Future Challenges of the Electric Vehicle Market Perceived by Individual Drivers from Eastern Poland
Abstract
:1. Introduction
2. Literature Review
3. Materials and Methods
3.1. Study Design—The Selection of the Research Method
3.2. Survey Questionnaire as a Research Tool
3.3. Research Sample
3.4. Research Methods
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Webb, J. The Future of Transport: Literature Review and Overview. Econ. Anal. Policy 2019, 61, 1–6. [Google Scholar] [CrossRef]
- Shigeta, N.; Hosseini, S.E. Sustainable Development of the Automobile Industry in the United States, Europe, and Japan with Special Focus on the Vehicles’ Power Sources. Energies 2020, 14, 78. [Google Scholar] [CrossRef]
- Sanguesa, J.A.; Torres-Sanz, V.; Garrido, P.; Martinez, F.J.; Marquez-Barja, J.M. A Review on Electric Vehicles: Technologies and Challenges. Smart Cities 2021, 4, 372–404. [Google Scholar] [CrossRef]
- Sikora, A. European Green Deal–Legal and Financial Challenges of the Climate Change. Era Forum 2021, 21, 681–697. [Google Scholar] [CrossRef]
- Li, J.; Jiao, J.; Tang, Y. An Evolutionary Analysis on the Effect of Government Policies on Electric Vehicle Diffusion in Complex Network. Energy Policy 2019, 129, 1–12. [Google Scholar] [CrossRef]
- O’Driscoll, R.; Stettler, M.E.; Molden, N.; Oxley, T.; ApSimon, H.M. Real World CO2 and NOx Emissions from 149 Euro 5 and 6 Diesel, Gasoline and Hybrid Passenger Cars. Sci. Total Environ. 2018, 621, 282–290. [Google Scholar] [CrossRef]
- Kryzia, D.; Kuta, M.; Matuszewska, D.; Olczak, P. Analysis of the Potential for Gas Micro-Cogeneration Development in Poland Using the Monte Carlo Method. Energies 2020, 13, 3140. [Google Scholar] [CrossRef]
- Nazarko, Ł.; Žemaitis, E.; Wróblewski, Ł.K.; Šuhajda, K.; Zajączkowska, M. The Impact of Energy Development of the European Union Euro Area Countries on CO2 Emissions Level. Energies 2022, 15, 1425. [Google Scholar] [CrossRef]
- Keleş, A.E.; Güngör, G. Overview of Environmental Problems Caused by Logistics Transportation: Example of European Union Countries. Teh. Glas. 2021, 15, 569–573. [Google Scholar] [CrossRef]
- Zimakowska-Laskowska, M.; Laskowski, P. Emission from Internal Combustion Engines and Battery Electric Vehicles: Case Study for Poland. Atmosphere 2022, 13, 401. [Google Scholar] [CrossRef]
- Sato, F.E.K.; Nakata, T. Energy Consumption Analysis for Vehicle Production through a Material Flow Approach. Energies 2020, 13, 2396. [Google Scholar] [CrossRef]
- Statharas, S.; Moysoglou, Y.; Siskos, P.; Zazias, G.; Capros, P. Factors Influencing Electric Vehicle Penetration in the EU by 2030: A Model-Based Policy Assessment. Energies 2019, 12, 2739. [Google Scholar] [CrossRef]
- European Commission. A European Strategy for Low-Emission Mobility; Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions: Brussels, Belgium, 2016. [Google Scholar]
- Roadmap to a Single European Transport Area—Towards a Competitive and Resource Efficient Transport System—European Environment Agency. Available online: https://www.eea.europa.eu/policy-documents/roadmap-to-a-single-european (accessed on 22 March 2023).
- COM(2011) 112—A Roadmap for Moving to a Competitive Low Carbon Economy in 2050—European Environment Agency. Available online: https://www.eea.europa.eu/policy-documents/com-2011-112-a-roadmap (accessed on 22 March 2023).
