Simulation Modeling in Supply Chain Management Research of Ethanol: A Review
Abstract
:1. Introduction
2. Ethanol Supply Chain
3. Simulation Modeling of Ethanol Supply Chain Management
3.1. Applications of Discrete-Event Simulation
3.2. Applications of System Dynamics
3.3. Agent-Based Simulation
4. Discussion
5. Conclusions and Future Directions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- U.S. Environmental Protection Agency. Overview for Renewable Fuel Standard. Available online: https://www.epa.gov/renewable-fuel-standard-program/overview-renewable-fuel-standard (accessed on 25 September 2023).
- Lima, M.G.B. Just transition towards a bioeconomy: Four dimensions in Brazil, India and Indonesia. For. Policy Econ. 2022, 136, 102684. [Google Scholar] [CrossRef]
- Thambiran, T.; Diab, R.D. Air pollution and climate change co-benefit opportunities in the road transportation sector in Durban, South Africa. Atmos. Environ. 2011, 45, 2683–2689. [Google Scholar] [CrossRef]
- Rodionova, M.V.; Poudyal, R.S.; Tiwari, I.; Voloshin, R.A.; Zharmukhamedov, S.K.; Nam, H.G.; Zayadan, B.K.; Bruce, B.D.; Hou, H.J.M.; Allakhverdiev, S.I. Biofuel production: Challenges and opportunities. Int. J. Hydrogen Energy 2017, 42, 8450–8461. [Google Scholar] [CrossRef]
- Kim, S.; Kim, S.; Kiniry, J.R. Two-phase simulation-based location-allocation optimization of biomass storage distribution. Simul. Model. Pract. Theory 2018, 86, 155–168. [Google Scholar] [CrossRef]
- Saladini, F.; Patrizi, N.; Pulselli, F.M.; Marchettini, N.; Bastianoni, S. Guidelines for emergy evaluation of first, second and third generation biofuels. Renew. Sustain. Energy Rev. 2016, 66, 221–227. [Google Scholar] [CrossRef]
- Kim, S.; Ofekeze, E.; Kiniry, J.R.; Kim, S. Simulation-Based Capacity Planning of a Biofuel Refinery. Agronomy 2020, 10, 1702. [Google Scholar] [CrossRef]
- Statista. Fuel Ethanol Production Worldwide in 2022, by Country. Available online: https://www.statista.com/statistics/281606/ethanol-production-in-selected-countries/ (accessed on 31 October 2023).
- Ramsey, S. Fuel Ethanol Use Expanding Globally but Still Concentrated in Few Markets. U.S. Department of Agriculture. Available online: https://www.ers.usda.gov/amber-waves/2023/june/fuel-ethanol-use-expanding-globally-but-still-concentrated-in-few-markets/ (accessed on 31 October 2023).
- Larnaudie, V.; Ferrari, M.D.; Lareo, C. Techno-economic analysis of a liquid hot water pretreated switchgrass biorefinery: Effect of solids loading and enzyme dosage on enzymatic hydrolysis. Biomass Bioenergy 2019, 130, 105394. [Google Scholar] [CrossRef]
- Duarah, P.; Haldar, D.; Patel, A.K.; Dong, C.D.; Singhania, R.R.; Purkait, M.K. A review on global perspectives of sustainable development in bioenergy generation. Bioresour. Technol. 2022, 348, 126791. [Google Scholar] [CrossRef]
- Hasan, M.; Abedin, M.Z.; Amin, M.B.; Nekmahmud, M.; Oláh, J. Sustainable biofuel economy: A mapping through bibliometric research. J. Environ. Manag. 2023, 336, 117644. [Google Scholar] [CrossRef]
- Gupta, A.; Verma, J.P. Sustainable bio-ethanol production from agro-residues: A review. Renew. Sustain. Energy Rev. 2015, 41, 550–567. [Google Scholar] [CrossRef]
- Khan, S.; Naushad, M.; Iqbal, J.; Bathula, C.; Ala’a, H. Challenges and perspectives on innovative technologies for biofuel production and sustainable environmental management. Fuel 2022, 325, 124845. [Google Scholar] [CrossRef]
- Ou, L.; Banerjee, S.; Xu, H.; Coleman, A.M.; Cai, H.; Lee, U.; Wigmosta, M.S.; Hawkins, T.R. Utilizing high-purity carbon dioxide sources for algae cultivation and biofuel production in the United States: Opportunities and challenges. J. Clean. Prod. 2021, 321, 128779. [Google Scholar] [CrossRef]
- U.S. Energy Information Administration. Monthly Energy Review. U.S. Energy Information Admistration; EIA: Washington, DC, USA, 2017. Available online: https://www.eia.gov/totalenergy/data/monthly/ (accessed on 25 September 2023).
