Considering Socio-Technical Parameters in Energy System Models—The Current Status and Next Steps
Abstract
:1. Introduction
2. Method and Analyzed Reviews
3. Evaluation Criteria of the Energy System Models
3.1. General Model Logic
3.2. Model Structure
3.3. Criteria for Model Application
3.4. Technological Details
3.5. Economic Details
3.6. Social Details
3.7. Summary
4. Possible Integration Method for Social Aspects in Energy System Models
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. Reviews and Analyzed Energy System Models
Review | Analyzed Models | ||||
Mancarella [2] | DER-CAM | EnergyPLAN | eTransport | RETScreen | |
Connolly et al. [3] | AEOLIUS BALMOREL BCHP Screening Tool COMPOSE E4cast EMCAS EMINENT | EMPS EnergyPLAN energyPRO ENPEP-BALANCE GTMax H2RES HOMER HYDROGEMS | IKARUS INFORSE Invert LEAP MARKAL/TIMES Mesap MESSAGE MiniCAM NEMS | ORCED PERSEUS PlaNet PRIMES ProdRisk RAMSES RETScreen SimREN | SIVAEL STREAM TRNSYS16 UniSyD3.0 WASP |
Sinha and Chandel [4] | ARES Dymola/modelica HOMER | Hybrid Designer HYBRID2 HYBRIDS HybSim | HySim HYSYS iGRHYSO iHOGA | INSEL IPSYS RAPSIM RETScreen | SOLSIM SOLSTOR SOMES TRNSYS |
Ringkjøb et al. [5] | AURORAxmp BALMOREL Calliope CASPOC COMPETES COMPOSE CYME DER-CAM DESTinEE DIETER* DIgSILENT EMLab-Generation EMMA EMPIRE EMPS | EnergyPlan energyPro Enertilec ENTIGRISd ETM ETSAP-TIAM EUCAD EUPower-Dispatch ficus GCAM GEM-E3 General GENESYS GridLAB-D HOMER | HYPERSIM iHOGA IIASA IMAKUS IRiE LEAP LIBEMOD LIMES-EU LOADMATCH LUSYM MARKAL MESSAGE NEMO NEMS Oemof | OS OpenDSS OSeMOSYS PLEXOS POLES PowerGAMA PRIMES* ProdRisk PyPSA RAPSim ReEDS ReMIND REMix renpass RETScreen | SIMPOW SIREN SAM SNOWi stELMOD SWITCH Temoa TIMES TIMES-Norway TIMES-Oslo TRNSYS18 urbs WEM* WeSIM WITCH |
Pfenninger et al. [6] | EFOM ELMOD EMCAS | ETSAP LEAP LIMES-EUþ | MACRO MARKAL MESSAGE | MGA NEMS OSeMOSYS | PLEXOS PowerACE PRIMES |
Allegrini et. al. [7] | CitySim EnerGis EnergyPlus energyPro Envi-met | EPIC-HUB ESP-r Fluent HOMER IDA ICE | KULeuvenIDEAS lib MEU Neplan NetSim | OpenFOAM Polysun Radiance RETScreen Solene | SynCity Termis TRNSYS UMI |
Prina et al. [12] | Balmorel Calliope DESSTinEE eMix EnergyPLAN | EPLANopt EPLANoptTP Ficus GAMAMOD Genesys | LEAP LUT Mahbub MARKAL/ TIMES | MESSAGE Oemof OSeMOSYS PLEXOS PyPSA | REMix REMod Temoa |
Lopion et al. [14] | Balmorel BESOM Calliope CIMS DynEMo | E4cast EnergyPLAN ENPEP-BALANCE ESME IKARUS | LEAP MARKAL MESSAGE NEMS OEMOF | OSEMoSYS PRIMES REMIND-D REMix REMod-D | SCOPE Temoa TESOM TIMES |
Manfren et al. [15] | CO2DB DEECO DER-CAM | EnergyPLAN EnergyPlus ExternE | GEMIS GENOPTa HOMER | LEAP LEED PLACE3S | RETScreen TRNSYS |
Klemm and Vennemann [16] | Calliope DER-CAM EnergyPlan | energyPro eTransport ficus | HOMER MARKAL MARKAL- MACRO | Oemof TEMOA TIMES | Urbs |
Fattahi et al. [22] | DynEMo E4Cast EnergyPLAN ENSYSI | ESME ETM IKARUS IWES | LEAP MARKAL METIS NEMS | OPERA OSeMOSYS POLES PRIMES | REMix SimREN STREAM |
Mendes et al. [23] | DER-CAM EAM | H2RES HOMER | MARKAL/TIMES RETScreen | ||
Liu et al. [24] | AIM CGE EFOM | EnergyPLAN H2RES HOMER | LEAP MARKAL MEDEE | MESSAGE NEMS TRNSYS | |
