Comprehensive Review of Innovative Materials for Sustainable Buildings’ Energy Performance
Abstract
:1. Introduction
2. Research Methodology
3. Application of Sustainable Materials for Insulation and Energy Efficiency in the Building Sector
3.1. Mycelium
3.2. Coffee Grounds
3.3. Hemp
3.4. Straw
3.5. Flax
3.6. Reed and Grass
3.6.1. Reed Plant
3.6.2. Grass
3.7. Bioplastics
3.7.1. Bio Polyethylene (PE) and Bio Propylene (PP)
- Step one: The alcohol is extracted from the plant biomass;
- Step two: Ethylene monomer is obtained from the dehydrogenation of alcohol;
- Step three: Polymerization of this Ethylene monomer into Bio-PE.
3.7.2. Polylactic Acid (PLA)
- Biodegradability: PLA tends to be broken down into natural materials such as water (H2O) and carbon dioxide through the action of microorganisms;
- Low toxicity: when degraded, this plastic is non-toxic and does not generate harmful chemicals in the environment during its degradation and breakdown;
- Renewable: PLA is constituted of renewable resources, making it a more sustainable option than other traditional plastics;
- Energy-efficient: Its production from raw materials demands less energy than conventional plastics, thus diminishing the emission of greenhouse gases. Also, it has a thermal conductivity of 0.183 W·m−1·K−1 that positively improves upon adding nanofillers.
3.7.3. Polybutylene Adipate Terephthalate (PBAT)
3.7.4. Polyhydroxyalkanoates (PHA)
3.8. Phase Change Materials (PCMs)
3.9. Geomaterials
3.9.1. Earth
Rammed Earth (RE)
Cob
Adobe or Compressed Earth Blocks (CEBs)
3.9.2. Aggregates
3.9.3. Gypsum
3.9.4. Clay
3.10. Emerging Green Materials
3.10.1. Bamboo
3.10.2. Geopolymers
3.10.3. Recycled Glass
3.10.4. Lime
3.10.5. Cork
Type | Raw Materials | Density (kg/m3) | Thermal Conductivity (W·m−1·K−1) | Specific Heat Capacity J·kg−1·K−1 | Thermal Diffusivity (m2/s) | Moisture Buffer Value g/(m2·%RH) | Vapor Permeability kg·s−1·m−1·Pa−1 | References | |
---|---|---|---|---|---|---|---|---|---|
Rammed Earth | A mixture of Soil, Gravel, Sand, Cement, or Lime Stabilizers. | 1540 | 1.65 | 1218.66 | 7.42 × 10−7 | NOT APPLICABLE | NOT APPLICABLE | [130,131,132,133,134] | |
Cob | A Clay-rich Soil and Natural Fibers (Straw, Sand, and Water) | 1519 | 0.18 to 1.20 | 800–950 | NOT APPLICABLE | 1.4 | 1.08 × 10−11 | [134,135,136,137,138,139,140,141,142,143] | |
Adobe | Sand, Soil, Fibers, Straw or Sisal, and Clay | 1300 | 0.42–0.71 | NOT APPLICABLE | NOT APPLICABLE | NOT APPLICABLE | 1.0 to 2.7 × 10−11 | [130,141,144,145,146,147,148,149] | |
Gypsum | Calcium Sulfate | 870 | 0.3004 and 0.353 | 1520 | 1.923 × 10−7 | NOT APPLICABLE | NOT APPLICABLE | [154,155,156,157,158,159] | |
Clay | Hydrated Aluminosilicates | 1980 | Clay, Dry to Moist | 0.15–1.8 | 780 | NOT APPLICABLE | NOT APPLICABLE | 1.62 × 10−11 | [160,161,162,163,164,165,166,167,168,169,170,171,172,173] |
Clay, Saturated | 0.6–2.5 | ||||||||
Fire-clay Brick | 1.4 | ||||||||
Bamboo | Bamboo Plant | 200 to 850 | 0.55–0.59 | NOT APPLICABLE | NOT APPLICABLE | NOT APPLICABLE | NOT APPLICABLE | [40,181,182,183,184,185,186] | |
Recycled Glass | A mixture of normal Sand, Soda, and Limestone | 2710 | 0.045–1.05 | NOT APPLICABLE | NOT APPLICABLE | NOT APPLICABLE | NOT APPLICABLE | [198,208] | |
Lime | Calcium Oxides and Hydroxides | 3340 | 1.26–1.33 | NOT APPLICABLE | NOT APPLICABLE | NOT APPLICABLE | NOT APPLICABLE | [209,210,211,212,213,214,215,216,217] | |
Cork | cork oak tree’s outer layer | Virgin Cork: 160–240 | 0.195–0.318 | 350 | 1 × 10−6 | NOT APPLICABLE | NOT APPLICABLE | [218,224] | |
Reproduction Cork: 120–180 |
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vlahov, D.; Galea, S. Urbanization, urbanicity, and health. J. Urban Health-Bull. N. Y. Acad. Med. 2002, 79, S1–S12. [Google Scholar] [CrossRef]
- Chevalier, J.M. The New Energy Crisis; Palgrave Macmillan: London, UK, 2009; pp. 6–59. [Google Scholar]
- The World Bank. Annual Report; World Bank: Washington, DC, USA, 2013. [Google Scholar]
- Bourbia, S.; Kazeoui, H.; Belarbi, R. A review on recent research on bio-based building materials and their applications. Mater. Renew. Sustain. Energy 2023, 12, 117–139. [Google Scholar] [CrossRef]
- Jin, X.; Zhang, X.; Cao, Y.; Wang, G. Thermal performance evaluation of the wall using heat flux time lag and decrement factor. Energy Build. 2012, 47, 369–374. [Google Scholar] [CrossRef]
- Harris, J.M.; Roach, B.; Codur, A.-M. The Economics of Global Climate Change; Tufts University: Somerville, MA, USA, 2007. [Google Scholar]
- Lee, B.X.; Kjaerulf, F.; Turner, S.; Cohen, L.; Donnelly, P.D.; Muggah, R.; Davis, R.; Realini, A.; Kieselbach, B.; MacGregor, L.S.; et al. Transforming Our World: Implementing the 2030 Agenda Through Sustainable Development Goal Indicators. J. Public Health Policy 2016, 37, 13–31. [Google Scholar] [CrossRef]
- Wang, I.-W.; Kutteri, D.A.; Gao, B.; Tian, H.; Hu, J. Methane Pyrolysis for Carbon Nanotubes and COx-Free H2 over Transition-Metal Catalysts. Energy Fuels 2019, 33, 197–205. [Google Scholar] [CrossRef]
- Syed Muhammad, A.F.; Awad, A.; Saidur, R.; Masiran, N.; Salam, A.; Abdullah, B. Recent advances in cleaner hydrogen productions via thermo-catalytic decomposition of methane: Admixture with hydrocarbon. Int. J. Hydrogen Energy 2018, 43, 18713–18734. [Google Scholar] [CrossRef]
- Zhou, L.; Enakonda, L.R.; Harb, M.; Saih, Y.; Aguilar-Tapia, A.; Ould-Chikh, S.; Hazemann, J.-L.; Li, J.; Wei, N.; Gary, D.; et al. Fe catalysts for methane decomposition to produce hydrogen and carbon nano materials. Appl. Catal. B Environ. 2017, 208, 44–59. [Google Scholar] [CrossRef]
- Curran, M.A. Biobased materials. In Kirk-Othmer Encyclopedia of Chemical Technology; Wiley: New York, NY, USA, 2000; pp. 1–19. [Google Scholar]
- Carole, T.M.; Pellegrino, J.; Paster, M.D. Opportunities in the Industrial Biobased Products Industry. In Proceedings of the Twenty-Fifth Symposium on Biotechnology for Fuels and Chemicals Held, Breckenridge, CO, USA, 4–7 May 2003; Volume 113. [Google Scholar]
- Deng, Y.; Zhou, A.; Yu, X.; Chen, Y.; Zhang, D. Geomaterials in Geotechnical Engineering. Adv. Civ. Eng. 2019, 2019, 8614305. [Google Scholar] [CrossRef]
- Schiavoni, S.; D’Alessandro, F.; Bianchi, F.; Asdrubali, F. Insulation materials for the building sector: A review and comparative analysis. Renew. Sustain. Energy Rev. 2016, 62, 988–1011. [Google Scholar] [CrossRef]
- Turan, K. Green Materials and Applications. Period. Eng. Nat. Sci. (PEN) 2015, 3, 17–18. [Google Scholar] [CrossRef]
- Yadav, M.; Agarwal, M. Biobased building materials for sustainable future: An overview. Mater. Today Proc. 2021, 43, 2895–2902. [Google Scholar] [CrossRef]
- Greef, J.M.; Brischke, C. Reed. In Performance of Bio-Based Building Materials; Jones, D., Brischke, C., Eds.; Woodhead Publishing: Sawston, UK, 2017; pp. 124–128. [Google Scholar]
- Met Office. Mauna Loa Carbon Dioxide Forecast for 2022. Available online: https://www.metoffice.gov.uk/research/climate/seasonal-to-decadal/long-range/forecasts/co2-forecast-for-2022 (accessed on 4 October 2023).