- Lee, B. Highlights of the Clean Air Act Amendments off 1990. J. Air Waste Manag. Assoc. 1991, 41, 16–19. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency. The Plain English Guide to the Clean Air Act; Office of Air Quality Planning and Standards: Research Triangle Park, NC, USA, 2007. [Google Scholar]
- Arimura, T.H.; Iwata, K.; Arimura, T.H.; Iwata, K. Does Environmental Regulation Affect on Outside of the Regulated Areas? Empirical Analysis of Japanese Automobile NOx-PM Act. In An Evaluation of Japanese Environmental Regulations: Quantitative Approaches from Environmental Economics; Springer: Dordrecht, The Netherlands, 2015; pp. 71–85. [Google Scholar]
- Iwata, K.; Arimura, T.H. Economic Analysis of Japanese Air Pollution Regulation: An Optimal Retirement Problem under the Vehicle Type Regulation in the NOx–Particulate Matter Law. Transp. Res. Part Transp. Environ. 2009, 14, 157–167. [Google Scholar] [CrossRef]
- Singh, S.; Kulshrestha, M.J.; Rani, N.; Kumar, K.; Sharma, C.; Aswal, D.K. An Overview of Vehicular Emission Standards. Mapan 2022, 38, 241–263. [Google Scholar] [CrossRef]
- Tögel, M.; Spicka, L. Low-Emission Zones in European Countries. Trans. Transp. Sci. 2014, 7, 97. [Google Scholar] [CrossRef]
- Ku, D.; Bencekri, M.; Kim, J.; Leec, S.; Leed, S. Review of European Low Emission Zone Policy. Chem. Eng. 2020, 78, 241–246. [Google Scholar]
- Andwari, A.M.; Pesiridis, A.; Rajoo, S.; Martinez-Botas, R.; Esfahanian, V. A Review of Battery Electric Vehicle Technology and Readiness Levels. Renew. Sustain. Energy Rev. 2017, 78, 414–430. [Google Scholar] [CrossRef]
- Wróblewski, P.; Lewicki, W. A Method of Analyzing the Residual Values of Low-Emission Vehicles Based on a Selected Expert Method Taking into Account Stochastic Operational Parameters. Energies 2021, 14, 6859. [Google Scholar] [CrossRef]
- Yakovlev, V.F. Early Electric Vehicle Charging: A Survey. Int. J. Electr. Hybrid Veh. 2022, 14, 219–230. [Google Scholar] [CrossRef]
- Bladh, M. Origin of Car Enthusiasm and Alternative Paths in History. Environ. Innov. Soc. Transit. 2019, 32, 153–168. [Google Scholar] [CrossRef]
- Helmers, E.; Marx, P. Electric Cars: Technical Characteristics and Environmental Impacts. Environ. Sci. Eur. 2012, 24, 14. [Google Scholar] [CrossRef]
- Bradley, T.H.; Frank, A.A. Design, Demonstrations and Sustainability Impact Assessments for Plug-in Hybrid Electric Vehicles. Renew. Sustain. Energy Rev. 2009, 13, 115–128. [Google Scholar] [CrossRef]
- Al-Alawi, B.M.; Bradley, T.H. Review of Hybrid, Plug-in Hybrid, and Electric Vehicle Market Modeling Studies. Renew. Sustain. Energy Rev. 2013, 21, 190–203. [Google Scholar] [CrossRef]
- Woo, J.; Magee, C.L. Forecasting the Value of Battery Electric Vehicles Compared to Internal Combustion Engine Vehicles: The Influence of Driving Range and Battery Technology. Int. J. Energy Res. 2020, 44, 6483–6501. [Google Scholar] [CrossRef]
- Kumar, A.; Jadon, J.K.S. A Review on Electric Vehicles and Its Future. S. Asian J. Mark. Manag. Res. 2021, 11, 85–91. [Google Scholar] [CrossRef]
- Kambli, R.O. Electric Vehicles in India: Future and Challenges. Int. J. Res. Appl. Sci. Eng. Technol. 2022, 10, 398–402. [Google Scholar] [CrossRef]
- Kalghatgi, G. Is It Really the End of Internal Combustion Engines and Petroleum in Transport? Appl. Energy 2018, 225, 965–974. [Google Scholar] [CrossRef]
