H.; Chiluvuri, S.P.V.; Dey, S.; Nguyen, T.Q. Forecasting of solar photovoltaic system power generation using wavelet decomposition and bias-compensated random forest. In Proceedings of the 2017 Ninth Annual IEEE Green Technologies Conference (GreenTech), Denver, CO, USA, 29–31 March 2017; pp. 260–266. [Google Scholar] [CrossRef]
- Ramsami, P.; Oree, V. A hybrid method for forecasting the energy output of photovoltaic systems. Energy Convers. Manag. 2015, 95, 406–413. [Google Scholar] [CrossRef]
- Tang, Y.; Yang, K.; Zhang, S.; Zhang, Z. Photovoltaic power forecasting: A hybrid deep learning model incorporating transfer learning strategy. Renew. Sustain. Energy Rev. 2022, 162, 112473. [Google Scholar] [CrossRef]
- Abou Houran, M.; Bukhari, S.M.S.; Zafar, M.H.; Mansoor, M.; Chen, W. COA-CNN-LSTM: Coati optimization algorithm-based hybrid deep learning model for PV/wind power forecasting in smart grid applications. Appl. Energy 2023, 349, 121638. [Google Scholar] [CrossRef]
- Nespoli, A.; Ogliari, E.; Leva, S.; Massi Pavan, A.; Mellit, A.; Lughi, V.; Dolara, A. Day-ahead photovoltaic forecasting: A comparison of the most effective techniques. Energies 2019, 12, 1621. [Google Scholar] [CrossRef]
- Monfared, M.; Fazeli, M.; Lewis, R.; Searle, J. Day-ahead prediction of pv generation using weather forecast data: A case study in the UK. In Proceedings of the 2020 International Conference on Electrical, Communication, and Computer Engineering (ICECCE), Istanbul, Turkey, 12–13 June 2020; pp. 1–5. [Google Scholar] [CrossRef]
- Polasek, T.; Čadík, M. Predicting photovoltaic power production using high-uncertainty weather forecasts. Appl. Energy 2023, 339, 120989. [Google Scholar] [CrossRef]
- Korea Meteorological Administration. Meteorological Data Open Portal (in Korean). Available online: https://data.kma.go.kr/cmmn/main.do (accessed on 15 June 2023).
- Korea Meteorological Administration. A Study on the Diagnosis and Development Direction of the Forecasting System; Korea Meteorological Administration: Seoul, Republic of Korea, 2019.
- Encyclopedia of Mathematics. Linear interpolation. Available online: https://encyclopediaofmath.org/wiki/Linear_interpolation (accessed on 20 June 2022).
- Yang, S. Feature Engineering in Fine-Grained Image Classification. Ph.D. Thesis, University of Washington, Seattle, WA, USA, July 2013. Available online: http://hdl.handle.net/1773/23376 (accessed on 3 October 2023).
- Cadenas, E.; Rivera, W.; Campos-Amezcua, R.; Heard, C. Wind speed prediction using a univariate ARIMA model and a multivariate NARX model. Energies 2016, 9, 109. [Google Scholar] [CrossRef]
- Andalib, A.; Atry, F. Multi-step ahead forecasts for electricity prices using NARX: A new approach, a critical analysis of one-step ahead forecasts. Energy Convers. Manag. 2009, 50, 739–747. [Google Scholar] [CrossRef]
- Katić, K.; Li, R.; Verhaart, J.; Zeiler, W. Neural network based predictive control of personalized heating systems. Energy Build. 2018, 174, 199–213. [Google Scholar] [CrossRef]
- Siegelmann, H.T.; Horne, B.G.; Giles, C.L. Computational capabilities of recurrent NARX neural networks. IEEE Trans. Syst. Man Cybern. Part B 1997, 27, 208–215. [Google Scholar] [CrossRef] [PubMed]