M. Fodstad et al. [28] | BALMOREL DISPA_SET EnergyPLAN | ENERTILE ESME GENeSYS-MOD | METIS Nexus Security Oemof | PleXOS PRIMES REMOD | TIMES |
Groissböck [32] | Balmorel Calliope DER-CAM dhmin DIETER Dispa-SET ELMOD | EMMA EnergyPLAN EnergyRt ficus HOMER MATPOWER minpower | MOST NEMO oemof OSeMOSYS pandapower ProView psst | PyOnSSET pypower pyPSA Renpass RETScreen rivus Switch | TEMOA TIMES Urbs |
Bhattacharyya and Timilsina [34] | EFOM LEAP | MARKAL MESAP | NEMS POLES | RESGEN SAGE | TIMES WEM |
References
- Sovacool, B.K.; Ryan, S.; Stern, P.C.; Janda, K.B.; Rochlin, G.; Spreng, D.; Pasqualetti, M.; Wilhite, H.; Lutzenhiser, L. Integrating social science in energy research. Energy Res. Soc. Sci. 2015, 6, 95–99. [Google Scholar] [CrossRef]
- Mancarella, P. MES (multi-energy systems): An overview of concepts and evaluation models. Energy 2014, 65, 1–17. [Google Scholar] [CrossRef]
- Connolly, D.; Lund, H.; Mathiesen, B.V.; Leahy, M. A review of computer tools for analysing the integration of renewable energy into various energy systems. Appl. Energy 2010, 87, 1059–1082. [Google Scholar] [CrossRef]
- Sinha, S.; Chandel, S.S. Review of software tools for hybrid renewable energy systems. Renew. Sustain. Energy Rev. 2014, 32, 192–205. [Google Scholar] [CrossRef]
- Ringkjøb, H.-K.; Haugan, P.M.; Solbrekke, I.M. A review of modelling tools for energy and electricity systems with large shares of variable renewables. Renew. Sustain. Energy Rev. 2018, 96, 440–459. [Google Scholar] [CrossRef]
- Pfenninger, S.; Hawkes, A.; Keirstead, J. Energy systems modeling for twenty-first century energy challenges. Renew. Sustain. Energy Rev. 2014, 33, 74–86. [Google Scholar] [CrossRef]
- Allegrini, J.; Orehounig, K.; Mavromatidis, G.; Ruesch, F.; Dorer, V.; Evins, R. A review of modelling approaches and tools for the simulation of district-scale energy systems. Renew. Sustain. Energy Rev. 2015, 52, 1391–1404. [Google Scholar] [CrossRef]
- Beaudin, M.; Zareipour, H. Home energy management systems: A review of modelling and complexity. Renew. Sustain. Energy Rev. 2015, 45, 318–335. [Google Scholar] [CrossRef]
- Keirstead, J.; Jennings, M.; Sivakumar, A. A review of urban energy system models: Approaches, challenges and opportunities. Renew. Sustain. Energy Rev. 2012, 16, 3847–3866. [Google Scholar] [CrossRef]
- Deng, X.; Lv, T. Power system planning with increasing variable renewable energy: A review of optimization models. J. Clean. Prod. 2020, 246, 118962. [Google Scholar] [CrossRef]
- Zendehboudi, S.; Rezaei, N.; Lohi, A. Applications of hybrid models in chemical, petroleum, and energy systems: A systematic review. Appl. Energy 2018, 228, 2539–2566. [Google Scholar] [CrossRef]
- Prina, M.G.; Manzolini, G.; Moser, D.; Nastasi, B.; Sparber, W. Classification and challenges of bottom-up energy system models—A review. Renew. Sustain. Energy Rev. 2020, 129, 109917. [Google Scholar] [CrossRef]
- DeCarolis, J.; Daly, H.E.; Dodds, P.E.; Keppo, I.; Li, F.G.N.; Mcdowall, W.; Pye, S.; Strachan, N.; Trutnevyte, E.; Usher, W.; et al. Formalizing best practice for energy system optimization modelling. Appl. Energy 2017, 194, 184–198. [Google Scholar] [CrossRef]