- Ehrenberger, S.I.; Dunn, J.B.; Jungmeier, G.; Wang, H. An International Dialogue about Electric Vehicle Deployment to Bring Energy and Greenhouse Gas Benefits through 2030 on a Well-to-Wheels Basis. Transp. Res. Part Transp. Environ. 2019, 74, 245–254. [Google Scholar] [CrossRef]
- Hofmann, J.; Guan, D.; Chalvatzis, K.; Huo, H. Assessment of Electrical Vehicles as a Successful Driver for Reducing CO2 Emissions in China. Appl. Energy 2016, 184, 995–1003. [Google Scholar] [CrossRef]
- Ke, W.; Zhang, S.; He, X.; Wu, Y.; Hao, J. Well-to-Wheels Energy Consumption and Emissions of Electric Vehicles: Mid-Term Implications from Real-World Features and Air Pollution Control Progress. Appl. Energy 2017, 188, 367–377. [Google Scholar] [CrossRef]
- Ambrose, H.; Kendall, A.; Lozano, M.; Wachche, S.; Fulton, L. Trends in Life Cycle Greenhouse Gas Emissions of Future Light Duty Electric Vehicles. Transp. Res. Part Transp. Environ. 2020, 81, 102287. [Google Scholar] [CrossRef]
- Dižo, J.; Blatnický, M.; Semenov, S.; Mikhailov, E.; Kostrzewski, M.; Droździel, P.; Šťastniak, P. Electric and Plug-in Hybrid Vehicles and Their Infrastructure in a Particular European Region. Transp. Res. Procedia 2021, 55, 629–636. [Google Scholar] [CrossRef]
- Poullikkas, A. Sustainable Options for Electric Vehicle Technologies. Renew. Sustain. Energy Rev. 2015, 41, 1277–1287. [Google Scholar] [CrossRef]
- Hannan, M.A.; Azidin, F.A.; Mohamed, A. Hybrid Electric Vehicles and Their Challenges: A Review. Renew. Sustain. Energy Rev. 2014, 29, 135–150. [Google Scholar] [CrossRef]
- Singh, P.A.; Singh, P.L.; Pundir, A.K.; Saini, A. Mild Hybrid Technology in Automotive: A Review. Int. Res. J. Eng. Technol. 2021, 8, 4405–4410. [Google Scholar]
- Basheerd, Z. The Difference between Plug-in, Mild and Hybrid Vehicle Technologies: A Detailed Guide. Available online: https://www.motorfinity.uk/blog/difference-in-mild-plugin-fullhybrids/ (accessed on 20 April 2023).
- Dornoff, J.; German, J.; Deo, A.; Dimaratos, A. Mild-Hybrid Vehicles: A Near Term Technology Trend for CO₂ Emissions Reduction; International Council on Clean Transportation: San Francisco, CA, USA, 2022. [Google Scholar]
- Amjad, S.; Neelakrishnan, S.; Rudramoorthy, R. Review of Design Considerations and Technological Challenges for Successful Development and Deployment of Plug-in Hybrid Electric Vehicles. Renew. Sustain. Energy Rev. 2010, 14, 1104–1110. [Google Scholar] [CrossRef]
- Ding, N.; Prasad, K.; Lie, T.T. The Electric Vehicle: A Review. Int. J. Electr. Hybrid Veh. 2017, 9, 49–66. [Google Scholar] [CrossRef]
- Parikh, A.; Shah, M.; Prajapati, M. Fuelling the Sustainable Future: A Comparative Analysis between Battery Electrical Vehicles (BEV) and Fuel Cell Electrical Vehicles (FCEV). Environ. Sci. Pollut. Res. 2023, 30, 57236–57252. [Google Scholar] [CrossRef] [PubMed]
- Asif, U.; Schmidt, K. Fuel Cell Electric Vehicles (FCEV): Policy Advances to Enhance Commercial Success. Sustainability 2021, 13, 5149. [Google Scholar] [CrossRef]
- Wang, Y.; Yuan, H.; Martinez, A.; Hong, P.; Xu, H.; Bockmiller, F.R. Polymer Electrolyte Membrane Fuel Cell and Hydrogen Station Networks for Automobiles: Status, Technology, and Perspectives. Adv. Appl. Energy 2021, 2, 100011. [Google Scholar] [CrossRef]
- Yuan, Y.; Yuan, X. Does the Development of Fuel Cell Electric Vehicles Be Reviving or Recessional? Based on the Patent Analysis. Energy 2023, 272, 127104. [Google Scholar] [CrossRef]
- Fernández, R.Á.; Pérez-Dávila, O. Fuel Cell Hybrid Vehicles and Their Role in the Decarbonisation of Road Transport. J. Clean. Prod. 2022, 342, 130902. [Google Scholar] [CrossRef]
