Sizing PV and BESS for Grid-Connected Microgrid Resilience: A Data-Driven Hybrid Optimization Approach
Abstract
:1. Introduction
2. Objective Function
3. Methodology
4. Constraining Function for Optimization
4.1. Energy Balance Constraint
4.2. Battery State of Charge (SoC) Constraint
4.3. Energy Storage Capacity Constraint
4.4. Generation and Load Limits
4.5. Economic Constraints
4.6. Environmental Constraints
5. Outage and Battery SoC prediction
6. Load and Solar Irradiance Forecasting
6.1. Long Short-Term Memory (LSTM)
- is the input at time;
- , , , are the input, forget, cell, and output gates at time;
- is the hidden state at time;
- is the cell state at time;
- and are weight matrices and bias vectors;
- σ is the sigmoid activation function, and represents element-wise multiplication.
6.2. Modified Particle Swarm Optimization
- p is the particle’ s position;
- v is the path direction;
- c1 is the weight of local information obtained from LSTM;
- c2 is the weight of global information;
- pBest is the best position of the particle;
- gBest is the best position of the swarm;
- rnd is the random variable.
7. Result Analysis
- Total net present value,
- Levelized cost of energy,
- Capital recovery factor,
- Reduction in CO2 emissions compared to a baseline scenario, considering the energy mix and emissions factors.
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
NACA | National Advisory Committee for Aeronautics |
NREL | National Renewable Energy Laboratory |
BESS | Battery energy storage system |
DRE | Distributed renewable energy |
SoC | State of charge |
DER | Distributed energy resources |
RR | Renewable resources |
PV | Photovoltaic modules |
VOLL | Value of lost load |
EV | Electric vehicles |
VAR | Value at risk |
LSTM | Long short-term memory |
PSO | Particle swarm optimization |
CSP | Concentrating solar power |
GHG | Greenhouse gas |
IRR | Investment return rate |
NPV | Net present value |
LCOE | Levelized cost of energy |
CFR | Capital recovery factor |
EIA | Environmental impact assessment |
NASA | National Aeronautics and Space Administration |
EPRI | Electric Power Research Institute |
LASP | Laboratory for Atmospheric and Space Physics |
NREL | National Renewable Energy Laboratory |
References
- Mohy-ud-din, A.G.; Muttaqi, K.M.; Sutanto, D. Sizing of microgrid components. In Variability, Scalability and, Stability of Microgrids; IET Digital Labrary: UK, 2019. [Google Scholar] [CrossRef]
- Shang, C.; Gao, J.; Liu, H.; Liu, F. Short-Term Load Forecasting Based on PSO-KFCM Daily Load Curve Clustering and CNN-LSTM Model. IEEE Access 2021, 9, 50344–50357. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, X.; Yang, J. Modified Particle Swarm Optimization with Attention-Based LSTM for Wind Power Prediction. Energies 2022, 15, 4334. [Google Scholar] [CrossRef]
- Wang, H.; Liu, Y.; Zhou, B.; Li, C.; Cao, G.; Voropai, N.; Barakhtenko, E. Taxonomy research of artificial intelligence for deterministic solar power forecasting. Energy Convers. Manag. 2020, 214, 112909. [Google Scholar] [CrossRef]
- Gu, B.; Shen, H.; Lei, X.; Hu, H.; Liu, X. Forecasting and uncertainty analysis of day-ahead photovoltaic power using a novel forecasting method. Appl. Energy 2021, 299, 117291. [Google Scholar] [CrossRef]