- Asdrubali, F.; D’Alessandro, F.; Schiavoni, S. A review of unconventional sustainable building insulation materials. Sustain. Mater. Technol. 2015, 4, 1–17. [Google Scholar] [CrossRef]
- Luengo, J.M.; Garcı, B.; Sandoval, A.; Naharro, G.; Olivera, E.R. Bioplastics from microorganisms. Curr. Opin. Microbiol. 2003, 6, 251–260. [Google Scholar] [PubMed]
- Weiss, M.; Haufe, J.; Carus, M.; Brandão, M.; Bringezu, S.; Hermann, B.; Patel, M.K. A Review of the Environmental Impacts of Biobased Materials. J. Ind. Ecol. 2012, 16, S169–S181. [Google Scholar] [CrossRef]
- Jones, M.; Mautner, A.; Luenco, S.; Bismarck, A.; John, S. Engineered mycelium composite construction materials from fungal biorefineries: A critical review. Mater. Des. 2020, 187, 108397. [Google Scholar] [CrossRef]
- Appels, F.V.; Camere, S.; Montalti, M.; Karana, E.; Jansen, K.M.; Dijksterhuis, J.; Krijgsheld, P.; Wösten, H.A. Fabrication factors influencing mechanical, moisture- and water-related properties of mycelium-based composites. Mater. Des. 2019, 161, 64–71. [Google Scholar] [CrossRef]
- Ashby, M.F.; Johnson, K. Materials and Design: The Art and Science of Material Selection in Product Design; Butterworth-Heinemann: Oxford, UK, 2013. [Google Scholar]
- He, J.; Cheng, C.M.; Su, D.G.; Zhong, M.F. Study on the Mechanical Properties of the Latex-Mycelium Composite. Appl. Mech. Mater. 2014, 507, 415–420. [Google Scholar] [CrossRef]
- Lachheb, A.; Allouhi, A.; El Marhoune, M.; Saadani, R.; Kousksou, T.; Jamil, A.; Rahmoune, M.; Oussouaddi, O. Thermal insulation improvement in construction materials by adding spent coffee grounds: An experimental and simulation study. J. Clean. Prod. 2019, 209, 1411–1419. [Google Scholar] [CrossRef]
- Oliveros, N.O.; Hernández, J.; Sierra-Espinosa, F.; Guardián-Tapia, R.; Pliego-Solórzano, R. Experimental study of dynamic porosity and its effects on simulation of the coffee beans roasting. J. Food Eng. 2017, 199, 100–112. [Google Scholar] [CrossRef]
- Zouaoui, Y.; Benmahiddine, F.; Yahia, A.; Belarbi, R. Hygrothermal and Mechanical Behaviors of Fiber Mortar: Comparative Study between Palm and Hemp Fibers. Energies 2021, 14, 7110. [Google Scholar] [CrossRef]
- Bennai, F.; Ferroukhi, M.Y.; Benmahiddine, F.; Belarbi, R.; Nouviaire, A. Assessment of hygrothermal performance of hemp concrete compared to conventional building materials at overall building scale. Constr. Build. Mater. 2022, 316, 126007. [Google Scholar] [CrossRef]
- Sawadogo, M.; Benmahiddine, F.; Hamami, A.E.A.; Belarbi, R.; Godin, A.; Duquesne, M. Investigation of a novel bio-based phase change material hemp concrete for passive energy storage in buildings. Appl. Therm. Eng. 2022, 212, 118620. [Google Scholar] [CrossRef]
- Collet, F.; Pretot, S. Thermal conductivity of hemp concretes: Variation with formulation, density and water content. Constr. Build. Mater. 2014, 65, 612–619. [Google Scholar] [CrossRef]
- Rode, C.; Peuhkuri, R.H.; Mortensen, L.H.; Hansen, K.K.; Time, B.; Gustavsen, A.; Ojanen, T.; Ahonen, J.; Svennberg, K.; Arfvidsson, J.; et al. Moisture Buffering of Building Materials; Technical University of Denmark, Department of Civil Engineering: Lyngby, Denmark, 2005. [Google Scholar]
- Bennai, F.; El Hachem, C.; Abahri, K.; Belarbi, R. Microscopic hydric characterization of hemp concrete by X-ray microtomography and digital volume correlation. Constr. Build. Mater. 2018, 188, 983–994. [Google Scholar] [CrossRef]
- Benmahiddine, F.; Belarbi, R.; Berger, J.; Bennai, F.; Tahakourt, A. Accelerated Aging Effects on the Hygrothermal Behaviour of Hemp Concrete: Experimental and Numerical Investigations. Energies 2021, 14, 7005. [Google Scholar] [CrossRef]
- Benmahiddine, F.; Belarbi, R. Effect of Immersion/Freezing/Drying Cycles on the Hygrothermal and Mechanical Behaviour of Hemp Concrete. Constr. Technol. Archit. 2022, 1, 555–562. [Google Scholar]
- Benmahiddine, F.; Bennai, F.; Cherif, R.; Belarbi, R.; Tahakourt, A.; Abahri, K. Experimental investigation on the influence of immersion/drying cycles on the hygrothermal and mechanical properties of hemp concrete. J. Build. Eng. 2020, 32, 101758. [Google Scholar] [CrossRef]
- Sassoni, E.; Manzi, S.; Motori, A.; Montecchi, M.; Canti, M. Experimental study on the physical–mechanical durability of innovative hemp-based composites for the building industry. Energy Build. 2015, 104, 316–322. [Google Scholar] [CrossRef]
- Walker, R.; Pavia, S.; Mitchell, R. Mechanical properties and durability of hemp-lime concretes. Constr. Build. Mater. 2014, 61, 340–348. [Google Scholar] [CrossRef]
- Sadrolodabaee, P.; Claramunt, J.; Ardanuy, M.; de la Fuente, A. A Textile Waste Fiber-Reinforced Cement Composite: Comparison between Short Random Fiber and Textile Reinforcement. Materials 2021, 14, 3742. [Google Scholar] [CrossRef]
- Jones, D. Introduction to the performance of bio-based building materials. In Performance of Bio-Based Building Materials; Elsevier: Amsterdam, The Netherlands, 2017; pp. 1–19. [Google Scholar] [CrossRef]
- Bedi, S. Materials Matter: Sustainable Preservation Practices. Ph.D. Thesis, Pratt Institute, Brooklyn, NY, USA, 2022. [Google Scholar]
- Sandak, A.; Sandak, J.; Brzezicki, M.; Kutnar, A. Bio-Based Building Skin; Springer Science and Business Media LLC: Dordrecht, The Netherlands, 2019; ISBN 9789811001093. [Google Scholar]
- ModCell: BaleHaus at Bath. Available online: https://www.modcell.com/projects/balehaus-at-bath/ (accessed on 4 October 2023).
