Stability Evaluation of Horizontal Salt Caverns for Gas Storage in Two Mining Layers: A Case Study in China
Abstract
:1. Introduction
Year | Location | Cavern Shape | Cavern Depth (m) | Operation Pressures (MPa) | Research Focus | Academic (A)/ Engineering (E) | References |
---|---|---|---|---|---|---|---|
2014 | / | Pear | 1200–1500 | 6–15 | Dynamic response under seismic loads | A | [23] |
2016 | Jintan, Jiangsu Province | Pear | 858–1030 | 6–17 | Salt cavern gas storage close to an old cavern | E | [24] |
2016 | Yunying salt district, Hubei Province | Horizontal | 640–680 | 3–9 | Horizontal caverns in bedded salt structure | E | [25] |
2018 | Jianghan salt district, Hubei Province | Hemisphere–cylinder–cone | 2000 | 17–34 | Optimization of the shape, dimensions, operating parameters, and pillar width | E | [14] |
2018 | Jintan, Jiangsu Province | Sonar results | 1000 | 7–15.8 | Roof collapse investigation | E | [26] |
2020 | / | Horizontal | 1000 | 16 | Stability of the bedded key roof | A | [20] |
2020 | / | Small-spacing two-well | 1000 | 12 | Effect of ratio of long axis to short axis | A | [27] |
2021 | / | Two-well-horizontal saddle-shaped | 1250–1500 | 16–23 | Determination of the height of casing shoes | A | [28] |
2022 | / | Two-well-vertical | 1030–1150 | 7–21 | Different roof shapes and injection–production frequency | A | [29] |
2022 | / | Ellipsoid | 600 | 4.5–11.5 | Nonlinear creep model including damage and hardening | A | [30] |
2022 | / | Large-spacing two-well | 1130 | 7–21 | Indoor physical simulation experiments Internal pressure optimization | A | [31] |
2022 | Sanshui Basin, Guangdong Province | Pear | 1400 | 10–23 | Volume convergence, plastic zone distribution, pillar width, displacement | E | [32] |
2022 | Ningjin, Hebei Province | Hemisphere–cylinder–cone | 2700–2900 | 28–36 | Extremely deep salt formation | E | [7] |
2022 | Pingdingshan, Henan Province | Pear | 1600 | 13–27 | Creep-damage constitutive model Effect of gas extraction rates | E | [33] |
2023 | / | Horizontal | 1050 | 7.21–19.2 | Multistep horizontal salt caverns Economic analysis | A | [34] |
2. Methodology
2.1. Geological Conditions in Yunying Salt Mine
2.2. Design of Salt Caverns
2.3. Simplifications of Numerical Simulation
2.4. Numerical Simulation Model
2.5. Input of Stability Analysis
3. Results
3.1. Stability Evaluation under Various Operating Pressures
3.1.1. Displacement
3.1.2. Volume Shrinkage Rate
3.1.3. Equivalent Strain
3.1.4. Dilatancy Factor
3.2. Effects of Caverns in Adjacent Mining Layers
3.3. Effects of Cyclic Period
4. Discussion
5. Conclusions
- (1)
- Based on the strata information and sonar test results, the salt caverns in mining layers K3 and K4 in the Yunying salt district were designed and simplified as U-shaped and long tunnels, respectively. The length and height of the salt caverns in mining layers K3 and K4 were 400 and 300 m, and 70 and 25 m, respectively.
- (2)
- Based on the cavern responses after operation for 30 years under the evaluation criteria of displacement, volume shrinkage, equivalent strain, and dilatancy factor, the operational pressures for the salt caverns in the K3 and K4 mining layers should be no less than 4–9 and 7–12 MPa, respectively, to satisfy the stability requirements. The most important positions for cavern stability in the K3 and K4 mining layers are the middle part of the side and the middle area at the top, respectively.
- (3)
- In comparison with operating salt caverns in a single mining layer, using cavities in two mining layers simultaneously induces a larger volume reduction and displacement of the surrounding rock, which has a detrimental effect on cavern stability. Increasing the injection–withdrawal frequency of the gas pressure increases the deformation and volume reduction of the salt caverns.
