Combined Methane Pyrolysis and Solid Carbon Gasification for Electrified CO2-Free Hydrogen and Syngas Production
Abstract
:1. Introduction
2. Methane Pyrolysis
2.1. Reaction Kinetics
2.1.1. Carbon-Based Catalysts
2.1.2. Iron-Based Catalysts
2.1.3. Nickel-Based Catalysts
2.1.4. Deactivation Functions for the Characterization of Deactivation Due to Coking
2.1.5. Homogeneous Gas-Phase Methane Pyrolysis Kinetics
2.2. Reactor Technologies for Catalytic Methane Pyrolysis
2.3. Electrified Reactor Technologies for Catalytic Methane Pyrolysis
3. Solid Carbon Deposition and Gasification
3.1. Coke Deposition
3.2. Gasification Kinetics
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Agency, I.E. The Future of Hydrogen; OECD: Paris, France, 2019. [Google Scholar]
- Van Geem, K.M.; Galvita, V.V.; Marin, G.B. Making chemicals with electricity. Science 2019, 364, 734–735. [Google Scholar] [CrossRef] [PubMed]
- Erisman, J.W.; Sutton, M.A.; Galloway, J.; Klimont, Z.; Winiwarter, W. How a century of ammonia synthesis changed the world. Nat. Geosci. 2008, 1, 636–639. [Google Scholar] [CrossRef]
- Air Liquide Paves the Way for Ammonia Conversion into Hydrogen with New Cracking Technology. Available online: https://www.airliquide.com/group/press-releases-news/2023-03-23/air-liquide-paves-way-ammonia-conversion-hydrogen-new-cracking-technology (accessed on 8 August 2023).
- IEA. Hydrogen Patents for a Clean Energy Future; IEA: Paris, France, 2023. [Google Scholar]
- Lubbe, F.; Rongé, J.; Bosserez, T.; Martens, J.A. Golden hydrogen. Curr. Opin. Green Sustain. Chem. 2023, 39, 100732. [Google Scholar] [CrossRef]
- Between Green and Blue: A debate on Turquoise Hydrogen. Available online: https://fsr.eui.eu/between-green-and-blue-a-debate-on-turquoise-hydrogen/ (accessed on 1 September 2023).
- Verbeeck, K.; Buelens, L.C.; Galvita, V.V.; Marin, G.B.; Van Geem, K.M.; Rabaey, K. Upgrading the value of anaerobic digestion via chemical production from grid injected biomethane. Energy Environ. Sci. 2018, 11, 1788–1802. [Google Scholar] [CrossRef]
- Ryckebosch, E.; Drouillon, M.; Vervaeren, H. Techniques for transformation of biogas to biomethane. Biomass Bioenergy 2011, 35, 1633–1645. [Google Scholar] [CrossRef]
- Abánades, A.; Rathnam, R.K.; Geißler, T.; Heinzel, A.; Mehravaran, K.; Müller, G.; Plevan, M.; Rubbia, C.; Salmieri, D.; Stoppel, L.; et al. Development of methane decarbonisation based on liquid metal technology for CO2-free production of hydrogen. Int. J. Hydrogen Energy 2016, 41, 8159–8167. [Google Scholar] [CrossRef]
- Sánchez-Bastardo, N.; Schlögl, R.; Ruland, H. Methane Pyrolysis for CO2-Free H2 Production: A Green Process to Overcome Renewable Energies Unsteadiness. Chem. Ing. Tech. 2020, 92, 1596–1609. [Google Scholar] [CrossRef]
- Zhang, J.; Li, X.; Chen, H.; Qi, M.; Zhang, G.; Hu, H.; Ma, X. Hydrogen production by catalytic methane decomposition: Carbon materials as catalysts or catalyst supports. Int. J. Hydrogen Energy 2017, 42, 19755–19775. [Google Scholar] [CrossRef]
- Muradov, N.Z.; Veziroǧlu, T.N. From hydrocarbon to hydrogen–carbon to hydrogen economy. Int. J. Hydrogen Energy 2005, 30, 225–237. [Google Scholar] [CrossRef]