- Vardy, S.; MacDougall, C. Concentric and Eccentric Compression Experiments of Plastered Straw Bale Assemblies. J. Struct. Eng. 2013, 139, 448–461. [Google Scholar] [CrossRef]
- Cascone, S.; Rapisarda, R.; Cascone, D. Physical Properties of Straw Bales as a Construction Material: A Review. Sustainability 2019, 11, 3388. [Google Scholar] [CrossRef]
- Tlaiji, G.; Ouldboukhitine, S.; Pennec, F.; Biwole, P. Thermal and mechanical behavior of straw-based construction: A review. Constr. Build. Mater. 2022, 316, 125915. [Google Scholar] [CrossRef]
- González, A.D. Energy and carbon embodied in straw and clay wall blocks produced locally in the Andean Patagonia. Energy Build. 2014, 70, 15–22. [Google Scholar] [CrossRef]
- Dubois, V.; Leblanc, A.; Carpentier, O.; Alhaik, G.; Wirquin, E. Performances of flax shive-based lightweight composites with rapid hardening. Constr. Build. Mater. 2018, 165, 17–27. [Google Scholar] [CrossRef]
- Benmahiddine, F.; Cherif, R.; Bennai, F.; Belarbi, R.; Tahakourt, A.; Abahri, K. Effect of flax shives content and size on the hygrothermal and mechanical properties of flax concrete. Constr. Build. Mater. 2020, 262, 120077. [Google Scholar] [CrossRef]
- Brzyski, P.; Kosiński, P.; Zgliczyńska, A.; Iwanicki, P.; Poko, J. Mass Transport and Thermal Conductivity Properties of Flax Shives for Use in Construction Industry. J. Nat. Fibers 2021, 18, 995–1006. [Google Scholar]
- Babenko, M.; Estokova, A.; Savytskyi, M.; Unčík, S. Study of Thermal Properties of Lightweight Insulation Made of Flax Straw. Slovak J. Civ. Eng. 2018, 26, 9–14. [Google Scholar] [CrossRef]
- Brzyski, P.; Barnat-Hunek, D.; Suchorab, Z.; Łagód, G. Composite Materials Based on Hemp and Flax for Low-Energy Buildings. Materials 2017, 10, 510. [Google Scholar] [CrossRef]
- Barnat-Hunek, D.; Smarzewski, P.; Brzyski, P. Properties of Hemp–Flax Composites for Use in the Building Industry. J. Nat. Fibers 2017, 14, 410–425. [Google Scholar] [CrossRef]
- Rahim, M.; Douzane, O.; Tran Le, A.; Promis, G.; Laidoudi, B.; Crigny, A.; Dupre, B.; Langlet, T. Characterization of flax lime and hemp lime concretes: Hygric properties and moisture buffer capacity. Energy Build. 2015, 88, 91–99. [Google Scholar] [CrossRef]
- Rentsen, B. Characterization of Flax Shives and Factors Affecting the Quality of Fuel Pellets from Flax Shives. Ph.D. Dissertation, University of Saskatchewan, Saskatoon, SK, Canada, 2010. [Google Scholar]
- Garikapati, K.P.; Sadeghian, P. Mechanical behavior of flax-lime concrete blocks made of waste flax shives and lime binder reinforced with jute fabric. J. Build. Eng. 2020, 29, 101187. [Google Scholar] [CrossRef]
- Jones, D.; Brischke, C. Performance of Bio-Based Building Materials; Elsevier BV: Amsterdam, The Netherlands, 2017; ISBN 9780081009826. [Google Scholar]
- Tsapko, Y.V.; Tsapko, A.Y.; Bondarenko, O.P. Modeling of thermal conductivity of reed products. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2020; p. 012057. [Google Scholar]
- Yaghoobian, N.; Kleissl, J.; Krayenhoff, E.S. Modeling the Thermal Effects of Artificial Turf on the Urban Environment. J. Appl. Meteorol. Clim. 2010, 49, 332–345. [Google Scholar] [CrossRef]
- Elsacker, E.; Vandelook, S.; Brancart, J.; Peeters, E.; De Laet, L. Mechanical, physical and chemical characterisation of mycelium-based composites with different types of lignocellulosic substrates. PLoS ONE 2019, 14, e0213954. [Google Scholar] [CrossRef]
- Garrison, T.F.; Murawski, A.; Quirino, R.L. Bio-Based Polymers with Potential for Biodegradability. Polymers 2016, 8, 262. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, N.I.; Shahar, F.S.; Sultan, M.T.H.; Shah, A.U.M.; Safri, S.N.A.; Yazik, M.H.M. Overview of Bioplastic Introduction and Its Applications in Product Packaging. Coatings 2021, 11, 1423. [Google Scholar] [CrossRef]
- Goel, V.; Luthra, P.; Kapur, G.S.; Ramakumar, S.S.V. Biodegradable/Bio-plastics: Myths and Realities. J. Polym. Environ. 2021, 29, 3079–3104. [Google Scholar] [CrossRef]
- Narancic, T.; Cerrone, F.; Beagan, N.; O’connor, K.E. Recent Advances in Bioplastics: Application and Biodegradation. Polymers 2020, 12, 920. [Google Scholar] [CrossRef]
- Boey, J.Y.; Lee, C.K.; Tay, G.S. Factors Affecting Mechanical Properties of Reinforced Bioplastics: A Review. Polymers 2022, 14, 3737. [Google Scholar] [CrossRef]
- Pilla, S. Handbook of Bioplastics and Biocomposites Engineering Applications; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Coppola, G.; Gaudio, M.T.; Lopresto, C.G.; Calabro, V.; Curcio, S.; Chakraborty, S. Bioplastic from Renewable Biomass: A Facile Solution for a Greener Environment. Earth Syst. Environ. 2021, 5, 231–251. [Google Scholar] [CrossRef]
- Ashothaman, A.; Sudha, J.; Senthilkumar, N. A comprehensive review on biodegradable polylactic acid polymer matrix composite material reinforced with synthetic and natural fibers. Mater. Today Proc. 2023, 80, 2829–2839. [Google Scholar] [CrossRef]
- Cinar, S.O.; Chong, Z.K.; Kucuker, M.A.; Wieczorek, N.; Cengiz, U.; Kuchta, K. Bioplastic Production from Microalgae: A Review. Int. J. Environ. Res. Public Health 2020, 17, 3842. [Google Scholar] [CrossRef] [PubMed]
- Manger, C. “Landing Page”, European Bioplastics e.V. Available online: https://www.european-bioplastics.org/ (accessed on 4 October 2023).
- Wang, T.; Hosseinzadeh, M.; Cuccagna, A.; Alakenova, R.; Casademunt, P.; Rovatti, A.R.; López-Rubio, A.; Porte, C. Comparative toxicity of conventional versus compostable plastic consumer products: An in-vitro assessment. J. Hazard. Mater. 2023, 459, 132123. [Google Scholar] [CrossRef]
- Vroman, I.; Tighzert, L. Biodegradable Polymers. Materials 2009, 2, 307–344. [Google Scholar] [CrossRef]
- Kong, U.; Rawi, N.F.M.; Tay, G.S. The Potential Applications of Reinforced Bioplastics in Various Industries: A Review. Polymers 2023, 15, 2399. [Google Scholar] [CrossRef]
- Lackner, M. Bioplastics. In Kirk-Othmer Encyclopedia of Chemical Technology; Wiley: New York, NY, USA, 2000; pp. 1–41. [Google Scholar]
- Kaiser, K.; Schmid, M.; Schlummer, M. Recycling of Polymer-Based Multilayer Packaging: A Review. Recycling 2017, 3, 1. [Google Scholar] [CrossRef]
- Ebnesajjad, S. Handbook of Biopolymers and Biodegradable Plastics: Properties, Processing and Applications; William Andrew: Norwich, NY, USA, 2012. [Google Scholar]
- Hamad, K.; Kaseem, M.; Yang, H.W.; Deri, F.; Ko, Y.G. Properties and medical applications of polylactic acid: A review. Express Polym. Lett. 2015, 9, 435–455. [Google Scholar] [CrossRef]
- Balla, E.; Daniilidis, V.; Karlioti, G.; Kalamas, T.; Stefanidou, M.; Bikiaris, N.D.; Vlachopoulos, A.; Koumentakou, I.; Bikiaris, D.N. Poly(lactic Acid): A Versatile Biobased Polymer for the Future with Multifunctional Properties—From Monomer Synthesis, Polymerization Techniques and Molecular Weight Increase to PLA Applications. Polymers 2021, 13, 1822. [Google Scholar] [CrossRef]
- Luyt, A.S.; Malik, S.S. Can Biodegradable Plastics Solve Plastic Solid Waste Accumulation? In Plastics to Energy; Elsevier BV.: Amsterdam, The Netherlands, 2019; pp. 403–423. [Google Scholar]