- Xiao, B.; Ruan, J.; Yang, W.; Walker, P.D.; Zhang, N. A Review of Pivotal Energy Management Strategies for Extended Range Electric Vehicles. Renew. Sustain. Energy Rev. 2021, 149, 111194. [Google Scholar] [CrossRef]
- Puma-Benavides, D.S.; Izquierdo-Reyes, J.; Calderon-Najera, J.d.D.; Ramirez-Mendoza, R.A. A Systematic Review of Technologies, Control Methods, and Optimization for Extended-Range Electric Vehicles. Appl. Sci. 2021, 11, 7095. [Google Scholar] [CrossRef]
- Ren, X.; Tang, J.; Liu, X.; Liu, Q. Effects of Microplastics on Greenhouse Gas Emissions and the Microbial Community in Fertilized Soil. Environ. Pollut. 2020, 256, 113347. [Google Scholar] [CrossRef]
- Evelyn, E.; Aziz, A.R.A.; Sambegoro, P.L. A Review of Range Extender Technologies in Electric Vehicles. Int. J. Sustain. Transp. Technol. 2020, 3, 7–11. [Google Scholar] [CrossRef]
- Chan, C.C. The State of the Art of Electric, Hybrid, and Fuel Cell Vehicles. Proc. IEEE 2007, 95, 704–718. [Google Scholar] [CrossRef]
- Ajanovic, A. The Future of Electric Vehicles: Prospects and Impediments. Wiley Interdiscip. Rev. Energy Environ. 2015, 4, 521–536. [Google Scholar] [CrossRef]
- Colmenar-Santos, A.; Muñoz-Gómez, A.-M.; Rosales-Asensio, E.; López-Rey, Á. Electric Vehicle Charging Strategy to Support Renewable Energy Sources in Europe 2050 Low-Carbon Scenario. Energy 2019, 183, 61–74. [Google Scholar] [CrossRef]
- Stopka, O.; Stopková, M.; Ližbetin, J.; Soviar, J.; Caban, J. Development Trends of Electric Vehicles in the Context of Road Passenger and Freight Transport; IEEE: Piscataway, NJ, USA, 2020; pp. 1–8. [Google Scholar]
- Bibra, E.M.; Connelly, E.; Dhir, S.; Drtil, M.; Henriot, P.; Hwang, I.; Le Marois, J.-B.; McBain, S.; Paoli, L.; Teter, J. Global EV Outlook 2022: Securing Supplies for an Electric Future; IEA: Paris, France, 2022. [Google Scholar]
- Bibra, E.M.; Connelly, E.; Gorner, M.; Lowans, C.; Paoli, L.; Tattini, J.; Teter, J. Global EV Outlook 2021: Accelerating Ambitions Despite the Pandemic; IEA: Paris, France, 2021. [Google Scholar]
- MacDonald, J. Electric Vehicles to Be 35% of Global New Car Sales by 2040. Bloomberg New Energy Finance. 2016. Available online: https://about.bnef.com/blog/electric-vehicles-to-be-35-of-global-new-car-sales-by-2040/ (accessed on 22 March 2023).
- Germany: Plug-In Car Share at 26%: Records Everywhere in December 2020. Available online: https://insideevs.com/news/466566/germany-plugin-car-sales-december-2020/ (accessed on 22 March 2023).
- Top 10 Plug-In Vehicle Adopting Countries of 2016. Available online: https://www.gm-volt.com/threads/top-10-plug-in-vehicle-adopting-countries-of-2016.338144/ (accessed on 22 March 2023).
- Norway Sets Plug-In Car Sales Record for the End of the Year 2021. Available online: https://insideevs.com/news/558447/norway-plugin-car-sales-december2021/ (accessed on 22 March 2023).
- Paulraj, P. The Netherlands Has the Highest Density of Electric Vehicle Chargers in the World|EOY-2019 EV—EVSE Statistics. E-Mobility Simplified|Basics of Electric Vehicles and Charging. Available online: https://www.emobilitysimplified.com/2019/12/netherlands-highest-density-ev-charging-infrastructure.html (accessed on 22 March 2023).
- Tilles, D. Number of Electric Cars in Poland Grows 63% in a Year but Remains Well below Government Target. Notes from Poland. 2023. Available online: https://notesfrompoland.com/2023/02/18/number-of-electric-cars-in-poland-grows-63-in-a-year-but-remains-well-below-government-target/ (accessed on 22 March 2023).