- Jorschick, H.; Bösmann, A.; Preuster, P.; Wasserscheid, P. Charging a Liquid Organic Hydrogen Carrier System with H2/CO2 Gas Mixtures. ChemCatChem 2018, 10, 4329–4337. [Google Scholar] [CrossRef]
- Jorschick, H.; Vogl, M.; Preuster, P.; Bösmann, A.; Wasserscheid, P. Hydrogenation of liquid organic hydrogen carrier systems using multicomponent gas mixtures. Int. J. Hydrogen Energy 2019, 44, 31172–31182. [Google Scholar] [CrossRef]
- Reuß, M.; Grube, T.; Robinius, M.; Preuster, P.; Wasserscheid, P.; Stolten, D. Seasonal storage and alternative carriers: A flexible hydrogen supply chain model. Appl. Energy 2017, 200, 290–302. [Google Scholar] [CrossRef]
- Kreuger, T.; Bos, A.N.R.; Kersten, S.R.A. Predicting gasification rates of pyrolytic graphite deposited from methane. Chem. Eng. J. 2022, 440, 135487. [Google Scholar] [CrossRef]
- Ergun, S. Kinetics of the Reaction of Carbon with Carbon Dioxide. J. Phys. Chem. 1956, 60, 480–485. [Google Scholar] [CrossRef]
- Vohler, O.; Reiser, P.L.; Sperk, E. Deposition of pyrolytic carbon in the pores of graphite bodies—I. Introduction to and results of deposition experiments using methane. Carbon 1968, 6, 397–403. [Google Scholar] [CrossRef]
- Lobo, L.S.; Carabineiro, S.A.C. Kinetics and mechanism of catalytic carbon gasification. Fuel 2016, 183, 457–469. [Google Scholar] [CrossRef]
- Zhang, Y.; Hara, S.; Kajitani, S.; Ashizawa, M. Modeling of catalytic gasification kinetics of coal char and carbon. Fuel 2010, 89, 152–157. [Google Scholar] [CrossRef]
- Lobo, L.S. Intrinsic kinetics in carbon gasification: Understanding linearity, “nanoworms” and alloy catalysts. Appl. Catal. B: Environ. 2014, 148–149, 136–143. [Google Scholar] [CrossRef]
- Lobo, L.S.; Carabineiro, S.A.C. Catalytic carbon gasification: Understanding catalyst-carbon contact and rate jump behavior with air. Fuel Process. Technol. 2018, 179, 313–318. [Google Scholar] [CrossRef]
- Arnold, R.A.; Motta, I.L.; Hill, J.M. Impact of particle size and catalyst dispersion on gasification rates measured in a thermogravimetric analysis unit: Case study of carbon black catalyzed by potassium or calcium. Fuel 2021, 288, 119677. [Google Scholar] [CrossRef]
- Xu, B.; Cao, Q.; Kuang, D.; Gasem, K.A.M.; Adidharma, H.; Ding, D.; Fan, M. Kinetics and mechanism of CO2 gasification of coal catalyzed by Na2CO3, FeCO3 and Na2CO3–FeCO3. J. Energy Inst. 2020, 93, 922–933. [Google Scholar] [CrossRef]
- Dahou, T.; Defoort, F.; Khiari, B.; Labaki, M.; Dupont, C.; Jeguirim, M. Role of inorganics on the biomass char gasification reactivity: A review involving reaction mechanisms and kinetics models. Renew. Sustain. Energy Rev. 2021, 135, 110136. [Google Scholar] [CrossRef]
- Pinilla, J.L.; Suelves, I.; Utrilla, R.; Gálvez, M.E.; Lázaro, M.J.; Moliner, R. Hydrogen production by thermo-catalytic decomposition of methane: Regeneration of active carbons using CO2. J. Power Sources 2007, 169, 103–109. [Google Scholar] [CrossRef]
- Muradov, N. Catalysis of methane decomposition over elemental carbon. Catal. Commun. 2001, 2, 89–94. [Google Scholar] [CrossRef]
- Bajec, D.; Kostyniuk, A.; Pohar, A.; Likozar, B. Micro-kinetics of non-oxidative methane coupling to ethylene over Pt/CeO2 catalyst. Chem. Eng. J. 2020, 396, 125182. [Google Scholar] [CrossRef]