- Lopion, P.; Markewitz, P.; Robinius, M.; Stolten, D. A review of current challenges and trends in energy systems modeling. Renew. Sustain. Energy Rev. 2018, 96, 156–166. [Google Scholar] [CrossRef]
- Manfren, M.; Caputo, P.; Costa, G. Paradigm shift in urban energy systems through distributed generation: Methods and models. Appl. Energy 2011, 88, 1032–1048. [Google Scholar] [CrossRef]
- Klemm, C.; Vennemann, P. Modeling and optimization of multi-energy systems in mixed-use districts: A review of existing methods and approaches. Renew. Sustain. Energy Rev. 2021, 135, 110206. [Google Scholar] [CrossRef]
- Collins, S.; Deane, J.P.; Poncelet, K.; Panos, V.; Pietzcker, R.; Delarue, E.; Gallachoir, B.O. Integrating short term variations of the power system into integrated energy system models: A methodological review. Renew. Sustain. Energy Rev. 2017, 76, 839–856. [Google Scholar] [CrossRef]
- Windt, C.; Davidson, J.; Ringwood, J.V. High-fidelity numerical modelling of ocean wave energy systems: A review of computational fluid dynamics-based numerical wave tanks. Renew. Sustain. Energy Rev. 2018, 93, 610–630. [Google Scholar] [CrossRef]
- Bazmi, A.A.; Zahedi, G. Sustainable energy systems: Role of optimization modeling techniques in power generation and supply—A review. Renew. Sustain. Energy Rev. 2011, 15, 3480–3500. [Google Scholar] [CrossRef]
- Hoffmann, M.; Kotzur, L.; Stolten, D.; Robinius, M. A Review on Time Series Aggregation Methods for Energy System Models. Energies 2020, 13, 641. [Google Scholar] [CrossRef]
- Uslar, M.; Rohjans, S.; Neureiter, C.; Pröstl Andrén, F.; Velasquez, J.; Steinbrink, C.; Efthymiou, V.; Migliavacca, G.; Horsmanheimo, S.; Brunner, H.; et al. Applying the Smart Grid Architecture Model for Designing and Validating System-of-Systems in the Power and Energy Domain: A European Perspective. Energies 2019, 12, 258. [Google Scholar] [CrossRef]
- Fattahi, A.; Sijm, J.; Faaij, A. A systemic approach to analyze integrated energy system modeling tools: A review of national models. Renew. Sustain. Energy Rev. 2020, 133, 110195. [Google Scholar] [CrossRef]
- Mendes, G.; Ioakimidis, C.; Ferrão, P. On the planning and analysis of Integrated Community Energy Systems: A review and survey of available tools. Renew. Sustain. Energy Rev. 2011, 15, 4836–4854. [Google Scholar] [CrossRef]
- Liu, Y.; Yu, S.; Zhu, Y.; Wang, D.; Liu, J. Modeling, planning, application and management of energy systems for isolated areas: A review. Renew. Sustain. Energy Rev. 2018, 82, 460–470. [Google Scholar] [CrossRef]
- Ibrahim, A.; Jiang, F. The electric vehicle energy management: An overview of the energy system and related modeling and simulation. Renew. Sustain. Energy Rev. 2021, 144, 111049. [Google Scholar] [CrossRef]
- Weinand, J.M.; Scheller, F.; McKenna, R. Reviewing energy system modelling of decentralized energy autonomy. Energy 2020, 203, 117817. [Google Scholar] [CrossRef]
- Lambert, T.; Gilman, P.; Lilienthal, P. Micropower System Modeling with HOMER. Available online: https://www.homerenergy.com/documents/MicropowerSystemModelingWithHOMER.pdf (accessed on 19 September 2023).