- (4)
- A comprehensive analysis indicates that simultaneously constructing a salt cavern gas storage system in two mining layers is feasible and safe in the Yunying salt district of China.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Blanco-Martín, L.; Rutqvist, J.; Battistelli, A.; Birkholzer, J.T. Coupled Processes Modeling in Rock Salt and Crushed Salt Including Halite Solubility Constraints: Application to Disposal of Heat-Generating Nuclear Waste. Transp. Porous Media 2018, 124, 159–182. [Google Scholar] [CrossRef]
- Cai, M.; Peng, H. Advance of in-situ stress measurement in China. J. Rock Mech. Geotech. Eng. 2011, 3, 373–384. [Google Scholar] [CrossRef]
- Chan, K.S.; Bodner, S.R.; Munson, D.E. Recovery and Healing of Damage in WIPP Salt. Int. J. Damage Mech 1998, 7, 143–166. [Google Scholar] [CrossRef]
- Chen, J.; Chen, H.; Wu, F.; Jiang, D.; Zhang, H.; Gao, R.; Ding, B. Creep Properties of Mudstone Interlayer in Bedded Salt Rock Energy Storage Based on Multistage Creep Test: A Case Study of Huai’an Salt Mine, Jiangsu Province. Geofluids 2022, 2022, 2012776. [Google Scholar] [CrossRef]
- Chen, J.; Lu, D.; Liu, W.; Fan, J.; Jiang, D.; Yi, L.; Kang, Y. Stability study and optimization design of small-spacing two-well (SSTW) salt caverns for natural gas storages. J. Energy Storage 2020, 27, 101131. [Google Scholar] [CrossRef]
- Chen, X.; Li, Y.; Shi, Y.; Yu, Y.; Jiang, Y.; Liu, Y.; Dong, J. Tightness and stability evaluation of salt cavern underground storage with a new fluid–solid coupling seepage model. J. Pet. Sci. Eng. 2021, 202, 108475. [Google Scholar] [CrossRef]
- Cosenza, P.; Ghoreychi, M.; Bazargan-Sabet, B.; De Marsily, G. In situ rock salt permeability measurement for long term safety assessment of storage. Int. J. Rock Mech. Min. Sci. 1999, 36, 509–526. [Google Scholar] [CrossRef]
- Deng, J.Q.; Yang, Q.; Liu, Y.R.; Pan, Y.W. Stability evaluation and failure analysis of rock salt gas storage caverns based on deformation reinforcement theory. Comput. Geotech. 2015, 68, 147–160. [Google Scholar] [CrossRef]
- Durup, J.G.; Vidal, F.; Rolin, C. Pilot Abandonment Test of a Very Deep Gas Storage Salt Cavern. Oil Gas Sci. Technol. 2007, 62, 287–296. [Google Scholar] [CrossRef]
- Habibi, R.; Moomivand, H.; Ahmadi, M.; Asgari, A. Stability analysis of complex behavior of salt cavern subjected to cyclic loading by laboratory measurement and numerical modeling using LOCAS (case study: Nasrabad gas storage salt cavern). Environ. Earth Sci. 2021, 80, 317. [Google Scholar] [CrossRef]
- Han, Y.; Cui, H.; Ma, H.; Chen, J.; Liu, N. Temperature and pressure variations in salt compressed air energy storage (CAES) caverns considering the air flow in the underground wellbore. J. Energy Storage 2022, 52, 104846. [Google Scholar] [CrossRef]
- ICG, Inc. Advanced Grid Generation for Engineers and Scientists Griddle and BlockRanger User’s Guide; ICG, Inc.: Minneapolis, MN, USA, 2017. [Google Scholar]
- Itasca-Consulting Group. FLAC3D 6.0 Theory and Background; Itasca-Consulting Group: Minneapolis, MN, USA, 2017. [Google Scholar]
- Jaeger, J.C.; Cook, N.G.; Zimmerman, R. Fundamentals of Rock Mechanics; John Wiley & Sons: Hoboken, NJ, USA, 2009. [Google Scholar]
- Jiang, D.; Wang, Y.; Liu, W.; Li, L.; Qiao, W.; Chen, J.; Li, D.; Li, Z.; Fan, J. Construction simulation of large-spacing-two-well salt cavern with gas blanket and stability evaluation of cavern for gas storage. J. Energy Storage 2022, 48, 103932. [Google Scholar] [CrossRef]