- Nishikawa, Y.; Ogihara, H.; Yamanaka, I. Liquid-Metal Indium Catalysis for Direct Dehydrogenative Conversion of Methane to Higher Hydrocarbons. ChemistrySelect 2017, 2, 4572–4576. [Google Scholar] [CrossRef]
- Sheng, H.; Schreiner, E.P.; Zheng, W.; Lobo, R.F. Non-oxidative Coupling of Methane to Ethylene Using Mo2C/[B]ZSM-5. ChemPhysChem 2018, 19, 504–511. [Google Scholar] [CrossRef] [PubMed]
- Gerceker, D.; Motagamwala, A.H.; Rivera-Dones, K.R.; Miller, J.B.; Huber, G.W.; Mavrikakis, M.; Dumesic, J.A. Methane Conversion to Ethylene and Aromatics on PtSn Catalysts. ACS Catal. 2017, 7, 2088–2100. [Google Scholar] [CrossRef]
- Guo, X.G.; Fang, G.Z.; Li, G.; Ma, H.; Fan, H.J.; Yu, L.; Ma, C.; Wu, X.; Deng, D.H.; Wei, M.M.; et al. Direct, Nonoxidative Conversion of Methane to Ethylene, Aromatics, and Hydrogen. Science 2014, 344, 616–619. [Google Scholar] [CrossRef]
- Ji, Y.; Palmer, C.; Foley, E.E.; Giovine, R.; Yoshida, E.; Sebti, E.; Patterson, A.R.; McFarland, E.; Clément, R.J. Valorizing the carbon byproduct of methane pyrolysis in batteries. Carbon 2023, 204, 26–35. [Google Scholar] [CrossRef]
- Chesnokov, V.V.; Chichkan, A.S. Production of hydrogen by methane catalytic decomposition over Ni–Cu–Fe/Al2O3 catalyst. Int. J. Hydrogen Energy 2009, 34, 2979–2985. [Google Scholar] [CrossRef]
- Guéret, C.; Daroux, M.; Billaud, F. Methane pyrolysis: Thermodynamics. Chem. Eng. Sci. 1997, 52, 815–827. [Google Scholar] [CrossRef]
- Keipi, T.; Tolvanen, K.E.S.; Tolvanen, H.; Konttinen, J. Thermo-catalytic decomposition of methane: The effect of reaction parameters on process design and the utilization possibilities of the produced carbon. Energy Convers. Manag. 2016, 126, 923–934. [Google Scholar] [CrossRef]
- Parkinson, B.; Patzschke, C.F.; Nikolis, D.; Raman, S.; Dankworth, D.C.; Hellgardt, K. Methane pyrolysis in monovalent alkali halide salts: Kinetics and pyrolytic carbon properties. Int. J. Hydrogen Energy 2021, 46, 6225–6238. [Google Scholar] [CrossRef]
- Bae, D.; Kim, Y.; Ko, E.H.; Ju Han, S.; Lee, J.W.; Kim, M.; Kang, D. Methane pyrolysis and carbon formation mechanisms in molten manganese chloride mixtures. Appl. Energy 2023, 336, 120810. [Google Scholar] [CrossRef]
- Dors, M.; Nowakowska, H.; Jasiński, M.; Mizeraczyk, J. Chemical Kinetics of Methane Pyrolysis in Microwave Plasma at Atmospheric Pressure. Plasma Chem. Plasma Process. 2014, 34, 313–326. [Google Scholar] [CrossRef]
- Baranov, I.E.; Demkin, S.A.; Zhivotov, V.K.; Nikolaev, I.I.; Rusanov, V.D.; Fedotov, N.G. Methane Pyrolysis Stimulated by Admixture of Atomic Hydrogen: 2. Mechanism Analysis and Kinetics Calculation. High Energy Chem. 2005, 39, 268–272. [Google Scholar] [CrossRef]
- Mao, X.; Chen, Q.; Guo, C. Methane pyrolysis with N2/Ar/He diluents in a repetitively-pulsed nanosecond discharge: Kinetics development for plasma assisted combustion and fuel reforming. Energy Convers. Manag. 2019, 200, 112018. [Google Scholar] [CrossRef]
- Alstrup, I.; Teresa Tavares, M. The kinetics of carbon formation from CH4 + H2 on a silica-supported nickel catalyst. J. Catal. 1992, 135, 147–155. [Google Scholar] [CrossRef]
- Snoeck, J.W.; Froment, G.F.; Fowles, M. Kinetic Study of the Carbon Filament Formation by Methane Cracking on a Nickel Catalyst. J. Catal. 1997, 169, 250–262. [Google Scholar] [CrossRef]