- Fleifel, R.T.; Soliman, S.S.; Hamouda, W.; Badawi, A. LTE primary user modeling using a hybrid ARIMA/NARX neural network model in CR. In Proceedings of the 2017 IEEE Wireless Communications and Networking Conference (WCNC), San Francisco, CA, USA, 19–22 March 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Eugen, D. The use of NARX Neural Networks to predict Chaotic Time Series. Wseas Trans. Comput. Res. 2008, 3, 182–191. [Google Scholar]
- Sansa, I.; Missaoui, S.; Boussada, Z.; Bellaaj, N.M.; Ahmed, E.M.; Orabi, M. PV power forecasting using different artificial neural networks strategies. In Proceedings of the 2014 First International Conference on Green Energy ICGE, Sfax, Tunisia, 25–27 March 2014; pp. 54–59. [Google Scholar] [CrossRef]
- Argyropoulos, D.; Paraforos, D.S.; Alex, R.; Griepentrog, H.W.; Müller, J. NARX neural network modelling of mushroom dynamic vapour sorption kinetics. IFAC-PapersOnLine 2016, 49, 305–310. [Google Scholar] [CrossRef]
- Çoruh, S.; Geyikçi, F.; Kılıç, E.; Çoruh, U. The use of NARX neural network for modeling of adsorption of zinc ions using activated almond shell as a potential biosorbent. Bioresour. Technol. 2014, 151, 406–410. [Google Scholar] [CrossRef] [PubMed]
- Jose, M.P.J.; Guilherme, A.B. Multistep-Ahead Prediction of Rainfall Precipitation Using the NARX Network. In Proceedings of the European Symposium on Time Series Prediction, ESTSP 2008, Porvoo, Finland, 17–19 September 2008. [Google Scholar]
- Liu, H.; Song, X. Nonlinear system identification based on NARX network. In Proceedings of the 2015 10th Asian Control Conference (ASCC), Kota Kinabalu, Malaysia, 31 May–3 June 2015; pp. 1–6. [Google Scholar] [CrossRef]
- Bektas, O.; Jones, J.A. NARX time series model for remaining useful life estimation of gas turbine engines. In Proceedings of the PHM Society European Conference 2016, Bilbao, Spain, 5–8 June 2016; Volume 3. [Google Scholar]
- Koç, C.K. Analysis of sliding window techniques for exponentiation. Comput. Math. Appl. 1995, 30, 17–24. [Google Scholar] [CrossRef]
- Menezes, J.M.P., Jr.; Barreto, G.A. Long-term time series prediction with the NARX network: An empirical evaluation. Neurocomputing 2008, 71, 3335–3343. [Google Scholar] [CrossRef]
- Goodwin, P.; Lawton, R. On the asymmetry of the symmetric MAPE. Int. J. Forecast. 1999, 15, 405–408. [Google Scholar] [CrossRef]
- Olatomiwa, L.; Mekhilef, S.; Shamshirband, S.; Mohammadi, K.; Petković, D.; Sudheer, C. A support vector machine–firefly algorithm-based model for global solar radiation prediction. Sol. Energy 2015, 115, 632–644. [Google Scholar] [CrossRef]
- Corder, G.W.; Foreman, D.I. Nonparametric Statistics: A Step-by-Step Approach, 2nd ed; Wiley: Hoboken, NJ, USA, 2014. [Google Scholar]
Approach Type (Dataset) | Authors and Ref. | Year | Input Features | Model | Time Resolution | Performance |
---|---|---|---|---|---|---|
Model configuration (historical data) | Netsanet et al. [22] | 2016 | Time, day, short-wavelength radiation, air temperature, surface pressure, wind speed, humidity, cloud amount | Feature selection + ANN | Hourly | MAE = 5.836 kWh MSE = 103.866 |
Abdel-Nasser and Karar [23] | 2019 | PV power output | LSTM-RNN | Hourly | RMSE = 82.15 W | |