- Ferreira, F.V.; Cividanes, L.S.; Gouveia, R.F.; Lona, L.M. An overview on properties and applications of poly (butylene adipate-co-terephthalate)–PBAT based composites. Polym. Eng. Sci. 2019, 59, E7–E15. [Google Scholar] [CrossRef]
- Belarbi, Y.E.; Guessasma, S.; Belhabib, S.; Benmahiddine, F.; Hamami, A.E.A. Effect of Printing Parameters on Mechanical Behaviour of PLA-Flax Printed Structures by Fused Deposition Modelling. Materials 2021, 14, 5883. [Google Scholar] [CrossRef] [PubMed]
- Bahar, A.; Hamami, A.E.A.; Benmahiddine, F.; Belhabib, S.; Belarbi, R.; Guessasma, S. The Thermal and Mechanical Behaviour of Wood-PLA Composites Processed by Additive Manufacturing for Building Insulation. Polymers 2023, 15, 3056. [Google Scholar] [CrossRef]
- Jian, J.; Xiangbin, Z.; Xianbo, H. An overview on synthesis, properties and applications of poly(butylene-adipate-co-terephthalate)–PBAT. Adv. Ind. Eng. Polym. Res. 2020, 3, 19–26. [Google Scholar] [CrossRef]
- Zhu, K.; Zhu, W.P.; Gu, Y.B.; Shen, Z.Q.; Chen, W.; Zhu, G.X. Synthesis and Characterization of Poly (butylene adipate-co-terephthalate). Chin. J. Chem. 2007, 25, 1581–1583. [Google Scholar] [CrossRef]
- Misra, M.; Pandey, J.K.; Mohanty, A. Biocomposites: Design and Mechanical Performance; Woodhead Publishing: Sawston, UK, 2015. [Google Scholar]
- Trifol, J.; Plackett, D.; Sillard, C.; Hassager, O.; Daugaard, A.E.; Bras, J.; Szabo, P. A comparison of partially acetylated nanocellulose, nanocrystalline cellulose, and nanoclay as fillers for high-performance polylactide nanocomposites. J. Appl. Polym. Sci. 2016, 133, 43257. [Google Scholar] [CrossRef]
- Mariano, M.; Chirat, C.; El Kissi, N.; Dufresne, A. Impact of cellulose nanocrystal aspect ratio on crystallization and reinforcement of poly(butylene adipate-co-terephthalate). J. Polym. Sci. Part B Polym. Phys. 2016, 54, 2284–2297. [Google Scholar] [CrossRef]
- Pinheiro, I.F.; Morales, A.R.; Mei, L.H. Polymeric biocomposites of poly (butylene adipate-co-terephthalate) reinforced with natural Munguba fibers. Cellulose 2014, 21, 4381–4391. [Google Scholar] [CrossRef]
- Moustafa, H.; Guizani, C.; Dufresne, A. Sustainable biodegradable coffee grounds filler and its effect on the hydrophobicity, mechanical and thermal properties of biodegradable PBAT composites. J. Appl. Polym. Sci. 2017, 134, 44498. [Google Scholar] [CrossRef]
- Moustafa, H.; Guizani, C.; Dupont, C.; Martin, V.; Jeguirim, M.; Dufresne, A. Utilization of Torrefied Coffee Grounds as Reinforcing Agent To Produce High-Quality Biodegradable PBAT Composites for Food Packaging Applications. ACS Sustain. Chem. Eng. 2017, 5, 1906–1916. [Google Scholar] [CrossRef]
- Mukherjee, T.; Czaka, M.; Kao, N.; Gupta, R.K.; Choi, H.J.; Bhattacharya, S. Dispersion study of nanofibrillated cellulose based poly(butylene adipate-co-terephthalate) composites. Carbohydr. Polym. 2014, 102, 537–542. [Google Scholar] [CrossRef]
- Chen, J.-H.; Yang, M.-C. Preparation and characterization of nanocomposite of maleated poly(butylene adipate-co-terephthalate) with organoclay. Mater. Sci. Eng. C 2015, 46, 301–308. [Google Scholar] [CrossRef]
- Fukushima, K.; Wu, M.-H.; Bocchini, S.; Rasyida, A.; Yang, M.-C. PBAT based nanocomposites for medical and industrial applications. Mater. Sci. Eng. C 2012, 32, 1331–1351. [Google Scholar] [CrossRef] [PubMed]
- Wei, D.; Wang, H.; Ziaee, Z.; Chibante, F.; Zheg, A.; Xiao, H. Non-leaching antimicrobial biodegradable PBAT films through a facile and novel approach. Mater. Sci. Eng. C 2016, 58, 986–991. [Google Scholar] [CrossRef]
- Neto, W.A.R.; de Paula, A.C.C.; Martins, T.M.; Goes, A.M.; Averous, L.; Schlatter, G.; Bretas, R.E.S. Poly (butylene adipate-co-terephthalate)/hydroxyapatite composite structures for bone tissue recovery. Polym. Degrad. Stab. 2015, 120, 61–69. [Google Scholar] [CrossRef]
- Belarbi, Y.E.; Benmahiddine, F.; Hamami, A.E.A.; Guessasma, S.; Belhabib, S. Hygrothermal and Microstructural Investigation of PLA and PLA-Flax Printed Structures. Fibers 2022, 10, 24. [Google Scholar] [CrossRef]
- Ivanov, V.; Stabnikov, V.; Ahmed, Z.; Dobrenko, S.; Saliuk, A. Production and applications of crude polyhydroxyalkanoate-containing bioplastic from the organic fraction of municipal solid waste. Int. J. Environ. Sci. Technol. 2015, 12, 725–738. [Google Scholar] [CrossRef]
- Chen, G.-Q. A microbial polyhydroxyalkanoates (PHA) based bio- and materials industry. Chem. Soc. Rev. 2009, 38, 2434–2446. [Google Scholar] [CrossRef] [PubMed]
- Stabnikov, V.; Ivanov, V.; Chu, J. Construction Biotechnology: A new area of biotechnological research and applications. World J. Microbiol. Biotechnol. 2015, 31, 1303–1314. [Google Scholar] [CrossRef]
- Pacheco Torgal, F.; Buratti, C.; Kalaiselvam, S.; Granqvist, C.G.; Ivanov, V. (Eds.) Nano and Biotech Based Materials for Energy Building Efficiency; Springer Science and Business Media LLC: Dordrecht, The Netherlands, 2016; ISBN 9783319275031. [Google Scholar]
- Mtibe, A.; Motloung, M.P.; Bandyopadhyay, J.; Ray, S.S. Synthetic Biopolymers and Their Composites: Advantages and Limitations—An Overview. Macromol. Rapid Commun. 2021, 42, 2100130. [Google Scholar] [CrossRef] [PubMed]
- Raoux, S. Phase Change Materials. Annu. Rev. Mater. Res. 2009, 39, 25–48. [Google Scholar] [CrossRef]
- Ghani, S.A.A.; Jamari, S.S.; Abidin, S.Z. Waste materials as the potential phase change material substitute in thermal energy storage system: A review. Chem. Eng. Commun. 2021, 208, 687–707. [Google Scholar] [CrossRef]
- Kuznik, F.; David, D.; Johannes, K.; Roux, J.-J. A review on phase change materials integrated in building walls. Renew. Sustain. Energy Rev. 2011, 15, 379–391. [Google Scholar] [CrossRef]
- Baetens, R.; Jelle, B.P.; Gustavsen, A. Phase change materials for building applications: A state-of-the-art review. Energy Build. 2010, 42, 1361–1368. [Google Scholar] [CrossRef]
- Ke, H. Phase diagrams, eutectic mass ratios and thermal energy storage properties of multiple fatty acid eutectics as novel solid-liquid phase change materials for storage and retrieval of thermal energy. Appl. Therm. Eng. 2017, 113, 1319–1331. [Google Scholar] [CrossRef]
- Ren, M.; Wen, X.; Gao, X.; Liu, Y. Thermal and mechanical properties of ultra-high performance concrete incorporated with microencapsulated phase change material. Constr. Build. Mater. 2021, 273, 121714. [Google Scholar] [CrossRef]
- Sabbah, R.; Kizilel, R.; Selman, J.; Al-Hallaj, S. Active (air-cooled) vs. passive (phase change material) thermal management of high power lithium-ion packs: Limitation of temperature rise and uniformity of temperature distribution. J. Power Source 2008, 182, 630–638. [Google Scholar] [CrossRef]
- Sawadogo, M.; Duquesne, M.; Belarbi, R.; Hamami, A.E.A.; Godin, A. Review on the Integration of Phase Change Materials in Building Envelopes for Passive Latent Heat Storage. Appl. Sci. 2021, 11, 9305. [Google Scholar] [CrossRef]
- Sawadogo, M.; Godin, A.; Duquesne, M.; Lacroix, E.; Veillère, A.; Hamami, A.E.A.; Belarbi, R. Investigation of eco-friendly and economic shape-stabilized composites for building walls and thermal comfort. J. Affect. Disord. 2023, 231, 110026. [Google Scholar] [CrossRef]
- Saffari, M.; de Gracia, A.; Ushak, S.; Cabeza, L.F. Passive cooling of buildings with phase change materials using whole-building energy simulation tools: A review. Renew. Sustain. Energy Rev. 2017, 80, 1239–1255. [Google Scholar] [CrossRef]