- Riley, J.; Atallah, C.; Siriwardane, R.; Stevens, R. Technoeconomic analysis for hydrogen and carbon Co-Production via catalytic pyrolysis of methane. Int. J. Hydrogen Energy 2021, 46, 20338–20358. [Google Scholar] [CrossRef]
- Ashik, U.P.M.; Wan Daud, W.M.A.; Abbas, H.F. Methane decomposition kinetics and reaction rate over Ni/SiO2 nanocatalyst produced through co-precipitation cum modified Stöber method. Int. J. Hydrogen Energy 2017, 42, 938–952. [Google Scholar] [CrossRef]
- Chen, Q.; Lua, A.C. Kinetic reaction and deactivation studies on thermocatalytic decomposition of methane by electroless nickel plating catalyst. Chem. Eng. J. 2020, 389, 124366. [Google Scholar] [CrossRef]
- Wang, H.Y.; Lua, A.C. Deactivation and kinetic studies of unsupported Ni and Ni–Co–Cu alloy catalysts used for hydrogen production by methane decomposition. Chem. Eng. J. 2014, 243, 79–91. [Google Scholar] [CrossRef]
- Kreuger, T.; van Swaaij, W.P.M.; Bos, A.N.R.; Kersten, S.R.A. Methane decomposition kinetics on unfunctionalized alumina surfaces. Chem. Eng. J. 2022, 427, 130412. [Google Scholar] [CrossRef]
- Xavier, N.F., Jr.; Bauerfeldt, G.F.; Sacchi, M. First-Principles Microkinetic Modeling Unravelling the Performance of Edge-Decorated Nanocarbons for Hydrogen Production from Methane. ACS Appl. Mater. Interfaces 2023, 15, 6951–6962. [Google Scholar] [CrossRef] [PubMed]
- Muradov, N. Thermocatalytic CO2-free production of hydrogen from hydrocarbon fuels. In Proceedings of the 2000 Hydrogen Program Review, San Ramon, CA, USA, 5 September–5 November 2000. [Google Scholar]
- Trommer, D.; Hirsch, D.; Steinfeld, A. Kinetic investigation of the thermal decomposition of CH4 by direct irradiation of a vortex-flow laden with carbon particles. Int. J. Hydrogen Energy 2004, 29, 627–633. [Google Scholar] [CrossRef]
- Dahl, J.K.; Barocas, V.H.; Clough, D.E.; Weimer, A.W. Intrinsic kinetics for rapid decomposition of methane in an aerosol flow reactor. Int. J. Hydrogen Energy 2002, 27, 377–386. [Google Scholar] [CrossRef]
- Pinilla, J.L.; Suelves, I.; Lázaro, M.J.; Moliner, R. Kinetic study of the thermal decomposition of methane using carbonaceous catalysts. Chem. Eng. J. 2008, 138, 301–306. [Google Scholar] [CrossRef]
- Abbas, H.F.; Daud, W.M.A.W. Hydrogen production by thermocatalytic decomposition of methane using a fixed bed activated carbon in a pilot scale unit: Apparent kinetic, deactivation and diffusional limitation studies. Int. J. Hydrogen Energy 2010, 35, 12268–12276. [Google Scholar] [CrossRef]
- Sharif Zein, S.H.; Mohamed, A.R.; Talpa Sai, P.S. Kinetic Studies on Catalytic Decomposition of Methane to Hydrogen and Carbon over Ni/TiO2 Catalyst. Ind. Eng. Chem. Res. 2004, 43, 4864–4870. [Google Scholar] [CrossRef]
- Shah, N.; Panjala, D.; Huffman, G.P. Hydrogen Production by Catalytic Decomposition of Methane. Energy Fuels 2001, 15, 1528–1534. [Google Scholar] [CrossRef]
- Aiello, R.; Fiscus, J.E.; zur Loye, H.-C.; Amiridis, M.D. Hydrogen production via the direct cracking of methane over Ni/SiO2: Catalyst deactivation and regeneration. Appl. Catal. A: Gen. 2000, 192, 227–234. [Google Scholar] [CrossRef]
- Zhou, L.; Enakonda, L.R.; Harb, M.; Saih, Y.; Aguilar-Tapia, A.; Ould-Chikh, S.; Hazemann, J.-L.; Li, J.; Wei, N.; Gary, D.; et al. Fe catalysts for methane decomposition to produce hydrogen and carbon nano materials. Appl. Catal. B Environ. 2017, 208, 44–59. [Google Scholar] [CrossRef]