- Kim, S.; Kim, S.; Cho, J.; Park, S.; Jarrín Perez, F.X.; Kiniry, J.R. Simulated biomass, climate change impacts, and nitrogen management to achieve switchgrass biofuel production at diverse sites in US. Agronomy 2020, 10, 503. [Google Scholar] [CrossRef]
- Kelly, S.; Renshaw, J. US Boosts Biofuel Mandates over Next 3 Years, but Biofuel Groups Feel Shortchanged. Reuters. 21 June 2023. Available online: https://www.reuters.com/markets/commodities/us-boosts-biofuel-mandates-over-next-3-years-biofuel-groups-feel-shortchanged-2023-06-21/ (accessed on 25 September 2023).
- Roy, S.; Chowdhury, R.; Boro, H.; Sarma, B.K.; Kalita, S. Bioethanol Production from Lignocellulose Agricultural Waste Biomass. In Agriculture Waste Management and Bioresource: The Circular Economy Perspective; John Wiley & Sons: Hoboken, NJ, USA, 2023; pp. 218–237. [Google Scholar]
- Renewable Fuels Association. Pocket Guide to Ethanol 2019. Available online: https://d35t1syewk4d42.cloudfront.net/file/1032/RFA2019PocketGuide.pdf (accessed on 25 September 2023).
- Renwable Fuels Association. How Is Ethanol Made. Available online: https://ethanolrfa.org/ethanol-101/how-is-ethanol-made (accessed on 25 September 2023).
- Bothast, R.J.; Schlicher, M.A. Biotechnological processes for conversion of corn into ethanol. Appl. Microbiol. Biotechnol. 2005, 67, 19–25. [Google Scholar] [CrossRef]
- Rosenberg, S.L. Fermentation of pentose sugars to ethanol and other neutral products by microorganisms. Enzym. Microb. Technol. 1980, 2, 185–193. [Google Scholar] [CrossRef]
- Tgarguifa, A.; Abderafi, S.; Bounahmidi, T. Modeling and optimization of distillation to produce bioethanol. Energy Procedia 2017, 139, 43–48. [Google Scholar] [CrossRef]
- Fu, C.; Li, Z.; Jia, C.; Zhang, W.; Zhang, Y.; Yi, C.; Xie, S. Recent advances on bio-based isobutanol separation. Energy Convers. Manag. X 2021, 10, 100059. [Google Scholar] [CrossRef]
- Kim, S.; Kim, S. Hybrid simulation framework for the production management of an ethanol biorefinery. Renew. Sustain. Energy Rev. 2022, 155, 111911. [Google Scholar] [CrossRef]
- Karp, S.G.; Medina, J.D.; Letti, L.A.; Woiciechowski, A.L.; de Carvalho, J.C.; Schmitt, C.C.; de Oliveira Penha, R.; Kumlehn, G.S.; Soccol, C.R. Bioeconomy and biofuels: The case of sugarcane ethanol in Brazil. Biofuels Bioprod. Biorefining 2021, 15, 899–912. [Google Scholar] [CrossRef]
- Mekonnen, M.M.; Romanelli, T.L.; Ray, C.; Hoekstra, A.Y.; Liska, A.J.; Neale, C.M. Water, energy, and carbon footprints of bioethanol from the US and Brazil. Environ. Sci. Technol. 2018, 52, 14508–14518. [Google Scholar] [CrossRef]
- Rastogi, M.; Shrivastava, S. Recent advances in second generation bioethanol production: An insight to pretreat-ment, saccharification and fermentation processes. Renew. Sustain. Energy Rev. 2017, 80, 330–340. [Google Scholar] [CrossRef]
- Zabed, H.; Sahu, J.N.; Boyce, A.N.; Faruq, G. Fuel ethanol production from lignocellulosic biomass: An overview on feedstocks and technological approaches. Renew. Sustain. Energy Rev. 2016, 66, 751–774. [Google Scholar] [CrossRef]