- Khaledi, K.; Mahmoudi, E.; Datcheva, M.; Schanz, T. Stability and serviceability of underground energy storage caverns in rock salt subjected to mechanical cyclic loading. Int. J. Rock Mech. Min. Sci. 2016, 86, 115–131. [Google Scholar] [CrossRef]
- Kushnir, R.; Dayan, A.; Ullmann, A. Temperature and pressure variations within compressed air energy storage caverns. Int. J. Heat Mass Transf. 2012, 55, 5616–5630. [Google Scholar] [CrossRef]
- Lankof, L.; Urbańczyk, K.; Tarkowski, R. Assessment of the potential for underground hydrogen storage in salt domes. Renew. Sustain. Energy Rev. 2022, 160, 112309. [Google Scholar] [CrossRef]
- Li, H.; Wanyan, Q.; Ding, G.; Li, K.; Kou, Y.; Bai, S.; Ran, L.; Wu, J.; Deng, J. Geomechanical Feasibility Analysis of Salt Cavern Gas Storage Construction in Sanshui Basin, Guangdong Province. Eng 2022, 3, 709–731. [Google Scholar] [CrossRef]
- Li, J.; Wan, J.; Liu, H.; Jurado, M.J.; He, Y.; Yuan, G.; Xia, Y. Stability Analysis of a Typical Salt Cavern Gas Storage in the Jintan Area of China. Energies 2022, 15, 4167. [Google Scholar] [CrossRef]
- Li, J.; Zhang, N.; Xu, W.; Naumov, D.; Fischer, T.; Chen, Y.; Zhuang, D.; Nagel, T. The influence of cavern length on deformation and barrier integrity around horizontal energy storage salt caverns. Energy 2022, 244, 123148. [Google Scholar] [CrossRef]
- Li, Q.; Ning, Z.; Liu, J.; Xu, W.; Zhan, L.; Liu, J.; Chen, Y.; Shi, X.; Chen, X.; Li, J. Stability and economic evaluation of multi-step horizontal salt caverns with different step distances in bedded salt formations. J. Energy Storage 2023, 57, 106192. [Google Scholar] [CrossRef]
- Liu, W.; Jiang, D.; Chen, J.; Daemen, J.J.K.; Tang, K.; Wu, F. Comprehensive feasibility study of two-well-horizontal caverns for natural gas storage in thinly-bedded salt rocks in China. Energy 2018, 143, 1006–1019. [Google Scholar] [CrossRef]
- Norton, F.H. The Creep of Steel at High Temperatures, 1st ed.; McGraw-Hill Book Company, Incorporated: New York, NY, USA, 1929. [Google Scholar]
- Peng, T.; Wan, J.; Liu, W.; Li, J.; Xia, Y.; Yuan, G.; Jurado, M.J.; Fu, P.; He, Y.; Liu, H. Choice of hydrogen energy storage in salt caverns and horizontal cavern construction technology. J. Energy Storage 2023, 60, 106489. [Google Scholar] [CrossRef]
- Rhinoceros, I. Rhinoceros 6 User’s Manual; Rhinoceros, I., Ed.; Robert McNeel & Associates: Seattle, WA, USA, 2018. [Google Scholar]
- Shahmorad, Z.; Salarirad, H.; Molladavoudi, H. A study on the effect of utilizing different constitutive models in the stability analysis of an underground gas storage within a salt structure. J. Nat. Gas Sci. Eng. 2016, 33, 808–820. [Google Scholar] [CrossRef]
- Song, Y.; Song, R.; Liu, J. Hydrogen tightness evaluation in bedded salt rock cavern: A case study of Jintan, China. Int. J. Hydrogen Energy 2023, 48, 30489–30506. [Google Scholar] [CrossRef]
- Tackie-Otoo, B.N.; Haq, M.B. A comprehensive review on geo-storage of H2 in salt caverns: Prospect and research advances. Fuel 2024, 356, 129609. [Google Scholar] [CrossRef]
- Van Sambeek, L.L.; Ratigan, J.L.; Hansen, F.D. Dilatancy of rock salt in laboratory tests. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1993, 30, 735–738. [Google Scholar] [CrossRef]
- Wang, G.; Xing, W.; Liu, J.; Hou, Z.; Were, P. Influence of water-insoluble content on the short-term strength of bedded rock salt from three locations in China. Environ. Earth Sci. 2015, 73, 6951–6963. [Google Scholar] [CrossRef]