Model compare (historical data) | Li et al. [24] | 2016 | Insolation duration, Pressure, daily temperature, dew temperature, humidity, precipitation, air pressure | MARS | Daily | RMSE = 103.2 W, MAD = 78.7 W, MAPE = 28.8% |
Chiang et al. [25] | 2017 | Time, solar irradiance, UV index, temperature, humidity | Wavelet BCRF | 2.5 min | RMSE = 1.12 kW, MAE = 0.50 kW, MAPE = 5.91% | |
Hybrid model (historical data) | Ramsami et al. [26] | 2015 | daily air temperature, atmospheric pressure, humidity, rainfall, solar irradiance, wind direction and wind speed | SR + ANN | Monthly | MAE = 2.09 kWh, MBE = 0.01 kWh, RMSE = 2.74 kWh, = 0.932 |
Tang et al. [27] | 2022 | wind speed, atmospheric temperature, relative humidity, horizontal radiation (global, diffuse), etc. | ADBN | 5 min | = 0.9987, MAE = 0.040 kW, RMSE = 0.049 kW | |
Abou Houran et al. [28] | 2023 | Solar irradiance, wind speed, precipitation, humidity, temperature, air pressure, wind direction | COA + CNN + LSTM | 15 min | RMSE = 0.039, MAE = 0.021, = 0.9829, RE = 0.0593 | |
Prediction performance (weather forecast data) | Nespoli et al. [29] | 2019 | Ambient temperature, wind speed, wind direction, pressure, precipitation, cloud cover, cloud type | Weather clustering + ANN | Hourly | WMAE (sunny) = 1.96–30.39%, WMAE (cloudy) = 9.38–750.01% |
Mohammad et al. [30] | 2020 | UV index, outdoor air temperature, weather description, probability of precipitation, wind speed | LSR + GRNN | Daily | RMSE = 17.8 kWh, COD = 0.78, MBE = +0.2 kWh | |
Tomas and Martin [31] | 2023 | Precipitation, temperature, humidity, pressure, wind direction, cloud cover, visibility, predicted solar irradiance | Residual UNet | 5 min | RRMSE (clear) = 4.50% RRMSE (overcast) = 11.29% |
Value | |
---|---|
Module type | SM-250PG8 (Grid-connected) |
Direction | Southeast |
System capacity | 50 kW |
Rated power () | 250 W (10 series × 20 parallel) |
Voltage at | 30.8 V |
Nominal module efficiency | 15.08% |
Number of inverters | 1EA |
Forecasting Period | Time Resolution | Spatial Resolution | Parameters | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
OAT | ORH | WDS | WDD | PoP | SC | AL | SI | |||||
US | +7 days | +7 days | 1 h | 2.5 km | ▦ | ▦ | ▦ | ▦ | ▦ | ▦ | ▦ | □ |
+6 days~+10 days/+8 days~+14 days | outlook | |||||||||||
Japan | +2 days | +5 min~+30 min/+35 min~+60 min | 5 min | 250 m/1 km | ▦ | ▦ | ▦ | ▦ | ▦ | ▦ | ▦ | □ |
+1 h~+6 h/+7 h~+15 h | 10 min/1 h | 1 km/5 km | ||||||||||
+2 days | 3 h | 20 km | ||||||||||
+2 days~+7 days | 1 day | |||||||||||
Australia | +7 days | +7 days | 3 h | 3 km/6 km | ▦ | ▦ | ▦ | ▦ | ▦ | ▦ | ▦ | □ |
UK | +7 days | +2 days | 1 h | 1.5 km | ▦ | ▦ | ▦ | ▦ | ▦ | ▦ | ▦ | □ |
+3 days~+7 days | 3 h | |||||||||||
+5 days~+14 days | Outlook | |||||||||||
China | +7 days | +3 days | 1 h | 10 km | ▦ | ▦ | ▦ | ▦ | ▦ | □ | ▦ | □ |
+4 days~+7 days | 3 h | |||||||||||
+8 days~+15 days | 1 day | |||||||||||
France | +4 days | +2 days | 3 h | 5 km | ▦ | ▦ | ▦ | ▦ | ▦ | ▦ | ▦ | □ |
+3 days~+7 days | 6 h | |||||||||||
+8 days~+14 days | 1 day | |||||||||||
South Korea | +3 days | +4 h | 1 h | 5 km | ▦ | ▦ | ▦ | ▦ | ▦ | ▦ | ▦ | □ |
+2 days | 3 h | |||||||||||
+3 days~+7 days | 12 h | |||||||||||
+5 days~+14 days | 1 day |
Range [Unit] | |
---|---|