- Kiniry, J.R.; Cassida, K.A.; Hussey, M.A.; Muir, J.P.; Ocumpaugh, W.R.; Read, J.C.; Reed, R.L.; Sanderson, M.A.; Venuto, B.C.; Williams, J.R. Switchgrass simulation by the ALMANAC model at diverse sites in the southern US. Biomass Bioenergy 2005, 29, 419–425. [Google Scholar] [CrossRef]
- Yue, D.; You, F.; Snyder, S.W. Biomass-to-bioenergy and biofuel supply chain optimization: Overview, key issues and challenges. Comput. Chem. Eng. 2014, 66, 36–56. [Google Scholar] [CrossRef]
- Larnaudie, V.; Ferrari, M.D.; Lareo, C. Switchgrass as an alternative biomass for ethanol production in a biorefinery: Perspectives on technology, economics and environmental sustainability. Renew. Sustain. Energy Rev. 2022, 158, 112115. [Google Scholar] [CrossRef]
- Haji Esmaeili, S.A.; Sobhani, A.; Ebrahimi, S.; Szmerekovsky, J.; Dybing, A.; Keramati, A. Location allocation of biorefineries for a switchgrass-based bioethanol supply chain using energy consumption and emissions. Logistics 2023, 7, 5. [Google Scholar] [CrossRef]
- Mousavi-Avval, S.H.; Sahoo, K.; Nepal, P.; Runge, T.; Bergman, R. Environmental impacts and techno-economic assessments of biobased products: A review. Renew. Sustain. Energy Rev. 2023, 180, 113302. [Google Scholar] [CrossRef]
- Macal, C.; North, M. Introductory tutorial: Agent-based modeling and simulation. In Proceedings of the Winter Simulation Conference, Savannah, GA, USA, 7–10 December 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 6–20. [Google Scholar]
- Law, A.M.; Kelton, W.D.; Kelton, W.D. Simulation Modeling and Analysis; Mcgraw-Hill: New York, NY, USA, 2007; Volume 3. [Google Scholar]
- Schruben, L.; Yücesan, E. Modeling paradigms for discrete event simulation. Oper. Res. Lett. 1993, 13, 265–275. [Google Scholar] [CrossRef]
- Borshchev, A.; Filippov, A. From system dynamics and discrete event to practical agent based modeling: Reasons, techniques, tools. In Proceedings of the 22nd International Conference of the System Dynamics Society, Oxford, UK, 25–29 July 2004; Volume 22, pp. 25–29. [Google Scholar]
- Richardson, G.P. System dynamics: Simulation for policy analysis from a feedback perspective. In Qualitative Simulation Modeling and Analysis; Springer: New York, NY, USA, 1991; pp. 144–169. [Google Scholar]
- Khosravi, S.; Haghshenas, H.; Salehi, V. Macro-scale evaluation of urban transportation demand management policies in CBD by using system dynamics case study: Isfahan CBD. Transp. Res. Procedia 2020, 48, 2671–2689. [Google Scholar] [CrossRef]
- Ghaffarzadegan, N.; Lyneis, J.; Richardson, G.P. How small system dynamics models can help the public policy process. Syst. Dyn. Rev. 2011, 27, 22–44. [Google Scholar] [CrossRef]
- Crooks, A.T.; Heppenstall, A.J. Introduction to agent-based modelling. In Agent-Based Models of Geographical Systems; Springer: Dordrecht, The Netherlands, 2011; pp. 85–105. [Google Scholar]
- Raberto, M.; Cincotti, S.; Focardi, S.M.; Marchesi, M. Agent-based simulation of a financial market. Phys. A Stat. Mech. Its Appl. 2001, 299, 319–327. [Google Scholar] [CrossRef]