- Balal, A.; Murshed, M. Implementation and comparison of Perturb and Observe, and Fuzzy Logic Control on Maximum Power Point Tracking (MPPT) for a Small Satellite. J. Soft Comput. Decis. Support Syst. 2021, 8, 14–18. [Google Scholar]
- Gu, B.; Li, X.; Xu, F.; Yang, X.; Wang, F.; Wang, P. Forecasting and Uncertainty Analysis of Day-Ahead Photovoltaic Power Based on WT-CNN-BiLSTM-AM-GMM. Sustainability 2023, 15, 6538. [Google Scholar] [CrossRef]
- Abdolrasol, M.G.M.; Mohamed, R.; Hannan, M.; Al-Shetwi, A.Q.; Mansor, M.; Blaabjerg, F. Artificial Neural Network Based Particle Swarm Optimization for Microgrid Optimal Energy Scheduling. IEEE Trans. Power Electron. 2021, 36, 12151–12157. [Google Scholar] [CrossRef]
- Aleardi, M.; Stucchi, E. A Hybrid Residual Neural Network–Monte Carlo Approach to Invert Surface Wave Dispersion Data. Near Surf. Geophys. 2021, 19, 397–414. [Google Scholar] [CrossRef]
- Mousavi, O.A.; Cherkaoui, R.; Bozorg, M. Blackouts Risk Evaluation by Monte Carlo Simulation Regarding Cascading Outages and System Frequency Deviation. Electr. Power Syst. Res. 2012, 89, 157–164. [Google Scholar] [CrossRef]
- Akram, U.; Khalid, M.; Shafiq, S. Optimal Sizing of A Wind/Solar/Battery Hybrid Grid-Connected Microgrid System. IET Renew. Power Gener. 2017, 12, 72–80. [Google Scholar] [CrossRef]
- Kelly, J.J.; Leahy, P.G. Sizing Battery Energy Storage Systems: Using Multi-Objective Optimization to Overcome the Investment Scale Problem of Annual Worth. IEEE Trans. Sustain. Energy 2019, 11, 2305–2314. [Google Scholar] [CrossRef]
- Zhang, T.; Gooi, H.B.; Chen, S.; Goh, T. Cost-Effectiveness Studies of The Besss Participating in Frequency Regulation. In Proceedings of the IEEE Innovative Smart Grid Technologies—Asia (ISGT ASIA), Bangkok, Thailand, 3–6 November 2015. [Google Scholar]
- Brown, P.; Recht, B.; Fergus, R. Understanding the Difficulty of Training Deep Feedforward Neural Networks. In Proceedings of the 13th International Conference on Artificial Intelligence and Statistics (AISTATS), San Diego, CA, USA, 9–12 May 2015. [Google Scholar]
- Johnson, K.E.; Fischer, R.E.; Sigrin, B.O.; Fisher, E.C. Predicting Power Outages using Smart Meter Data. IEEE Trans. Smart Grid 2020, 11, 2707–2716. [Google Scholar]
- Kennedy, J.; Eberhart, R.C. Particle Swarm Optimization. In Proceedings of the IEEE International Conference on Neural Networks, Perth, WA, USA, 27 November–1 December 1995. [Google Scholar]
- Zhang, J.; Zheng, Q.; Li, L. Short-Term Load Forecasting with Long Short-Term Memory. IEEE Trans. Smart Grid 2019, 10, 3711–3719. [Google Scholar]
- Aghamohammadi, M.R.; Abdolahinia, H. A new approach for optimal sizing of battery energy storage system for primary frequency control of islanded microgrid. Int. J. Electr. Power Energy Syst. 2014, 54, 325–333. [Google Scholar] [CrossRef]
- Farrokhabadi, M.; König, S.; Cañizares, C.A.; Bhattacharya, K.; Leibfried, T. Battery Energy Storage System Models for Microgrid Stability Analysis and Dynamic Simulation. IEEE Trans. Power Syst. 2018, 33, 2301–2312. [Google Scholar] [CrossRef]
- Kerdphol, T.; Qudaih, Y.; Mitani, Y. Battery Energy Storage System Size Optimization in Microgrid Using Particle Swarm Optimization. In Proceedings of the IEEE PES Innovative Smart Grid Technologies, Istanbul, Turkey, 12–15 October 2014. [Google Scholar]