- Licznik Elektromobilności/Rynek Motoryzacyjny/Home—Polski Związek Przemysłu Motoryzacyjnego. Available online: https://www.pzpm.org.pl/pl/Rynek-motoryzacyjny/Licznik-elektromobilnosci/Luty-2023 (accessed on 22 March 2023).
- Ziemba, P. Multi-Criteria Approach to Stochastic and Fuzzy Uncertainty in the Selection of Electric Vehicles with High Social Acceptance. Expert Syst. Appl. 2021, 173, 114686. [Google Scholar] [CrossRef]
- Gajewski, J.M.; Paprocki, W.; Pieriegud, J. Elektromobilność w Polsce na Tle Tendencji Europejskich i Globalnych; CeDeWu: Warszawa, Poland, 2019. [Google Scholar]
- Szumska, E.M. Electric Vehicle Charging Infrastructure along Highways in the EU. Energies 2023, 16, 895. [Google Scholar] [CrossRef]
- Jankowska, M.; Pawełczyk, M.; Badura, E. Electromobility, Automation and Digitalisation–The Legal Challenges of New Business Models in Poland. Eur. Bus. Law Rev. 2023, 34, 181–192. [Google Scholar]
- Burchart-Korol, D.; Gazda-Grzywacz, M.; Zarębska, K. Research and Prospects for the Development of Alternative Fuels in the Transport Sector in Poland: A Review. Energies 2020, 13, 2988. [Google Scholar] [CrossRef]
- Grzegórska-Szpyt, L. Carsmile: W 2023 r. Udział Elektryków w Łącznej Sprzedaży Samochodów Wzrośnie do 5–7 Proc.—ZielonaGospodarka.pl. Available online: https://zielonagospodarka.pl/carsmile-w-2023-r-udzial-elektrykow-w-lacznej-sprzedazy-samochodow-wzrosnie-do-5-7-proc-10756 (accessed on 27 April 2023).
- Tran, M.; Banister, D.; Bishop, J.D.; McCulloch, M.D. Simulating Early Adoption of Alternative Fuel Vehicles for Sustainability. Technol. Forecast. Soc. Change 2013, 80, 865–875. [Google Scholar] [CrossRef]
- Bjerkan, K.Y.; Nørbech, T.E.; Nordtømme, M.E. Incentives for Promoting Battery Electric Vehicle (BEV) Adoption in Norway. Transp. Res. Part Transp. Environ. 2016, 43, 169–180. [Google Scholar] [CrossRef]
- Wan, Z.; Sperling, D.; Wang, Y. China’s Electric Car Frustrations. Transp. Res. Part Transp. Environ. 2015, 34, 116–121. [Google Scholar] [CrossRef]
- Sierzchula, W. Factors Influencing Fleet Manager Adoption of Electric Vehicles. Transp. Res. Part Transp. Environ. 2014, 31, 126–134. [Google Scholar] [CrossRef]
- Dijk, M.; Orsato, R.J.; Kemp, R. The Emergence of an Electric Mobility Trajectory. Energy Policy 2013, 52, 135–145. [Google Scholar] [CrossRef]
- Haddadian, G.; Khodayar, M.; Shahidehpour, M. Accelerating the Global Adoption of Electric Vehicles: Barriers and Drivers. Electr. J. 2015, 28, 53–68. [Google Scholar] [CrossRef]
- Hardman, S.; Chandan, A.; Tal, G.; Turrentine, T. The Effectiveness of Financial Purchase Incentives for Battery Electric Vehicles–A Review of the Evidence. Renew. Sustain. Energy Rev. 2017, 80, 1100–1111. [Google Scholar] [CrossRef]
- Langbroek, J.H.; Franklin, J.P.; Susilo, Y.O. The Effect of Policy Incentives on Electric Vehicle Adoption. Energy Policy 2016, 94, 94–103. [Google Scholar] [CrossRef]
- DeShazo, J.R.; Sheldon, T.L.; Carson, R.T. Designing Policy Incentives for Cleaner Technologies: Lessons from California’s Plug-in Electric Vehicle Rebate Program. J. Environ. Econ. Manag. 2017, 84, 18–43. [Google Scholar] [CrossRef]
- Ziemba, P. Selection of Electric Vehicles for the Needs of Sustainable Transport under Conditions of Uncertainty—A Comparative Study on Fuzzy MCDA Methods. Energies 2021, 14, 7786. [Google Scholar] [CrossRef]
- Patton, M.Q. Qualitative Evaluation and Research Methods; SAGE Publications, Inc.: Newcastle upon Tyne, UK, 1990. [Google Scholar]