- Cabrera, E.; Taboada, M.; Iglesias, M.L.; Epelde, F.; Luque, E. Optimization of healthcare emergency departments by agent-based simulation. Procedia Comput. Sci. 2011, 4, 1880–1889. [Google Scholar] [CrossRef]
- Bazzan, A.L.; Klügl, F. A review on agent-based technology for traffic and transportation. Knowl. Eng. Rev. 2014, 29, 375–403. [Google Scholar] [CrossRef]
- Somogyi, E.; Sluka, J.P.; Glazier, J.A. Formalizing knowledge in multi-scale agent-based simulations. In Proceedings of the ACM/IEEE 19th International Conference on Model Driven Engineering Languages and Systems, Saint-Malo, France, 2–7 October 2016; pp. 115–122. [Google Scholar]
- Chan, W.K.V.; Son, Y.J.; Macal, C.M. Agent-based simulation tutorial-simulation of emergent behavior and differences between agent-based simulation and discrete-event simulation. In Proceedings of the 2010 Winter Simulation Conference, Baltimore, MD, USA, 5–8 December 2010; IEEE: Piscataway, NJ, USA, 2010; pp. 135–150. [Google Scholar]
- Ouda, E.; Sleptchenko, A.; Simsekler, M.C.E. Comprehensive review and future research agenda on discrete-event simulation and agent-based simulation of emergency departments. Simul. Model. Pract. Theory 2023, 129, 102823. [Google Scholar] [CrossRef]
- Zhang, F.; Johnson, D.M.; Johnson, M.A.; Sutherland, J.W. Development of a Biomass Supply Chain for Biofuel Production. In Proceedings of the IIE Annual Conference, Reno, NV, USA, 21–25 May 2011; Institute of Industrial and Systems Engineers (IISE): Peachtree Corners, GA, USA, 2011; p. 1. [Google Scholar]
- Lamers, P.; Tan, E.C.; Searcy, E.M.; Scarlata, C.J.; Cafferty, K.G.; Jacobson, J.J. Strategic supply system design—A holistic evaluation of operational and production cost for a biorefinery supply chain. Biofuels Bioprod. Biorefining 2015, 9, 648–660. [Google Scholar] [CrossRef]
- Cigolini, R.; Pero, M.; Rossi, T.; Sianesi, A. Linking supply chain configuration to supply chain perfrmance: A discrete event simulation model. Simul. Model. Pract. Theory 2014, 40, 1–11. [Google Scholar] [CrossRef]
- Vidalakis, C.; Tookey, J.E.; Sommerville, J. Demand uncertainty in construction supply chains: A discrete event simulation study. J. Oper. Res. Soc. 2013, 64, 1194–1204. [Google Scholar] [CrossRef]
- Tako, A.A.; Robinson, S. The application of discrete event simulation and system dynamics in the logistics and supply chain context. Decis. Support Syst. 2012, 52, 802–815. [Google Scholar] [CrossRef]
- Sahoo, K.; Mani, S. GIS based discrete event modeling and simulation of biomass supply chain. In Proceedings of the 2015 Winter Simulation Conference (WSC), Huntington Beach, CA, USA, 6–9 December 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 967–978. [Google Scholar]
- Zhang, F.; Johnson, D.M.; Johnson, M.A. Development of a simulation model of biomass supply chain for biofuel production. Renew. Energy 2012, 44, 380–391. [Google Scholar] [CrossRef]
- U.S. Forestry Service. Forest Inventory Data Online (FIDO) and EVALIDator. Available online: https://www.fs.usda.gov/ccrc/tool/forest-inventory-data-online-fido-and-evalidator (accessed on 25 September 2023).