- Zavarukhin, S.G.; Kuvshinov, G.G. The kinetic model of formation of nanofibrous carbon from CH4–H2 mixture over a high-loaded nickel catalyst with consideration for the catalyst deactivation. Appl. Catal. A Gen. 2004, 272, 219–227. [Google Scholar] [CrossRef]
- Ermakova, M.A.; Ermakov, D.Y.; Kuvshinov, G.G. Effective catalysts for direct cracking of methane to produce hydrogen and filamentous carbon: Part I. Nickel catalysts. Appl. Catal. A: Gen. 2000, 201, 61–70. [Google Scholar] [CrossRef]
- Bartholomew, C.H. Mechanisms of catalyst deactivation. Appl. Catal. A: Gen. 2001, 212, 17–60. [Google Scholar] [CrossRef]
- Muradov, N.; Smith, F.; T-Raissi, A. Catalytic activity of carbons for methane decomposition reaction. Catal. Today 2005, 102-103, 225–233. [Google Scholar] [CrossRef]
- Slotboom, Y.; Kersten, S.R.A. Mapping of operating windows for methane and ethane pyrolysis in the pulsed compression reactor by experiments and modelling. Chem. Eng. J. 2023, 468, 143522. [Google Scholar] [CrossRef]
- Younessi-Sinaki, M.; Matida, E.A.; Hamdullahpur, F. Kinetic model of homogeneous thermal decomposition of methane and ethane. Int. J. Hydrogen Energy 2009, 34, 3710–3716. [Google Scholar] [CrossRef]
- Shinde, V.M.; Pradeep, P. Detailed gas-phase kinetics and reduced reaction mechanism for methane pyrolysis involved in CVD/CVI processes. J. Anal. Appl. Pyrolysis 2021, 154, 104998. [Google Scholar] [CrossRef]
- Appel, J.; Bockhorn, H.; Frenklach, M. Kinetic modeling of soot formation with detailed chemistry and physics: Laminar premixed flames of C2 hydrocarbons. Combust. Flame 2000, 121, 122–136. [Google Scholar] [CrossRef]
- McConnachie, M.; Konarova, M.; Smart, S. Literature review of the catalytic pyrolysis of methane for hydrogen and carbon production. Int. J. Hydrogen Energy 2023. [Google Scholar] [CrossRef]
- Schneider, S.; Bajohr, S.; Graf, F.; Kolb, T. State of the Art of Hydrogen Production via Pyrolysis of Natural Gas. ChemBioEng Rev. 2020, 7, 150–158. [Google Scholar] [CrossRef]
- Cornejo, A. System for the Production of Hydrogen and Graphitic Carbon; Hazer Group Limited: Perth, Australia, 2018. [Google Scholar]
- Chua, H.T.; Cornejo, A.; Raston, C.L.; Gao, L. Process for Producing Hydrogen from Hydrocarbons; Hazer Group Limited: Perth, Australia, 2020. [Google Scholar]
- Innova Hydrogen Corp. Apparatus and Method for Producing Graphene and Hydrogen. WO2022251979A1, 18 December 2022.
- Lee, U.D.; Yang, C.W.; Bang, B.R.; Jeong, S.H.; Gayatri, U.I.; Kwon, H.M.; Cho, C.H.; Oh, S.J. Reactor for Producing Hydrogen and Carbon through Pyrolysis of Methane by Thermal Storage Method, and Combination Reactor Comprising Same; Korean Institute of Industrial Technology: Cheonan-si, Republic of Korea, 2023. [Google Scholar]
- Shanghui, T. Catalyst for Hydrogen Production through Catalytic Cracking of Methane and Preparation Method of Catalyst; Zhongjing Chengkang Resource Regeneration Utilization Technology Co., Ltd., 2022. Available online: https://worldwide.espacenet.com/patent/search/family/086891789/publication/CN116328774A?q=CN116328774A (accessed on 20 September 2023).