- Wang, H.-x.; Zhang, B.; Fu, D.; Ndeunjema, A. Stability and airtightness of a deep anhydrite cavern group used as an underground storage space: A case study. Comput. Geotech. 2018, 96, 12–24. [Google Scholar] [CrossRef]
- Wang, J.; Wang, X.; Zhang, Q.; Song, Z.; Zhang, Y. Dynamic prediction model for surface settlement of horizontal salt rock energy storage. Energy 2021, 235, 121421. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, Q.; Song, Z.; Feng, S.; Zhang, Y. Nonlinear creep model of salt rock used for displacement prediction of salt cavern gas storage. J. Energy Storage 2022, 48, 103951. [Google Scholar] [CrossRef]
- Wang, T.; Yang, C.; Chen, J.; Daemen, J.J.K. Geomechanical investigation of roof failure of China’s first gas storage salt cavern. Eng. Geol. 2018, 243, 59–69. [Google Scholar] [CrossRef]
- Wang, T.; Yang, C.; Ma, H.; Li, Y.; Shi, X.; Li, J.; Daemen, J.J.K. Safety evaluation of salt cavern gas storage close to an old cavern. Int. J. Rock Mech. Min. Sci. 2016, 83, 95–106. [Google Scholar] [CrossRef]
- Wang, T.; Yang, C.; Yan, X.; Li, Y.; Liu, W.; Liang, C.; Li, J. Dynamic response of underground gas storage salt cavern under seismic loads. Tunn. Undergr. Space Technol. 2014, 43, 241–252. [Google Scholar] [CrossRef]
- Wang, T.T.; Ma, H.L.; Shi, X.L.; Yang, C.H.; Zhang, N.; Li, J.L.; Ding, S.L.; Daemen, J.J.K. Salt cavern gas storage in an ultra-deep formation in Hubei, China. Int. J. Rock Mech. Min. Sci. 2018, 102, 57–70. [Google Scholar] [CrossRef]
- Wang, X.; Wang, J.; Zhang, Q.; Song, Z.; Liu, X.; Feng, S. Long-term stability analysis and evaluation of salt cavern compressed air energy storage power plant under creep-fatigue interaction. J. Energy Storage 2022, 55, 105843. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, X.; Jiang, D.; Liu, W.; Wan, J.; Li, Z.; Fan, J.; Wang, W. Study on stability and economic evaluation of two-well-vertical salt cavern energy storage. J. Energy Storage 2022, 56, 106164. [Google Scholar] [CrossRef]
- Wu, W.; Hou, Z.; Yang, C. Investigations on Evaluating Criteria of Stabilities For Energy (Petroleum and Natural Gas) Storage Caverns in Rock Salt. Chin. J. Rock Mech. Eng. 2005, 24, 2497–2505. [Google Scholar]
- Xing, W.; Zhao, J.; Hou, Z.; Were, P.; Li, M.; Wang, G. Horizontal natural gas caverns in thin-bedded rock salt formations. Environ. Earth Sci. 2015, 73, 6973–6985. [Google Scholar] [CrossRef]
- Yan, Z.; Wang, Z.; Wu, F.; Lyu, C. Stability analysis of Pingdingshan pear-shaped multi-mudstone interbedded salt cavern gas storage. J. Energy Storage 2022, 56, 105963. [Google Scholar] [CrossRef]
- Yang, C.; Daemen, J.J.K.; Yin, J.-H. Experimental investigation of creep behavior of salt rock. Int. J. Rock Mech. Min. Sci. 1999, 36, 233–242. [Google Scholar] [CrossRef]
- Yang, C.; Wang, T.; Qu, D.; Ma, H.; Li, Y.; Shi, X.; Daemen, J.J.K. Feasibility analysis of using horizontal caverns for underground gas storage: A case study of Yunying salt district. J. Nat. Gas Sci. Eng. 2016, 36, 252–266. [Google Scholar] [CrossRef]
- Yuan, G.; Wan, J.; Li, J.; Li, G.; Xia, Y.; Ban, F.; Zhang, H.; Jurado, M.J.; Peng, T.; Liu, W. Stability analysis of a typical two-well-horizontal saddle-shaped salt cavern. J. Energy Storage 2021, 40, 102763. [Google Scholar] [CrossRef]
- Zhang, G.; Liu, Y.; Wang, T.; Zhang, H.; Wang, Z.; Zhao, C.; Chen, X. Pillar stability of salt caverns used for gas storage considering sedimentary rhythm of the interlayers. J. Energy Storage 2021, 43, 103229. [Google Scholar] [CrossRef]