- Akeiber, H.; Nejat, P.; Majid, M.Z.A.; Wahid, M.A.; Jomehzadeh, F.; Famileh, I.Z.; Calautit, J.K.; Hughes, B.R.; Zaki, S.A. A review on phase change material (PCM) for sustainable passive cooling in building envelopes. Renew. Sustain. Energy Rev. 2016, 60, 1470–1497. [Google Scholar] [CrossRef]
- Gholamibozanjani, G.; Farid, M. A comparison between passive and active PCM systems applied to buildings. Renew. Energy 2020, 162, 112–123. [Google Scholar] [CrossRef]
- Sharma, A.; Tyagi, V.V.; Chen, C.R.; Buddhi, D. Review on thermal energy storage with phase change materials and applications. Renew. Sustain. Energy Rev. 2009, 13, 318–345. [Google Scholar] [CrossRef]
- Khudhair, A.M.; Farid, M.M. A review on energy conservation in building applications with thermal storage by latent heat using phase change materials. Energy Convers. Manag. 2004, 45, 263–275. [Google Scholar] [CrossRef]
- Cao, V.D.; Pilehvar, S.; Salas-Bringas, C.; Szczotok, A.M.; Rodriguez, J.F.; Carmona, M.; Al-Manasir, N.; Kjøniksen, A.-L. Microencapsulated phase change materials for enhancing the thermal performance of Portland cement concrete and geopolymer concrete for passive building applications. Energy Convers. Manag. 2017, 133, 56–66. [Google Scholar] [CrossRef]
- Gao, H.; Wang, J.; Chen, X.; Wang, G.; Huang, X.; Li, A.; Dong, W. Nanoconfinement effects on thermal properties of nanoporous shape-stabilized composite PCMs: A review. Nano Energy 2018, 53, 769–797. [Google Scholar] [CrossRef]
- Umair, M.M.; Zhang, Y.; Iqbal, K.; Zhang, S.; Tang, B. Novel strategies and supporting materials applied to shape-stabilize organic phase change materials for thermal energy storage—A review. Appl. Energy 2019, 235, 846–873. [Google Scholar] [CrossRef]
- Suttaphakdee, P.; Dulsang, N.; Lorwanishpaisarn, N.; Kasemsiri, P.; Posi, P.; Chindaprasirt, P. Optimizing mix proportion and properties of lightweight concrete incorporated phase change material paraffin/recycled concrete block composite. Constr. Build. Mater. 2016, 127, 475–483. [Google Scholar] [CrossRef]
- Li, X.; Zhou, Y.; Zhang, X.; Zheng, W.; Chang, C.; Ren, X.; Zeng, J.; Hai, C.; Shen, Y. Experimental investigation of thermal and mechanical properties of magnesium oxychloride cement with form-stable phase change material. Constr. Build. Mater. 2018, 186, 670–677. [Google Scholar] [CrossRef]
- Shi, J.; Tan, J.; Liu, B.; Liu, Y.; Xu, H.; Wang, Z.; Xiong, T.; Shi, J. Thermal and mechanical properties of thermal energy storage lightweight aggregate mortar incorporated with phase change material. J. Energy Storage 2020, 32, 101719. [Google Scholar] [CrossRef]
- Boussaba, L.; Lefebvre, G.; Makhlouf, S.; Grados, A.; Royon, L. Investigation and properties of a novel composite bio-PCM to reduce summer energy consumptions in buildings of hot and dry climates. Sol. Energy 2021, 214, 119–130. [Google Scholar] [CrossRef]
- Dehmous, M.; Franquet, E.; Lamrous, N. Mechanical and thermal characterizations of various thermal energy storage concretes including low-cost bio-sourced PCM. Energy Build. 2021, 241, 110878. [Google Scholar] [CrossRef]
- Ingham, J. Petrography of geomaterials: A review. Q. J. Eng. Geol. Hydrogeol. 2011, 44, 457–467. [Google Scholar] [CrossRef]
- Fookes, P.; de Freitas, M.; Culshaw, M. Discussion of ‘The first engineering geological publication in the UK?’ by M. G. Culshaw Quarterly Journal of Engineering Geology and Hydrogeology 37, 227–231. Q. J. Eng. Geol. Hydrogeol. 2005, 38, 105–108. [Google Scholar] [CrossRef]
- Přikryl, R.; Török, Á.; Theodoridou, M.; Gomez-Heras, M.; Miskovsky, K. Geomaterials in construction and their sustainability: Understanding their role in modern society. Geol. Soc. Lond. Spéc. Publ. 2016, 416, 1–22. [Google Scholar] [CrossRef]
- Rempel, A.R.; Rempel, A.W. Rocks, Clays, Water, and Salts: Highly Durable, Infinitely Rechargeable, Eminently Controllable Thermal Batteries for Buildings. Geosciences 2013, 3, 63–101. [Google Scholar] [CrossRef]
- Giesekam, J.; Barrett, J.; Taylor, P.; Owen, A. The greenhouse gas emissions and mitigation options for materials used in UK construction. Energy Build. 2014, 78, 202–214. [Google Scholar] [CrossRef]
- Morel, J.-C.; Charef, R.; Hamard, E.; Fabbri, A.; Beckett, C.; Bui, Q.-B. Earth as construction material in the circular economy context: Practitioner perspectives on barriers to overcome. Philos. Trans. R. Soc. B Biol. Sci. 2021, 376, 20200182. [Google Scholar] [CrossRef]
- Pelé-Peltier, A.; Charef, R.; Morel, J.-C. Factors affecting the use of earth material in mainstream construction: A critical review. Build. Res. Inf. 2023, 51, 119–137. [Google Scholar] [CrossRef]
- Tinsley, J.; Pavía, S. Thermal performance and fitness of glacial till for rammed earth construction. J. Build. Eng. 2019, 24, 100727. [Google Scholar] [CrossRef]
- Reddy, B.; Kumar, P.P. Embodied energy in cement stabilised rammed earth walls. Energy Build. 2010, 42, 380–385. [Google Scholar] [CrossRef]
- Ghasemalizadeh, S.; Toufigh, V. Durability of Rammed Earth Materials. Int. J. Géoméch. 2020, 20, 04020201. [Google Scholar] [CrossRef]
- Giada, G.; Caponetto, R.; Nocera, F. Hygrothermal Properties of Raw Earth Materials: A Literature Review. Sustainability 2019, 11, 5342. [Google Scholar] [CrossRef]
- Hamard, E.; Cazacliu, B.; Razakamanantsoa, A.; Morel, J.-C. Cob, a vernacular earth construction process in the context of modern sustainable building. J. Affect. Disord. 2016, 106, 103–119. [Google Scholar] [CrossRef]
- Ben-Alon, L.; Loftness, V.; Harries, K.A.; DiPietro, G.; Hameen, E.C. Cradle to site Life Cycle Assessment (LCA) of natural vs. conventional building materials: A case study on cob earthen material. Build. Environ. 2019, 160, 106150. [Google Scholar] [CrossRef]
- Gomaa, M.; Carfrae, J.; Goodhew, S.; Jabi, W.; Reyes, A.V. Thermal performance exploration of 3D printed cob. Arch. Sci. Rev. 2019, 62, 230–237. [Google Scholar] [CrossRef]
- Minke, G. Building with Earth-Design and Technology of a Sustainable Architecture; Walter de Gruyter GmbH: Berlin, Germany, 2012. [Google Scholar]
- Belarbi, Y.E.; Sawadogo, M.; Poullain, P.; Issaadi, N.; Hamami, A.E.A.; Bonnet, S.; Belarbi, R. Experimental Characterization of Raw Earth Properties for Modeling Their Hygrothermal Behavior. Buildings 2022, 12, 648. [Google Scholar] [CrossRef]
- Costes, J.-P.; Evrard, A.; Biot, B.; Keutgen, G.; Daras, A.; Dubois, S.; Lebeau, F.; Courard, L. Thermal Conductivity of Straw Bales: Full Size Measurements Considering the Direction of the Heat Flow. Buildings 2017, 7, 11. [Google Scholar] [CrossRef]
- Cagnon, H.; Aubert, J.; Coutand, M.; Magniont, C. Hygrothermal properties of earth bricks. Energy Build. 2014, 80, 208–217. [Google Scholar] [CrossRef]
- Zeghari, K.; Louahlia, H.; Leguern, M.; Boutouil, M.; Gualous, H.; Marion, M.; Schaetzel, P.; Goodhew, S.; Streif, F. Comparison of the Thermal Performance between Conventional and Cob Building. 2019, Volume 111. Available online: https://pearl.plymouth.ac.uk/bitstream/handle/10026.1/14230/Annual%20energy%20consumption%20between%20conventional%20and%20cob%20buildings (accessed on 15 May 2023).