- Xenophon, V.; Stylianos, N. Catalytic Materials for Pyrolysis of Methane and Production of Hydrogen and Solid Carbon with Substantially Zero Atmospheric Carbon Emissions; Verykios Xenophon, 2022. Available online: https://worldwide.espacenet.com/patent/search/family/081185890/publication/US11401163B2?q=US11401163B2 (accessed on 20 September 2023).
- Van Geem, K.M.; Weckhuysen, B.M. Toward an e-chemistree: Materials for electrification of the chemical industry. MRS Bull. 2021, 46, 1187–1196. [Google Scholar] [CrossRef]
- Wismann, S.T.; Engbæk, J.S.; Vendelbo, S.B.; Bendixen, F.B.; Eriksen, W.L.; Aasberg-Petersen, K.; Frandsen, C.; Chorkendorff, I.; Mortensen, P.M. Electrified methane reforming: A compact approach to greener industrial hydrogen production. Science 2019, 364, 756. [Google Scholar] [CrossRef] [PubMed]
- Stankiewicz, A.I.; Nigar, H. Beyond electrolysis: Old challenges and new concepts of electricity-driven chemical reactors. React. Chem. Eng. 2020, 5, 1005–1016. [Google Scholar] [CrossRef]
- Pinto, J.; Silva, V.L.M.; Silva, A.M.G.; Silva, A.M.S.; Costa, J.C.S.; Santos, L.M.N.B.F.; Enes, R.; Cavaleiro, J.A.S.; Vicente, A.A.M.O.S.; Teixeira, J.A.C. Ohmic heating as a new efficient process for organic synthesis in water. Green Chem. 2013, 15, 970–975. [Google Scholar] [CrossRef]
- Gupta, R.; Jalan, A.; Caram, H.S.; Dankworth, D.C. Methane Pyrolysis Using Stacked Fluidized Beds with Electric Heating of Coke. U.S. Patent Application No 17/236,418, 2020. [Google Scholar]
- New Technologies. Available online: https://www.basf.com/global/en/who-we-are/sustainability/we-produce-safely-and-efficiently/energy-and-climate-protection/carbon-management/innovations-for-a-climate-friendly-chemical-production.html (accessed on 31 August 2023).
- Innovative Processes for Climate-Smart Chemistry. Available online: https://report.basf.com/2021/en/shareholders/basf-on-the-capital-market/methane-pyrolysis.html (accessed on 31 August 2023).
- Bode, A. Methane Pyrolysis—A Potential New Process for Hydrogen Production without CO2 Emission. Available online: https://www.efzn.de/fileadmin/documents/Niedersaechsische_Energietage/Vortr%C3%A4ge/2019/NET2019_FF1_04_Bode_Rev1.pdf (accessed on 31 August 2023).
- Philibert, C. Methane Splitting and Turquoise Ammonia. Available online: https://www.ammoniaenergy.org/articles/methane-splitting-and-turquoise-ammonia/ (accessed on 31 August 2023).
- Fedorov, S.S.; Gubynskyi, M.V.; Livitan, M.V.; Barsukov, I.V.; Barsukov, M.G.; Wells, B.S.; Rohatgi, U.S.; Gogotsi, O.G. Ultra-High Temperature Continuous Reactors based on Electro-thermal Fluidized Bed Concept. Available online: https://asmedigitalcollection.asme.org/fluidsengineering/article-abstract/138/4/044502/374335/Ultrahigh-Temperature-Continuous-Reactors-Based-on?redirectedFrom=fulltext (accessed on 10 February 2022).