- El-Bidairi, K.S.; Nguyen, H.D.; Jayasinghe, S.; Mahmoud, T.S.; Penesis, I. A Hybrid Energy Management and Battery Size Optimization for Standalone Microgrids: A Case Study for Flinders Island, Australia. Energy Convers. Manag. 2018, 175, 192–212. [Google Scholar] [CrossRef]
- Yang, Y.; Bremner, S.; Menictas, C.; Kay, M. Battery Energy Storage System Size Determination in Renewable Energy Systems: A Review. Renew. Sustain. Energy Rev. 2018, 91, 109–125. [Google Scholar] [CrossRef]
- Mulleriyawage, U.G.K.; Shen, W.X. Optimally sizing of battery energy storage capacity by operational optimization of residential PV-Battery systems: An Australian household case study. Renew. Energy 2020, 160, 852–864. [Google Scholar] [CrossRef]
- Murshed, M.; Chamana, M.; Schmitt, K.E.; Bhatta, R.; Adeyanju, O.; Bayne, S. Design and Performance Analysis of a Grid-Connected Distributed Wind Turbine. Energies 2023, 16, 5778. [Google Scholar] [CrossRef]
- Choi, Y.; Kim, H. Optimal Scheduling of Energy Storage System for Self-Sustainable Base Station Operation Considering Battery Wear-Out Cost. In Proceedings of the 8th International Conference on Ubiquitous and Future Networks (ICUFN), Vienna, Austria, 5–8 July 2016. [Google Scholar]
- Moghimi, M.; Garmabdari, R.; Stegen, S.; Lu, J. Battery Energy Storage Cost and Capacity Optimization for University Research Center. In Proceedings of the 54th Industrial and Commercial Power Systems Technical Conference (I&CPS), Niagara Falls, ON, Canada, 7–10 May 2018. [Google Scholar]
- Fedjaev, J.; Amamra, S.; Francois, B. Linear Programming Based Optimization Tool for Day Ahead Energy Management of A Lithium-Ion Battery for An Industrial Microgrid. In Proceedings of the IEEE International Power Electronics and Motion Control Conference (PEMC), Varna, Bulgaria, 25–28 September 2016. [Google Scholar]
- Grillo, S.; Pievatolo, A.; Tironi, E. Optimal Storage Scheduling Using Markov Decision Processes. IEEE Trans. Sustain. Energy 2016, 7, 755–764. [Google Scholar] [CrossRef]
- Regis, N.; Muriithi, C.M.; Ngoo, L. Optimal Battery Sizing of A Grid-Connected Residential Photovoltaic System for Cost Minimization Using Pso Algorithm. Eng. Technol. Appl. Sci. Res. 2019, 9, 4905–4911. [Google Scholar] [CrossRef]
- Beskirli, A.; Temurtas, H.; Ozdemir, D. Determination with Linear Form of Turkey’s Energy Demand Forecasting by the Tree Seed Algorithm and the Modified Tree Seed Algorithm. Adv. Electr. Comput. Eng. 2020, 20, 27–34. [Google Scholar] [CrossRef]
- Suresh, M.; Meenakumari, R. An Improved Genetic Algorithm-Based Optimal Sizing of Solar Photovoltaic/Wind Turbine Generator/Diesel Generator/Battery Connected Hybrid Energy Systems for Standalone Applications. Int. J. Ambient. Energy 2019, 42, 1–8. [Google Scholar] [CrossRef]
- Bahmani-Firouzi, B.; Azizipanah-Abarghooee, R. Optimal Sizing of Battery Energy Storage for Micro-Grid Operation Management Using A New Improved Bat Algorithm. Electr. Power Energy Syst. 2014, 56, 42–54. [Google Scholar] [CrossRef]
- Nimma, K.S.; Al-Falahi, M.D.; Nguyen, H.D.; Jayasinghe, S.D.G.; Mahmoud, T.S.; Negnevitsky, M. Grey Wolf Optimization-based Optimum Energy-Management and Battery-Sizing Method for Grid-Connected Microgrids. Energies 2018, 11, 847. [Google Scholar] [CrossRef]
- Paliwal, N.K.; Singh, A.K.; Singh, N.K.; Kumar, P. Optimal Sizing and Operation of Battery Storage for Economic Operation of Hybrid Power System Using Artificial Bee Colony Algorithm. Int. Trans. Electr. Energy Syst. 2018, 29, e2685. [Google Scholar] [CrossRef]