- Manuj, I.; Mentzer, J.T.; Bowers, M.R. Improving the rigor of discrete-event simulation in logistics and supply chain research. Int. J. Phys. Distrib. Logist. Manag. 2009, 39, 172–201. [Google Scholar] [CrossRef]
- Teng, J.T. On the economic order quantity under conditions of permissible delay in payments. J. Oper. Res. Soc. 2002, 53, 915–918. [Google Scholar] [CrossRef]
- Hicks, D.A. A four step methodology for using simulation and optimization technologies in strategic supply chain planning. In Proceedings of the 31st Conference on Winter Simulation: Simulation—A Bridge to the Future, Phoenix, AZ, USA, 5–8 December 1999; Volume 2, pp. 1215–1220. [Google Scholar]
- Barlas, Y. Formal aspects of model validity and validation in system dynamics. System Dynamics Review. J. Syst. Dyn. Soc. 1996, 12, 183–210. [Google Scholar] [CrossRef]
- Jin, E.; Mendis, G.P.; Sutherland, J.W. Integrated sustainability assessment for a bioenergy system: A system dynamics model of switchgrass for cellulosic ethanol production in the US midwest. J. Clean. Prod. 2019, 234, 503–520. [Google Scholar] [CrossRef]
- Christensen, T.; Panoutsou, C. Advanced biofuel value chains through system dynamics modelling and competitive priorities. Energies 2022, 15, 627. [Google Scholar] [CrossRef]
- Demczuk, A.; Padula, A.D. Using system dynamics modeling to evaluate the feasibility of ethanol supply chain in Brazil: The role of sugarcane yield, gasoline prices and sales tax rates. Biomass Bioenergy 2017, 97, 186–211. [Google Scholar] [CrossRef]
- Patzek, T.W. Thermodynamics of the corn-ethanol biofuel cycle. Crit. Rev. Plant Sci. 2004, 23, 519–567. [Google Scholar] [CrossRef]
- Ba, B.H.; Prins, C.; Prodhon, C. Models for optimization and performance evaluation of biomass supply chains: An Operations Research perspective. Renew. Energy 2016, 87, 977–989. [Google Scholar] [CrossRef]
- Kim, S.; Aydin, B.; Kim, S. Simulation modeling of a photovoltaic-green roof system for energy cost reduction of a building: Texas case study. Energies 2021, 14, 5443. [Google Scholar] [CrossRef]
- Moncada, J.A.; Verstegen, J.A.; Posada, J.A.; Junginger, M.; Lukszo, Z.; Faaij, A.; Weijnen, M. Exploring policy options to spur the expansion of ethanol production and consumption in Brazil: An agent-based modeling approach. Energy Policy 2018, 123, 619–641. [Google Scholar] [CrossRef]
- Bichraoui-Draper, N.; Xu, M.; Miller, S.A.; Guillaume, B. Agent-based life cycle assessment for switchgrass-based bioenergy systems. Resour. Conserv. Recycl. 2015, 103, 171–178. [Google Scholar] [CrossRef]
- Fernandez-Cornejo, J.; McBride, W.D. Adoption of bioengineered crops (No. 1473-2016-120752). USDA Economic Research Service. Available online: https://www.ers.usda.gov/publications/pub-details/?pubid=41423 (accessed on 25 September 2023).
- Anderson, L.; Schoney, R.; Nolan, J. Assessing the consequences of second-generation bioenergy crops for grain/livestock farming on the Canadian prairies: An agent-based simulation. J. Simul. 2023, 17, 149–163. [Google Scholar] [CrossRef]
- Kim, Y.; Kim, S.; Kim, S. An integrated agent-based simulation modeling framework for sustainable production of an Agrophotovoltaic system. J. Clean. Prod. 2023, 420, 138307. [Google Scholar] [CrossRef]
- Yoon, C.Y.; Kim, S.; Cho, J.; Kim, S. Modeling the Impacts of Climate Change on Yields of Various Korean Soybean Sprout Cultivars. Agronomy 2021, 11, 1590. [Google Scholar] [CrossRef]
Reaction | Reactants | Conversion (%) |
---|---|---|
90.0 | ||
4.0 | ||
0.4 | ||
0.6 | ||
80.0 | ||
4.0 | ||
0.3 | ||
4.6 | ||
0.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S.; Choi, Y.; Kim, S. Simulation Modeling in Supply Chain Management Research of Ethanol: A Review. Energies 2023, 16, 7429. https://doi.org/10.3390/en16217429
Kim S, Choi Y, Kim S. Simulation Modeling in Supply Chain Management Research of Ethanol: A Review. Energies. 2023; 16(21):7429. https://doi.org/10.3390/en16217429
Chicago/Turabian StyleKim, Sojung, Yeona Choi, and Sumin Kim. 2023. "Simulation Modeling in Supply Chain Management Research of Ethanol: A Review" Energies 16, no. 21: 7429. https://doi.org/10.3390/en16217429
APA StyleKim, S., Choi, Y., & Kim, S. (2023). Simulation Modeling in Supply Chain Management Research of Ethanol: A Review. Energies, 16(21), 7429. https://doi.org/10.3390/en16217429