- Gubynskyi, M.V.; Barsukov, I.V.; Gogotsi, O.G.; Fedorov, S.S.; Livitan, M.V.; Rohatgi, U. Electrothermal Fluidized Bed Furnace for Thermal Treatment of Recycled Battery Wastes. In Proceedings of the ASME 2013 Fluids Engineering Division Summer Meeting, Incline Village, NV, USA, 7–11 July 2013. [Google Scholar]
- Volodymyrovych, H.M.; Serhiiovych, F.S.; Mykolaivna, F.S.; Vasyliovych, L.M.; Andriivna, S.T. Electrothermal Furnace with Fluidized Bed; National Metallurgical Academy of Ukraine: Dnipro, Ukraine, 2015. [Google Scholar]
- Veryasov, G.; Nesterenko, N.; Vermeiren, W. Process to Conduct an Endothermic Steam Reforming Reaction in a Fluidized Bed Reactor. U.S. Patent Application No 18/017,362, 2022. [Google Scholar]
- Veryasov, G.; Nesterenko, N.; Vermeiren, W. Process to Conduct Endothermic Direct Pyrolysis of Methane in a Fluidized Bed Reactor. U.S. Patent Application No 18/017,360, 2022. [Google Scholar]
- Tuot, J. The Electrothermal Fluidized Bed and Its Application to the Production of Titanium Carbide; McGill University: Montreal, QC, Canada, 1976. [Google Scholar]
- Manieh, A.A.; Scott, D.S.; Spink, D.R. Electrothermal fluidized bed chlorination of zircon. Can. J. Chem. Eng. 1974, 52, 507–514. [Google Scholar] [CrossRef]
- Johnson, P.H. Electrothermic Fluidized Bed Process; Phillips Petroleum Co: Bartlesville, OK, USA, 1970. [Google Scholar]
- Dietz, P.W. Electrofluidized Bed Mechanics. MIT: Cambridge, MA, USA, 1976. [Google Scholar]
- Dong, Q.; Yao, Y.; Cheng, S.; Alexopoulos, K.; Gao, J.; Srinivas, S.; Wang, Y.; Pei, Y.; Zheng, C.; Brozena, A.H.; et al. Programmable heating and quenching for efficient thermochemical synthesis. Nature 2022, 605, 470–476. [Google Scholar] [CrossRef]
- Dadsetan, M.; Khan, M.F.; Salakhi, M.; Bobicki, E.R.; Thomson, M.J. CO2-free hydrogen production via microwave-driven methane pyrolysis. Int. J. Hydrogen Energy 2023, 48, 14565–14576. [Google Scholar] [CrossRef]
- Dadsetan, M.; Latham, K.G.; Khan, M.F.; Zaher, M.H.; Manzoor, S.; Bobicki, E.R.; Titirici, M.M.; Thomson, M.J. Characterization of carbon products from microwave-driven methane pyrolysis. Carbon Trends 2023, 12, 100277. [Google Scholar] [CrossRef]
- Hamzehlouia, S.; Chaouki, J. Microwave-Assisted Catalytic Reactions Using Modified Bed Particles; Polyvalor: Montreal, QC, Canada, 2018. [Google Scholar]
- Rudolph, C.; Atakan, B. Pyrolysis of Methane and Ethane in a Compression–Expansion Process as a New Concept for Chemical Energy Storage: A Kinetic and Exergetic Investigation. Energy Technol. 2021, 9, 2000948. [Google Scholar] [CrossRef]
- Guil-Lopez, R.; Botas, J.A.; Fierro, J.L.G.; Serrano, D.P. Comparison of metal and carbon catalysts for hydrogen production by methane decomposition. Appl. Catal. A: Gen. 2011, 396, 40–51. [Google Scholar] [CrossRef]
- Harris, P.J.F.; Liu, Z.; Suenaga, K. Imaging the atomic structure of activated carbon. J. Phys. Condens. Matter 2008, 20, 362201. [Google Scholar] [CrossRef]
- Kreuger, T.; van Swaaij, W.P.M.; Kersten, S.R.A. Methane pyrolysis over porous particles. Catal. Today 2023, 420. [Google Scholar] [CrossRef]
- Philibert, C. Methane Splitting and Turquoise Ammonia; Ammonia Energy Association: New York, NY, USA, 2020. [Google Scholar]
- Daloz, W.; Scheiff, F.; Ehrhardt, K.; Flick, D.; Bode, A. The quest for CO2-free hydrogen—Methane pyrolysis at scale. In Proceedings of the ARPA-E Methane Cohort Kickoff, Houston, TX, USA, 9–10 December 2019. [Google Scholar]
- Vander Wal, R.; Makiesse Nkiawete, M. Carbons as Catalysts in Thermo-Catalytic Hydrocarbon Decomposition: A Review. C 2020, 6, 23. [Google Scholar] [CrossRef]