- Greenacre, M.J. Theory and Applications of Correspondence Analysis; Academic Press: Cambridge, MA, USA, 1984. [Google Scholar]
- Stanimir, A. Analiza Korespondencji jako Narzędzie do Badania Zjawisk Ekonomicznych (Correspondence Analysis as a Tool for the Study Economic Factors); Akademii Ekonomicznej w Poznaniu: Poznań, Poland, 2005. [Google Scholar]
- Gocheva-Ilieva, S.G.; Voynikova, D.S.; Stoimenova, M.P.; Ivanov, A.V.; Iliev, I.P. Regression Trees Modeling of Time Series for Air Pollution Analysis and Forecasting. Neural Comput. Appl. 2019, 31, 9023–9039. [Google Scholar] [CrossRef]
- Choubin, B.; Moradi, E.; Golshan, M.; Adamowski, J.; Sajedi-Hosseini, F.; Mosavi, A. An Ensemble Prediction of Flood Susceptibility Using Multivariate Discriminant Analysis, Classification and Regression Trees, and Support Vector Machines. Sci. Total Environ. 2019, 651, 2087–2096. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; Dong, X.; Li, G.; Jin, Y.; Yang, X.; Qu, Y. Classification and Regression Tree Models for Remote Recognition of Black and Odorous Water Bodies Based on Sensor Networks. Sci. Program. 2022, 2022, 7390098. [Google Scholar] [CrossRef]
- McManus, W.S.; Senter, R., Jr. Market Models for Predicting PHEV Adoption and Diffusion; University of Michigan, Transportation Research Institute: Ann Arbor, MI, USA, 2009. [Google Scholar]
- Jeon, S.Y. Hybrid & Electric Vehicle Technology and Its Market Feasibility. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 2010. [Google Scholar]
- Becker, T.A.; Sidhu, I.; Tenderich, B. Electric Vehicles in the United States: A New Model with Forecasts to 2030. 2009. Available online: https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=afa0bad9602fbf152011c2c88cd67ad209446b22 (accessed on 22 March 2023).
- Won, J.-R.; Yoon, Y.-B.; Lee, K.-J. Prediction of Electricity Demand Due to PHEVs (Plug-In Hybrid Electric Vehicles) Distribution in Korea by Using Diffusion Model. In Proceedings of the 2009 Transmission & Distribution Conference & Exposition: Asia and Pacific, Seoul, Republic of Korea, 26–30 October 2009; IEEE: Piscataway, NJ, USA, 2009; pp. 1–4. [Google Scholar]
- Balducci, P. Plug-In Hybrid Electric Vehicle Market Penetration Scenarios; PNNL-17441; Pacific Northwest National Laboratory Richland: Washington, DC, USA, 2008. [Google Scholar]
- Eggers, F.; Eggers, F. Where Have All the Flowers Gone? Forecasting Green Trends in the Automobile Industry with a Choice-Based Conjoint Adoption Model. Technol. Forecast. Soc. Change 2011, 78, 51–62. [Google Scholar] [CrossRef]
- Majchrzak, K.; Olczak, P.; Matuszewska, D.; Wdowin, M. Economic and Environmental Assessment of the Use of Electric Cars in Poland. Polityka Energ. Energy Policy J. 2021, 24, 153–168. [Google Scholar] [CrossRef]
- Bienias, K.; Kowalska-Pyzalska, A.; Ramsey, D. What Do People Think about Electric Vehicles? An Initial Study of the Opinions of Car Purchasers in Poland. Energy Rep. 2020, 6, 267–273. [Google Scholar] [CrossRef]
- Sendek-Matysiak, E. Najważniejsze Bariery Rozwoju Elektromobilności w Polsce. Przegląd Komun. 2020, 75, 8–15. [Google Scholar]
- Kowalska-Pyzalska, A.; Kott, J.; Kott, M. Why Polish Market of Alternative Fuel Vehicles (AFVs) Is the Smallest in Europe? SWOT Analysis of Opportunities and Threats. Renew. Sustain. Energy Rev. 2020, 133, 110076. [Google Scholar] [CrossRef]
- Tulumba, C. 2019 US Vehicle Sales Figures by Model. 3 January 2020. Available online: https://www.goodcarbadcar.net/2019-us-vehicle-sales-figures-by-model/ (accessed on 22 March 2023).