- Bukar, A.L.; Tan, C.W.; Lau, K.Y. Optimal sizing of an autonomous photovoltaic/wind/battery/diesel generator microgrid using grasshopper optimization algorithm. Sol. Energy 2019, 188, 685–696. [Google Scholar] [CrossRef]
- Kerdphol, T.; Fuji, K.; Mitani, Y.; Watanabe, M.; Qudaih, Y. Optimization of A Battery Energy Storage System Using Particle Swarm Optimization for Stand-Alone Microgrids. Int. J. Electr. Power Energy Syst. 2016, 81, 32–39. [Google Scholar] [CrossRef]
- Sintianingrum, A.; Khairudin, K.; Hakim, L. Optimization of Microgrid Battery Capacity Using Pso with Considering Islanding Operation. J. Eng. Sci. Res. 2020, 2, 1–4. [Google Scholar] [CrossRef]
- IEEE Std 1366-2012 (Revision of IEEE Std 1366-2003); IEEE Guide for Electric Power Distribution Reliability Indices. Institute of Electrical and Electronics Engineers (IEEE): New York, NY, USA, 2012; pp. 1–43. [CrossRef]
- Chen, S.; Zhang, T.; Gooi, H.B.; Masiello, R.D.; Katzenstein, W. Penetration Rate and Effectiveness Studies of Aggregated BESS for Frequency Regulation. IEEE Trans. Smart Grid 2016, 7, 167–177. [Google Scholar] [CrossRef]
- Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef]
Aspects | Inputs |
---|---|
Microgrid lifetime | 20 years |
Discount rate | 5% |
Inflation rate | 2% |
Annual load demand | 332 MWh |
Average outage | 7 h |
Existing PV | 0 |
Existing Battery | 0 |
Criticality factor | 50% |
Aspects | Proposed System | Homer Pro | ReOPT |
---|---|---|---|
PV Size | 88 kW | 113 kW | 102 kW |
Battery Size | 97 kWh | 122 kWh | 151 kWh |
Levelized Cost of Energy | USD 0.39 | USD 0.51 | USD 0.47 |
Simple payback period | 11 years | 17 years | 14 years |
Resilience | 10 h | 19 h | 15 h |
Total Emission | 188 tons | 138 tons | 151 tons |
Cost Saving | USD 18,432 | USD 762 | USD 6103 |
Aspects | Proposed System | Homer Pro | ReOPT |
---|---|---|---|
PV size | 102 kW | 91 kW | 75 kW |
Battery size | 42 kWh | 18 kWh | 0 kWh |
Levelized Cost of Energy | USD 0.39 | USD 0.46 | USD 0.47 |
Simple payback period | 11 years | 9 years | 8.25 years |
Resilience | 7 h | 2 h | 1 h (PV only) |
Total Emission | 159 tons | 140 tons | 185 tons |
Cost Saving | USD 10,965 | USD 21,354 | USD 40,978 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Murshed, M.; Chamana, M.; Schmitt, K.E.K.; Pol, S.; Adeyanju, O.; Bayne, S. Sizing PV and BESS for Grid-Connected Microgrid Resilience: A Data-Driven Hybrid Optimization Approach. Energies 2023, 16, 7300. https://doi.org/10.3390/en16217300
Murshed M, Chamana M, Schmitt KEK, Pol S, Adeyanju O, Bayne S. Sizing PV and BESS for Grid-Connected Microgrid Resilience: A Data-Driven Hybrid Optimization Approach. Energies. 2023; 16(21):7300. https://doi.org/10.3390/en16217300
Chicago/Turabian StyleMurshed, Mahtab, Manohar Chamana, Konrad Erich Kork Schmitt, Suhas Pol, Olatunji Adeyanju, and Stephen Bayne. 2023. "Sizing PV and BESS for Grid-Connected Microgrid Resilience: A Data-Driven Hybrid Optimization Approach" Energies 16, no. 21: 7300. https://doi.org/10.3390/en16217300
APA StyleMurshed, M., Chamana, M., Schmitt, K. E. K., Pol, S., Adeyanju, O., & Bayne, S. (2023). Sizing PV and BESS for Grid-Connected Microgrid Resilience: A Data-Driven Hybrid Optimization Approach. Energies, 16(21), 7300. https://doi.org/10.3390/en16217300