Outdoor air temperature () | - [℃] |
Outdoor air relative humidity () | 0~100 [%] |
Sky condition () | 1: Clear, 2: Slightly cloudy, 3: Cloudy, 4: Overcast [-] |
Wind speed () | - [m/s] |
Wind direction () | 0: north~7: northwest [-] |
Precipitable probability () | 0–100 [%] |
Solar altitude () | −90~+90 [degree] |
Value | |
---|---|
Hidden neurons | 10 |
Input delays | 1:3 |
Feedback delays | 1:4 |
Ratio for data division (training/test/validation) | 70%/10%/20% |
Train function | Bayesian regularization backpropagation |
Activation function | Sigmoid |
Correlation coefficient | +0.48 | −0.56 | +0.04 | +0.05 | −0.22 | +0.82 | −0.22 | +0.42 |
Daily Sky Condition | Days | MAPE (%) | R2 |
---|---|---|---|
Clear days | 16 | 17.20 | 0.778 |
Partially cloud days | 13 | 17.91 | 0.685 |
Cloudy days | 18 | 23.64 | 0.648 |
Overcast days | 13 | 21.52 | 0.614 |
Days | Days (Proportion) | |||
---|---|---|---|---|
Clear | Partially Cloudy | Cloudy | Overcast | |
60 days | 11 days (18%) | 33 days (55%) | 11 days (18%) | 5 days (8%) |
90 days | 21 days (23%) | 45 days (50%) | 14 days (16%) | 10 days (11%) |
120 days | 34 days (28%) | 52 days (43%) | 21 days (18%) | 13 days (11%) |
150 days | 42 days (28%) | 58 days (39%) | 31 days (21%) | 19 days (13%) |
180 days | 47 days (26%) | 66 days (37%) | 42 days (23%) | 25 days (14%) |
Baseline | Case 1 | Case 2 | Case 3 | Case 4 | |
---|---|---|---|---|---|
OAT | √ | √ | √ | √ | √ |
ORH | √ | √ | √ | √ | √ |
WDS | √ | √ | √ | - | - |
WDD | √ | √ | √ | - | - |
PoP | √ | √ | √ | - | - |
AL | √ | √ | √ | √ | - |
SC | √ | √ | - | - | - |
- | √ | √ | √ | √ |
Daily Sky Condition (Days) | MAPE (R2) | ||||
---|---|---|---|---|---|
Base | Case 1 | Case 2 | Case 3 | Case 4 | |
Clear (16 days) | 9.33% (0.98) | 8.92% (0.98) | 6.12% (0.99) | 10.72% (0.97) | 23.22% (0.92) |
Partially Cloudy (13 days) | 11.55% (0.95) | 9.54% (0.97) | 10.20% (0.95) | 12.08% (0.95) | 18.78% (0.88) |
Cloudy (18 days) | 21.33% (0.84) | 17.31% (0.90) | 16.53% (0.92) | 16.89% (0.93) | 27.51% (0.82) |
Overcast (13 days) | 54.64% (0.76) | 53.16% (0.85) | 27.70% (0.93) | 33.05% (0.85) | 42.24% (0.77) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jeong, J.; Lee, D.; Chae, Y.T. A Novel Approach for Day-Ahead Hourly Building-Integrated Photovoltaic Power Prediction by Using Feature Engineering and Simple Weather Forecasting Service. Energies 2023, 16, 7477. https://doi.org/10.3390/en16227477
Jeong J, Lee D, Chae YT. A Novel Approach for Day-Ahead Hourly Building-Integrated Photovoltaic Power Prediction by Using Feature Engineering and Simple Weather Forecasting Service. Energies. 2023; 16(22):7477. https://doi.org/10.3390/en16227477
Chicago/Turabian StyleJeong, Jinhwa, Dongkyu Lee, and Young Tae Chae. 2023. "A Novel Approach for Day-Ahead Hourly Building-Integrated Photovoltaic Power Prediction by Using Feature Engineering and Simple Weather Forecasting Service" Energies 16, no. 22: 7477. https://doi.org/10.3390/en16227477
APA StyleJeong, J., Lee, D., & Chae, Y. T. (2023). A Novel Approach for Day-Ahead Hourly Building-Integrated Photovoltaic Power Prediction by Using Feature Engineering and Simple Weather Forecasting Service. Energies, 16(22), 7477. https://doi.org/10.3390/en16227477