- Goodhew, S.; Boutouil, M.; Streiff, F.; Le Guern, M.; Carfrae, J.; Fox, M. Improving the thermal performance of earthen walls to satisfy current building regulations. Energy Build. 2021, 240, 110873. [Google Scholar] [CrossRef]
- Illampas, R.; Ioannou, I.; Charmpis, D.C. Adobe: An environmentally friendly construction material. WIT Trans. Ecol. Environ. 2009, 120, 245–256. [Google Scholar]
- Brown, P.W.; Clifton, J.R. Adobe I: The properties of adobe. Stud. Conserv. 1978, 23, 139–146. [Google Scholar] [CrossRef]
- Austin, G.S. Adobe as a building material. New Mex. Geol. 1984, 6, 69–71. [Google Scholar] [CrossRef]
- Costa, C.; Cerqueira, Â.; Rocha, F.; Velosa, A. The sustainability of adobe construction: Past to future. Int. J. Arch. Herit. 2018, 13, 639–647. [Google Scholar] [CrossRef]
- Silveira, D.; Varum, H.; Costa, A.; Martins, T.; Pereira, H.; Almeida, J. Mechanical properties of adobe bricks in ancient constructions. Constr. Build. Mater. 2012, 28, 36–44. [Google Scholar] [CrossRef]
- Christoforou, E.; Kylili, A.; Fokaides, P.A.; Ioannou, I. Cradle to site Life Cycle Assessment (LCA) of adobe bricks. J. Clean. Prod. 2016, 112, 443–452. [Google Scholar] [CrossRef]
- Langer, W. Sustainability of aggregates in construction. In Sustainability of Construction Materials; Elsevier: Amsterdam, The Netherlands, 2016; pp. 181–207. [Google Scholar] [CrossRef]
- Přikryl, R. Special issue on construction aggregates. Bull. Eng. Geol. Environ. 2021, 80, 8825–8829. [Google Scholar] [CrossRef]
- Přikryl, R. Geomaterials as construction aggregates: A state-of-the-art. Bull. Eng. Geol. Environ. 2021, 80, 8831–8845. [Google Scholar] [CrossRef]
- Mitchell, C. Construction aggregates: Evaluation and specification. In Proceedings of the Third International Forum for Industrial Rocks & Mining Conference & Exhibition, Fujairah, United Arab Emirates, 30 March–1 April 2015. [Google Scholar]
- Khamidov, A.; Akhmedov, I.; Shavkat, Y.; Jalalov, Z.; Umarov, I.; Xakimov, S.; Aleksandr, K. Application of heat-insulating composite gypsum for energy efficient construction. Spectr. J. Innov. Reforms Dev. 2022, 10, 77–84. [Google Scholar] [CrossRef]
- Karni, J.; Karni, E. Gypsum in construction: Origin and properties. Mater. Struct. 1995, 28, 92–100. [Google Scholar] [CrossRef]
- Lushnikova, N.; Dvorkin, L. Sustainability of gypsum products as a construction material. In Sustainability of Construction Materials; Elsevier: Amsterdam, The Netherlands, 2016; pp. 643–681. [Google Scholar] [CrossRef]
- Espinoza-Herrera, R.; Cloutier, A. Thermal degradation and thermal conductivity of gypsum-cement particleboard. Wood Fiber Sci. 2009, 41, 13–21. [Google Scholar]
- Prałat, K.; Ciemnicka, J.; Koper, A.; Buczkowska, K.E.; Łoś, P. Comparison of the thermal properties of geopolymer and modified gypsum. Polymers 2021, 13, 1220. [Google Scholar] [CrossRef] [PubMed]
- Adamopoulos, S.; Foti, D.; Voulgaridis, E.; Passialis, C. Manufacturing and Properties of Gypsum-Based Products with Recovered Wood and Rubber Materials. BioResources 2015, 10, 5573–5585. [Google Scholar] [CrossRef]
- Singh, N.B. Clays and Clay Minerals in the Construction Industry. Minerals 2022, 12, 301. [Google Scholar] [CrossRef]
- Belghazdis, M.; Hachem, E.-K. Clay and Clay Minerals: A Detailed Review. Int. J. Recent Technol. Appl. Sci. 2022, 4, 54–75. [Google Scholar] [CrossRef]
- Asdrubali, F.; Horoshenkov, K.V. The Acoustic Properties of Expanded Clay Granulates. Build. Acoust. 2002, 9, 85–98. [Google Scholar] [CrossRef]
- Mousavi, S.S.; Bhojaraju, C.; Ouellet-Plamondon, C. Clay as a Sustainable Binder for Concrete—A Review. Constr. Mater. 2021, 1, 134–168. [Google Scholar] [CrossRef]
- Kumar, A.; Lingfa, P. Sodium bentonite and kaolin clays: Comparative study on their FT-IR, XRF, and XRD. Mater. Today Proc. 2020, 22, 737–742. [Google Scholar] [CrossRef]
- Faqir, N.M.; Shawabkeh, R.; Al-Harthi, M.; Wahhab, H.A. Fabrication of Geopolymers from Untreated Kaolin Clay for Construction Purposes. Geotech. Geol. Eng. 2019, 37, 129–137. [Google Scholar] [CrossRef]
- Kilinç, K.; Karasu, B.; Kaya, G.; Kivrak, S. A Preliminary Research On The Properties of Lightweight Expanded Clay Aggregate. J. Aust. Ceram. Soc. 2008, 44, 23–30. [Google Scholar]
- Vijayalakshmi, R.; Ramanagopal, S. Structural concrete using expanded clay aggregate: A review. Indian J. Sci. Technol. 2018, 11, 1–12. [Google Scholar] [CrossRef]
- Sousa, H.; Carvalho, A.; Melo, A. A new sound insulation lightweight concrete masonry block. Design and experimental characterization. In Proceedings of the 13th International Brick and Block Masonry Conference, Amsterdam, The Netherlands, 4–7 July 2004. [Google Scholar]
- Bastos, A.; Sousa, H.; Melo, A. Methodology for the Design of Lightweight Concrete with Expanded Clay Aggregates. 2005. Available online: https://www.semanticscholar.org/paper/Methodology-for-the-Design-of-Lightweight-Concrete-Bastos-Sousa/69781e79fb8b90c57730d901514049eac8406a57 (accessed on 5 July 2023).