- Zhang, G.; Wang, Z.; Liu, J.; Li, Y.; Cui, Z.; Zhang, H.; Wang, L.; Sui, L. Stability of the bedded key roof above abandoned horizontal salt cavern used for underground gas storage. Bull. Eng. Geol. Environ. 2020, 79, 4205–4219. [Google Scholar] [CrossRef]
- Zhang, G.; Zhang, H.; Liu, Y.; Wang, T.; Wang, Z. Surrounding rock stability of horizontal cavern reconstructed for gas storage. J. Energy Storage 2023, 59, 106534. [Google Scholar] [CrossRef]
- Zhang, Q.; Liu, J.; Wang, L.; Luo, M.; Liu, H.; Xu, H.; Zou, H. Impurity Effects on the Mechanical Properties and Permeability Characteristics of Salt Rock. Energies 2020, 13, 1366. [Google Scholar] [CrossRef]
- Zhang, Q.Y.; Duan, K.; Jiao, Y.Y.; Xiang, W. Physical model test and numerical simulation for the stability analysis of deep gas storage cavern group located in bedded rock salt formation. Int. J. Rock Mech. Min. Sci. 2017, 94, 43–54. [Google Scholar] [CrossRef]
- Zhao, C.; Chen, B. China’s oil security from the supply chain perspective: A review. Appl. Energy 2014, 136, 269–279. [Google Scholar] [CrossRef]
- Zhao, K.; Liu, Y.; Li, Y.; Ma, H.; Hou, W.; Yu, C.; Liu, H.; Feng, C.; Yang, C. Feasibility analysis of salt cavern gas storage in extremely deep formation: A case study in China. J. Energy Storage 2022, 47, 103649. [Google Scholar] [CrossRef]
- Zhao, K.; Ma, H.; Li, H.; Yang, C.; Li, P.; Liu, Y.; Li, H.; Zeng, Z.; Wang, X. Stability analysis of CAES salt caverns using a creep-fatigue model in Yunying salt district, China. J. Energy Storage 2023, 62, 106856. [Google Scholar] [CrossRef]
- Zhao, K.; Ma, H.; Zhou, J.; Yin, H.; Li, P.; Zhao, A.; Shi, X.; Yang, C. Rock Salt Under Cyclic Loading with High-Stress Intervals. Rock Mech. Rock Eng. 2022, 55, 4031–4049. [Google Scholar] [CrossRef]
Lithology | Elastic Modulus (GPa) | Poisson’s Ratio | Cohesion (MPa) | Internal Friction Angle (°) | Tensile Strength (MPa) | A [(MPa)−n·day−1] | n |
---|---|---|---|---|---|---|---|
Clay | 0.5 | 0.35 | 0.5 | 35 | 0.5 | / | / |
Mudstone | 19.33 | 0.223 | 5.89 | 37.5 | 1.67 | 1.2 × 10−8 | 4.35 |
Salt | 11.4 | 0.312 | 4.36 | 39.9 | 1.08 | / | / |
Salt–mudstone | 15.37 | 0.268 | 5.13 | 38.7 | 1.38 | 9.6 × 10−8 | 4.15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, K.; Ma, H.; Li, Y.; Liu, Y.; Cai, R.; Liang, X.; Huang, S.; Zeng, Z.; Wang, X.; Li, H. Stability Evaluation of Horizontal Salt Caverns for Gas Storage in Two Mining Layers: A Case Study in China. Energies 2023, 16, 7288. https://doi.org/10.3390/en16217288
Zhao K, Ma H, Li Y, Liu Y, Cai R, Liang X, Huang S, Zeng Z, Wang X, Li H. Stability Evaluation of Horizontal Salt Caverns for Gas Storage in Two Mining Layers: A Case Study in China. Energies. 2023; 16(21):7288. https://doi.org/10.3390/en16217288
Chicago/Turabian StyleZhao, Kai, Hongling Ma, Yinping Li, Yuanxi Liu, Rui Cai, Xiaopeng Liang, Si Huang, Zhen Zeng, Xuan Wang, and Haoran Li. 2023. "Stability Evaluation of Horizontal Salt Caverns for Gas Storage in Two Mining Layers: A Case Study in China" Energies 16, no. 21: 7288. https://doi.org/10.3390/en16217288
APA StyleZhao, K., Ma, H., Li, Y., Liu, Y., Cai, R., Liang, X., Huang, S., Zeng, Z., Wang, X., & Li, H. (2023). Stability Evaluation of Horizontal Salt Caverns for Gas Storage in Two Mining Layers: A Case Study in China. Energies, 16(21), 7288. https://doi.org/10.3390/en16217288