- Bekker, H. 2019 Japan: Best-Selling Car Models—Car Sales Statistics. 9 January 2020. Available online: https://www.best-selling-cars.com/japan/2019-full-year-japan-best-selling-car-models/ (accessed on 22 March 2023).
- Bekker, H. 2017 Europe: Top-Selling Car Models—Car Sales Statistics. 29 January 2018. Available online: https://www.best-selling-cars.com/europe/2017-full-year-europe-top-selling-car-models/ (accessed on 22 March 2023).
Type of an Electric Car | Drive Source and Type | Internal Combustion Engine | Connection to the Electricity Grid | Typical Range on Electricity |
---|---|---|---|---|
BEV | 100% electrically powered | No | Yes | 160–250 km |
HEV | powered via a conventional internal combustion engine and an electric motor | Yes | No | a few kilometers |
MHEV | a vehicle equipped with both an internal combustion engine and one electric motor/generator—the electric motor has only a supporting function | Yes | No | - |
PHEV | have a hybrid drive using two engines: conventional (combustion engine) and electric | Yes | Yes | about 50 km |
FCEV | hydrogen-powered vehicles, equipped with an electric motor | No | No | up to several hundred kilometers |
ER-EV | their main drive is the electric motor, but they have an additional internal combustion engine that acts as a generator to charge the vehicle’s battery | Yes | No | 500–600 km |
Number of Dimensions | Eigenvalues and Inertia, Total Inertia = 0.08950 χ2 = 44.480 df = 15 p = 0.00009 | ||||
---|---|---|---|---|---|
Singular Value | Eigenvalues | Percentage of Inertia | Cumulative Percentage | Chi2 | |
1 | 0.269253 | 0.072497 | 81.00561 | 81.0056 | 36.03123 |
2 | 0.120855 | 0.014606 | 16.31996 | 97.3256 | 7.25910 |
3 | 0.048924 | 0.002394 | 2.67442 | 100.0000 | 1.18958 |
Number of Dimensions | Eigenvalues and Inertia, Total Inertia = 0.47466 χ2 = 155.21 df = 49 p = 0.0000 | ||||
---|---|---|---|---|---|
Singular Value | Eigenvalues | Percentage of Inertia | Cumulative Percentage | Chi2 | |
1 | 0.487844 | 0.237992 | 50.13940 | 50.1394 | 77.82339 |
2 | 0.350963 | 0.123175 | 25.95015 | 76.0896 | 40.27827 |
3 | 0.238411 | 0.056840 | 11.97481 | 88.0644 | 18.58659 |
4 | 0.177165 | 0.031387 | 6.61260 | 94.6770 | 10.26369 |
5 | 0.130685 | 0.017078 | 3.59804 | 98.2750 | 5.58466 |
6 | 0.090075 | 0.008114 | 1.70934 | 99.9843 | 2.65313 |
7 | 0.008622 | 0.000074 | 0.01566 | 100.0000 | 0.02431 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stoma, M.; Dudziak, A. Future Challenges of the Electric Vehicle Market Perceived by Individual Drivers from Eastern Poland. Energies 2023, 16, 7212. https://doi.org/10.3390/en16207212
Stoma M, Dudziak A. Future Challenges of the Electric Vehicle Market Perceived by Individual Drivers from Eastern Poland. Energies. 2023; 16(20):7212. https://doi.org/10.3390/en16207212
Chicago/Turabian StyleStoma, Monika, and Agnieszka Dudziak. 2023. "Future Challenges of the Electric Vehicle Market Perceived by Individual Drivers from Eastern Poland" Energies 16, no. 20: 7212. https://doi.org/10.3390/en16207212
APA StyleStoma, M., & Dudziak, A. (2023). Future Challenges of the Electric Vehicle Market Perceived by Individual Drivers from Eastern Poland. Energies, 16(20), 7212. https://doi.org/10.3390/en16207212