- Zach, J.; Hubertova, M.; Hroudova, J. Possibilities of determination of thermal conductivity of lightweight concrete with utilization of non stationary hot-wire method. In Proceedings of the 10th International Conference of the Slovenian Society for Non-Destructive Testing; Application of Contemporary Non-Destructive Testing in Engineering, Ljubljana, Slovenia, 1–3 September 2009. [Google Scholar]
- Grabois, T.M.; Cordeiro, G.C.; Filho, R.D.T. Fresh and hardened-state properties of self-compacting lightweight concrete reinforced with steel fibers. Constr. Build. Mater. 2016, 104, 284–292. [Google Scholar] [CrossRef]
- Allam, R.; Issaadi, N.; Belarbi, R.; El-Meligy, M.; Altahrany, A. Hygrothermal behavior for a clay brick wall. Heat Mass Transf. 2018, 54, 1579–1591. [Google Scholar] [CrossRef]
- Rashad, A.M. Lightweight expanded clay aggregate as a building material—An overview. Constr. Build. Mater. 2018, 170, 757–775. [Google Scholar] [CrossRef]
- Franzoni, E. Materials Selection for Green Buildings: Which Tools for Engineers and Architects? Procedia Eng. 2011, 21, 883–890. [Google Scholar] [CrossRef]
- Castro-Lacouture, D.; Sefair, J.A.; Flórez, L.; Medaglia, A.L. Optimization model for the selection of materials using a LEED-based green building rating system in Colombia. Build. Environ. 2009, 44, 1162–1170. [Google Scholar] [CrossRef]
- Pulselli, R.; Simoncini, E.; Pulselli, F.; Bastianoni, S. Emergy analysis of building manufacturing, maintenance and use: Em-building indices to evaluate housing sustainability. Energy Build. 2007, 39, 620–628. [Google Scholar] [CrossRef]
- Hoang, C.P.; Kinney, K.A.; Corsi, R.L. Ozone removal by green building materials. Build. Environ. 2009, 44, 1627–1633. [Google Scholar] [CrossRef]
- Mokal, A.B.; Shaikh, A.I.; Raundal, S.S.; Prajapati, S.J.; Phatak, U.J. Green Building Materials—A Way. Int. J. Appl. Or Innov. Eng. Manag. 2015, 44, 244–249. [Google Scholar]
- Patel, P.; Patel, A. Use of sustainable green materials in construction of green buildings for sustainable development. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2021; Volume 785. [Google Scholar] [CrossRef]
- De Luca, P.; Carbone, I.; Nagy, J.B. Green building materials: A review of state of the art studies of innovative materials. J. Green Build. 2017, 12, 141–161. [Google Scholar] [CrossRef]
- Kaur, P.J. Bamboo availability and utilization potential as a building material. For. Res. Eng. Int. J. 2018, 2, 240–242. [Google Scholar] [CrossRef]
- Masdar, A.; Siswosukarto, S.; Suryani, D. Implementation of connection system of wooden plate and wooden clamp on joint model of bamboo truss structures. Geomate J. 2019, 17, 15–20. [Google Scholar] [CrossRef]
- Li, Z.; Liu, C.-P.; Yu, T. Laminate of Reformed Bamboo and Extruded Fiber-Reinforced Cementitious Plate. J. Mater. Civ. Eng. 2002, 14, 359–365. [Google Scholar] [CrossRef]
- Shah, D.U.; Bock, M.C.D.; Mulligan, H.; Ramage, M.H. Thermal conductivity of engineered bamboo composites. J. Mater. Sci. 2016, 51, 2991–3002. [Google Scholar] [CrossRef]
- Sharma, P.; Dhanwantri, K.; Mehta, S. Bamboo as a Building Material. Int. J. Civ. Eng. Res. 2014, 5, 249–254. [Google Scholar]
- Syeda, A.; Kumar, B.S.J. A Case Study on Bamboo as Green Building Material. Int. J. Eng. Adv. Technol. 2014, 4, 78–82. [Google Scholar]
- Saba, M.; Assaad, J.J. Effect of recycled fine aggregates on performance of geopolymer masonry mortars. Constr. Build. Mater. 2021, 279, 122461. [Google Scholar] [CrossRef]
- El-Wafa, M.A.; Fukuzawa, K. Early-Age Strength of Alkali-Activated Municipal Slag–Fly Ash–Based Geopolymer Mortar. J. Mater. Civ. Eng. 2018, 30, 04018040. [Google Scholar] [CrossRef]
- Tho-In, T.; Sata, V.; Boonserm, K.; Chindaprasirt, P. Compressive strength and microstructure analysis of geopolymer paste using waste glass powder and fly ash. J. Clean. Prod. 2018, 172, 2892–2898. [Google Scholar] [CrossRef]
- Azimi, E.A.; Yong, H.C.; Hussin, K.; Aziz, I.H. Processing and properties of geopolymers as thermal insulating materials: A review. Rev. Adv. Mater. Sci. 2016, 44, 273–285. [Google Scholar]
- Shehata, N.; Mohamed, O.A.; Sayed, E.T.; Abdelkareem, M.A.; Olabi, A.G. Geopolymer concrete as green building materials: Recent applications, sustainable development and circular economy potentials. Sci. Total Environ. 2022, 836, 155577. [Google Scholar] [CrossRef]
- Burduhos Nergis, D.D.; Abdullah, M.M.A.B.; Vizureanu, P.; Faheem, M.T.M. Geopolymers and Their Uses: Review. IOP Conf. Ser. Mater. Sci. Eng. 2018, 374, 012019. [Google Scholar] [CrossRef]
- Ghauch, A.; Saba, M.; Sayet, T. Characterization of Porous Geopolymers Mortars for the Production of a Sustainable Material. IOP Conf. Ser. Earth Environ. Sci. 2022, 1123, 012062. [Google Scholar] [CrossRef]
- Alam Zaidi, S.F.; Haq, E.U.; Nur, K.; Ejaz, N.; Anis-Ur-Rehman, M.; Zubair, M.; Naveed, M. Synthesis & characterization of natural soil based inorganic polymer foam for thermal insulations. Constr. Build. Mater. 2017, 157, 994–1000. [Google Scholar] [CrossRef]
- Vaou, V.; Panias, D. Thermal insulating foamy geopolymers from perlite. Miner. Eng. 2010, 23, 1146–1151. [Google Scholar] [CrossRef]
- Huang, Y.; Gong, L.; Pan, Y.; Li, C.; Zhou, T.; Cheng, X. Facile construction of the aerogel/geopolymer composite with ultra-low thermal conductivity and high mechanical performance. RSC Adv. 2018, 8, 2350–2356. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Lu, B.; Bai, T.; Wang, H.; Du, F.; Zhang, Y.; Cai, L.; Jiang, C.; Wang, W. Geopolymer, green alkali activated cementitious material: Synthesis, applications and challenges. Constr. Build. Mater. 2019, 224, 930–949. [Google Scholar] [CrossRef]
- Gautam, S.P.; Srivastava, V.; Agarwal, V.C. Use of glass wastes as fine aggregate in Concrete. J. Acad. Indus. Res. 2012, 1, 320–322. [Google Scholar]
- Edwards, K.L.; Axinte, E.; Tabacaru, L.L. A critical study of the emergence of glass and glassy metals as “green” materials. Mater. Des. 2013, 50, 713–723. [Google Scholar] [CrossRef]
- Brow, R.K.; Schmitt, M.L. A survey of energy and environmental applications of glass. J. Eur. Ceram. Soc. 2009, 29, 1193–1201. [Google Scholar] [CrossRef]
- Ogundairo, T.; Adegoke, D.D.; I Akinwumi, I.; Olofinnade, O.M. Sustainable use of recycled waste glass as an alternative material for building construction—A review. IOP Conf. Ser. Mater. Sci. Eng. 2019, 640, 012073. [Google Scholar] [CrossRef]
- Mohajerani, A.; Vajna, J.; Cheung, T.H.H.; Kurmus, H.; Arulrajah, A.; Horpibulsuk, S. Practical recycling applications of crushed waste glass in construction materials: A review. Constr. Build. Mater. 2017, 156, 443–467. [Google Scholar] [CrossRef]
- Cozzarini, L.; Marsich, L.; Ferluga, A.; Schmid, C. Life cycle analysis of a novel thermal insulator obtained from recycled glass waste. Dev. Built Environ. 2020, 3, 100014. [Google Scholar] [CrossRef]
- Arcaro, S.; Maia, B.G.D.O.; Souza, M.T.; Cesconeto, F.R.; Granados, L.; De Oliveira, A.P.N. Thermal Insulating Foams Produced From Glass Waste and Banana Leaves. Mater. Res. 2016, 19, 1064–1069. [Google Scholar] [CrossRef]
- Stochero, N.P.; Chami, J.O.R.d.S.; Souza, M.T.; de Moraes, E.G.; de Oliveira, A.P.N. Green Glass Foams from Wastes Designed for Thermal Insulation. Waste Biomass-Valorization 2021, 12, 1609–1620. [Google Scholar] [CrossRef]
- D’Amore, G.K.O.; Caniato, M.; Travan, A.; Turco, G.; Marsich, L.; Ferluga, A.; Schmid, C. Innovative thermal and acoustic insulation foam from recycled waste glass powder. J. Clean. Prod. 2017, 165, 1306–1315. [Google Scholar] [CrossRef]