- Muradov, N.Z. CO2-free production of hydrogen by catalytic pyrolysis of hydrocarbon fuel. Energy Fuels 1998, 12, 41–48. [Google Scholar] [CrossRef]
- Yang, Z.; Gao, W. Applications of Machine Learning in Alloy Catalysts: Rational Selection and Future Development of Descriptors. Adv. Sci. 2022, 9, 2106043. [Google Scholar] [CrossRef]
- Yang, L.; Liu, F.; Liu, Y.; Quan, W.; He, J. Deep regeneration of activated carbon catalyst and autothermal analysis for chemical looping methane thermo-catalytic decomposition process. Int. J. Hydrogen Energy 2018, 43, 17633–17642. [Google Scholar] [CrossRef]
- Adamska, A.; Malaika, A.; Kozłowski, M. Carbon-Catalyzed Decomposition of Methane in the Presence of Carbon Dioxide. Energy Fuels 2010, 24, 3307–3312. [Google Scholar] [CrossRef]
- Abbas, H.F.; Daud, W.M.A.W. An experimental investigation into the CO2 gasification of deactivated activated-carbon catalyst used for methane decomposition to produce hydrogen. Int. J. Hydrogen Energy 2010, 35, 141–150. [Google Scholar] [CrossRef]
- Abbas, H.F.; Daud, W.M.A.W. Thermocatalytic decomposition of methane for hydrogen production using activated carbon catalyst: Regeneration and characterization studies. Int. J. Hydrogen Energy 2009, 34, 8034–8045. [Google Scholar] [CrossRef]
- Dufour, A.; Celzard, A.; Fierro, V.; Broust, F.; Courson, C.; Zoulalian, A.; Rouzaud, J.N. Catalytic conversion of methane over a biomass char for hydrogen production: Deactivation and regeneration by steam gasification. Appl. Catal. A Gen. 2015, 490, 170–180. [Google Scholar] [CrossRef]
Catalyst | Reaction Order ‘n’ with Respect to Methane | Pre-Exponential Factor ) | Activation Energy (kJ mol−1) | Comments | References |
---|---|---|---|---|---|
Carbon-based | |||||
Carbon black | 0.5 | - | 141 | TGA 800–950 °C | [54] |
Activated carbon | 0.5 | - | 238 | TGA 800–950 °C | [54] |
Activated carbon | 2 | 4.28 | 163 | Fixed bed 775–850 °C | [55] |
Iron-based | |||||
Fe | 1 | 8.80 × 10−10 | 54 | TGA experiments, undisclosed composition 700–800 °C | [45] |
Nickel-based | |||||
Ni/SiO2 | 1.4 | 2.24 × 101 | 61 | Coprecipitation 550–650 °C | [46] |
Ni-SBA-15 | 2 | 2.98 × 103 | 114 | Electroless plating 525–600 °C | [47] |
Ni/TiO2 | - | - | 60 | Wet impregnation 550–900 °C Kinetic model based on methane conversion | [56] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Perreault, P.; Boruntea, C.-R.; Dhawan Yadav, H.; Portela Soliño, I.; Kummamuru, N.B. Combined Methane Pyrolysis and Solid Carbon Gasification for Electrified CO2-Free Hydrogen and Syngas Production. Energies 2023, 16, 7316. https://doi.org/10.3390/en16217316
Perreault P, Boruntea C-R, Dhawan Yadav H, Portela Soliño I, Kummamuru NB. Combined Methane Pyrolysis and Solid Carbon Gasification for Electrified CO2-Free Hydrogen and Syngas Production. Energies. 2023; 16(21):7316. https://doi.org/10.3390/en16217316
Chicago/Turabian StylePerreault, Patrice, Cristian-Renato Boruntea, Heena Dhawan Yadav, Iria Portela Soliño, and Nithin B. Kummamuru. 2023. "Combined Methane Pyrolysis and Solid Carbon Gasification for Electrified CO2-Free Hydrogen and Syngas Production" Energies 16, no. 21: 7316. https://doi.org/10.3390/en16217316
APA StylePerreault, P., Boruntea, C. -R., Dhawan Yadav, H., Portela Soliño, I., & Kummamuru, N. B. (2023). Combined Methane Pyrolysis and Solid Carbon Gasification for Electrified CO2-Free Hydrogen and Syngas Production. Energies, 16(21), 7316. https://doi.org/10.3390/en16217316