- Yu, R.; van Onna, D.V.; Spiesz, P.; Yu, Q.L.; Brouwers, H.J.H. Development of Ultra-Lightweight Fibre Reinforced Concrete applying expanded waste glass. J. Clean. Prod. 2016, 112, 690–701. [Google Scholar] [CrossRef]
- Boukhelf, F.; Cherif, R.; Trabelsi, A.; Belarbi, R.; Bouiadjra, M.B. On the hygrothermal behavior of concrete containing glass powder and silica fume. J. Clean. Prod. 2021, 318, 128647. [Google Scholar] [CrossRef]
- Jayasingh, S.; Selvaraj, T.; Raneri, S. Evaluating the Impact of Organic Addition and Aggregate Gradation on Air Lime Mortar: New Compatible Green Material for Heritage Application. Int. J. Arch. Herit. 2020, 16, 681–691. [Google Scholar] [CrossRef]
- Stefanidou, M.; Assael, M.; Antoniadis, K.; Matziaroglou, G. Thermal Conductivity of Building Materials Employed in the Preservation of Traditional Structures. Int. J. Thermophys. 2010, 31, 844–851. [Google Scholar] [CrossRef]
- Sandaka, G. Calcination Behavior of Lumpy Limestones from Different Origins. Ph.D. Dissertation, Otto-von-Guericke-Universität Magdeburg, Magdeburg, Germany, 2016. [Google Scholar]
- Sinka, M.; Sahmenko, G. Sustainable Thermal Insulation Biocomposites from Locally Available Hemp and Lime. Environ. Technol. Resour. Proc. Int. Sci. Pract. Conf. 2015, 1, 73–77. [Google Scholar] [CrossRef]
- Jami, T.; Karade, S.R.; Singh, L.P. A review of the properties of hemp concrete for green building applications. J. Clean. Prod. 2019, 239, 117852. [Google Scholar] [CrossRef]
- Evrard, A. Transient Hygrothermal Behaviour of Lime-Hemp Materials; Universite Catholique De Louvain: Ottignies-Louvain-la-Neuve, Belgium, 2008. [Google Scholar]
- Shea, A.; Lawrence, M.; Walker, P. Hygrothermal performance of an experimental hemp–lime building. Constr. Build. Mater. 2012, 36, 270–275. [Google Scholar] [CrossRef]
- Abdellatef, Y.; Khan, M.A.; Khan, A.; Alam, M.I.; Kavgic, M. Mechanical, Thermal, and Moisture Buffering Properties of Novel Insulating Hemp-Lime Composite Building Materials. Materials 2020, 13, 5000. [Google Scholar] [CrossRef]
- Mandili, B.; Taqi, M.; El Bouari, A.; Errouaiti, M. Experimental study of a new ecological building material for a thermal insulation based on waste paper and lime. Constr. Build. Mater. 2019, 228, 117097. [Google Scholar] [CrossRef]
- Silva, S.P.; Sabino, M.A.; Fernandes, E.M.; Correlo, V.M.; Boesel, L.F.; Reis, R.L. Cork: Properties, capabilities and applications. Int. Mater. Rev. 2005, 50, 345–365. [Google Scholar] [CrossRef]
- Knapic, S.; Oliveira, V.; Machado, J.S.; Pereira, H. Cork as a building material: A review. Eur. J. Wood Wood Prod. 2016, 74, 775–791. [Google Scholar] [CrossRef]
- Tedjditi, A.K.; Ghomari, F.; Taleb, O.; Belarbi, R.; Bouhraoua, R.T. Potential of using virgin cork as aggregates in development of new lightweight concrete. Constr. Build. Mater. 2020, 265, 120734. [Google Scholar] [CrossRef]
- Anjos, O.; Pereira, H.; Rosa, M.E. Effect of quality, porosity and density on the compression properties of cork. Eur. J. Wood Wood Prod. 2008, 66, 295–301. [Google Scholar] [CrossRef]
- Merabti, S.; Kenai, S.; Belarbi, R.; Khatib, J. Thermo-mechanical and physical properties of waste granular cork composite with slag cement. Constr. Build. Mater. 2020, 272, 121923. [Google Scholar] [CrossRef]
- Borges, A.; Flores-Colen, I.; de Brito, J. Physical and mechanical performance of cement-based renders with different contents of fly ash, expanded cork granules and expanded clay. Constr. Build. Mater. 2018, 191, 535–543. [Google Scholar] [CrossRef]
- Novais, R.M.; Senff, L.; Carvalheiras, J.; Seabra, M.P.; Pullar, R.C.; Labrincha, J.A. Sustainable and efficient cork—Inorganic polymer composites: An innovative and eco-friendly approach to produce ultra-lightweight and low thermal conductivity materials. Cem. Concr. Compos. 2018, 97, 107–117. [Google Scholar] [CrossRef]
Bio-Source | Common Feedstock | Density (kg/m3) | Thermal Conductivity Value (W·m−1·K−1) | Specific Heat Capacity (J·kg−1·K−1) | Porosity (%) | Moisture Buffer Value g/(m2 %RH)) | Compressive Strength (Pa) | References |
---|---|---|---|---|---|---|---|---|
Mycelium | Mycelia in Fungi Roots | 100–309 | 0.03–0.06 | 10,200 | NOT APPLICABLE | NOT APPLICABLE | P. ostreatus family of Fungii: 0.177 | [16,22,23,24,25,60] |
Coffee | Coffee Grounds | 308–399 | 0.038–0.054 | 1400 | Green beans: 9.8 Roasted beans: 34.2 | NOT APPLICABLE | NOT APPLICABLE | [16,26] |
Hemp | Hemp Core, or “Shiv” | 200–800 | 0.1007 | 872.34 | 71.51 | NOT APPLICABLE | 0.2 to 0.12 | [28,29,30,31,32,33,34,35,36,37,38,39,40,41] |
Straw | Cereal Crop Containing Cellulose, Hemicellulose, Lignin, Ash, and Silica | 100 to 160 | 0.033 and 0.19 | 1338 and 2000 | 46.39–84.24 | 1.853 | NOT APPLICABLE | [16,40,41,42,44,45,46,47] |
Flax | Flax Shives | 110 | 0.082–0.111 | 1500 to 2700 | 72–76 | ~2 | NOT APPLICABLE | [16,48,49,51,52,53,54,55,56,61] |
Reed (reed mats) | Reed Plant | 137.6 | 0.056 | 508 | NOT APPLICABLE | NOT APPLICABLE | NOT APPLICABLE | [16,17,36,40,58] |
Grass | Grass | NOT APPLICABLE | 1.10 | 2.8 × 106 | NOT APPLICABLE | NOT APPLICABLE | NOT APPLICABLE | [16,40,59] |
Bioplastic | Acronym | Common Feedstock | Production Technique | Melting Temperatures (°C) | Density (kg/m3) | Tensile Strength (MPa) | Flexural Strength (MPa) | Thermal Conductivity (W·m−1·K−1) | References |
---|---|---|---|---|---|---|---|---|---|
Bio Polyethylene | PE | Biomass Sugar Beet, Sugar Cane, Corn, or Wheat Grain | Bioethanol Dehydration | 118 | LDPE: 910–940 | LDPE: 7–15 | LDPE: 6–26 | 0.4 | [63,74] |
LLDPE: 910–920 | LLDPE: - | LLDPE - | |||||||
HDPE: 941–967 | HDPE: 31–42 | HDPE: 10–50 | |||||||
Bio Propylene | PP | Corn, sugar cane, vegetable oil, and biomass | Ethylene Dimerization, then Metathesis | 165 | 900–910 | 28–40 | 10–20 MPa | 0.11 | [60,62,71,72] |
Poly- Lactic acid | PLAY | Corn, Corn Stover, Sugarcane Bagasse, Sugar Beet, Rice Hulls | Ring Opening Lactic Acid Technique, Polycondensation | 150 to 160 | 1240 | 50 | 80 | 0.183 | [62,64,66,71,74,76,77,78,79] |
Polybutylene Adipate Terephthalate | PBAT | Purified terephthalic acid (PTA), butanediol, and adipic acid | Polycondensation/ Polymerization Reaction | 120 | 1260 | 32–36 | 7.5 | 3 | [63,65,72,74,80,83,84,85,86,87,88,89,90,91,92,93,94,95] |
Polyhydroxyalkanoate | PHA | Sugars and Emerging Trials with Waste Biomass | Microbial Fermentation | 65–180 | 1260 | 24–40 | Not Applicable | Not Applicable | [63,74,81,96,97,98,99,100,101] |
PCM | Acronym | Formula | Melting/Solidification Temperatures (°C) | Thermal Conductivity (W·m−1·K−1) |
---|---|---|---|---|
Capric Acid | CA | C10H20O2 | 29.6–33.2 | 0.21 |
Lauric Acid | LA | C12H24O2 | 41–41.5 | 0.15–0.37 |
Myristic Acid | MA | C14H28O2 | 49–56.1 | 0.17–0.39 |
Palmitic Acid | PA | C16H32O2 | 58.9–64 | 0.3 |
Stearic Acid | SA | C18H36O2 | 53.8–70.8 | 0.159–0.35 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nasr, Y.; El Zakhem, H.; Hamami, A.E.A.; El Bachawati, M.; Belarbi, R. Comprehensive Review of Innovative Materials for Sustainable Buildings’ Energy Performance. Energies 2023, 16, 7440. https://doi.org/10.3390/en16217440
Nasr Y, El Zakhem H, Hamami AEA, El Bachawati M, Belarbi R. Comprehensive Review of Innovative Materials for Sustainable Buildings’ Energy Performance. Energies. 2023; 16(21):7440. https://doi.org/10.3390/en16217440
Chicago/Turabian StyleNasr, Yara, Henri El Zakhem, Ameur El Amine Hamami, Makram El Bachawati, and Rafik Belarbi. 2023. "Comprehensive Review of Innovative Materials for Sustainable Buildings’ Energy Performance" Energies 16, no. 21: 7440. https://doi.org/10.3390/en16217440