- Fodstad, M.; Del Granado, P.C.; Hellemo, L.; Knudsen, B.R.; Pisciella, P.; Silvast, A.; Bordin, C.; Schmidt, S.; Straus, J. Next frontiers in energy system modelling: A review on challenges and the state of the art. Renew. Sustain. Energy Rev. 2022, 160, 112246. [Google Scholar] [CrossRef]
- Ahmadi, S.; Saboohi, Y.; Vakili, A. Frameworks, quantitative indicators, characters, and modeling approaches to analysis of energy system resilience: A review. Renew. Sustain. Energy Rev. 2021, 144, 110988. [Google Scholar] [CrossRef]
- Kotzur, L.; Nolting, L.; Hoffmann, M.; Groß, T.; Smolenko, A.; Priesmann, J.; Büsing, H.; Beer, R.; Kullmann, F.; Singh, B.; et al. A modeler’s guide to handle complexity in energy systems optimization. Adv. Appl. Energy 2021, 4, 100063. [Google Scholar] [CrossRef]
- Bolwig, S.; Bazbauers, G.; Klitkou, A.; Lund, P.; Blumberga, A.; Gravelsins, A.; Blumberga, D. Review of modelling energy transitions pathways with application to energy system flexibility. Renew. Sustain. Energy Rev. 2019, 101, 440–452. [Google Scholar] [CrossRef]
- Groissböck, M. Are open source energy system optimization tools mature enough for serious use? Renew. Sustain. Energy Rev. 2019, 102, 234–248. [Google Scholar] [CrossRef]
- Palzer, A.; Henning, H.-M. A comprehensive model for the German electricity and heat sector in a future energy system with a dominant contribution from renewable energy technologies—Part II: Results. Renew. Sustain. Energy Rev. 2014, 30, 1019–1034. [Google Scholar] [CrossRef]
- Bhattacharyya, S.C.; Timilsina, G.R. A review of energy system models. Int. J. Energy Sect. Manag. 2010, 4, 494–518. [Google Scholar] [CrossRef]
- McGookin, C.; Gallachóir, B.Ó.; Byrne, E. Participatory methods in energy system modelling and planning—A review. Renew. Sustain. Energy Rev. 2021, 151, 111504. [Google Scholar] [CrossRef]
- Vågerö, O.; Zeyringer, M. Can we optimise for justice? Reviewing the inclusion of energy justice in energy system optimisation models. Energy Res. Soc. Sci. 2023, 95, 102913. [Google Scholar] [CrossRef]
- Huckebrink, D.; Bertsch, V. Integrating Behavioural Aspects in Energy System Modelling—A Review. Energies 2021, 14, 4579. [Google Scholar] [CrossRef]
- Krumm, A.; Süsser, D.; Blechinger, P. Modelling social aspects of the energy transition: What is the current representation of social factors in energy models? Energy 2022, 239, 121706. [Google Scholar] [CrossRef]
- Cuesta, M.A.; Castillo-Calzadilla, T.; Borges, C.E. A critical analysis on hybrid renewable energy modeling tools: An emerging opportunity to include social indicators to optimise systems in small communities. Renew. Sustain. Energy Rev. 2020, 122, 109691. [Google Scholar] [CrossRef]
- Lund, H.; Thellufsen, J.Z.; Østergaard, P.A.; Sorknæs, P.; Skov, I.R.; Mathiesen, B.V. EnergyPLAN—Advanced analysis of smart energy systems. Smart Energy 2021, 1, 100007. [Google Scholar] [CrossRef]
- Sarica, K.; Tyner, W.E. Analysis of US renewable fuels policies using a modified MARKAL model. Renew. Energy 2013, 50, 701–709. [Google Scholar] [CrossRef]
- McPherson, M.; Karney, B. Long-term scenario alternatives and their implications: LEAP model application of Panama’s electricity sector. Energy Policy 2014, 68, 146–157. [Google Scholar] [CrossRef]
- Energy Information Administration. The National Energy Modeling System: An Overview 2009; Energy Information Administration: Washington, DC, USA, 2009. [Google Scholar]
- Wiese, F.; Bramstoft, R.; Koduvere, H.; Pizarro, A.; Balyk, O.; Kirkerud, J.G.; Tveten, Å.G.; Bolkesjø, T.F.; Münster, M.; Ravn, H. Balmorel open source energy system model. Energy Strategy Rev. 2018, 20, 26–34. [Google Scholar] [CrossRef]
- Stadler, M.; Groissböck, M.; Cardoso, G.; Marnay, C. Optimizing Distributed Energy Resources and Building Retrofits with the Strategic DER- CAModel. 2014. Available online: https://www.osti.gov/servlets/purl/1163652. (accessed on 19 September 2023).
- Messner, S.; Strubegger, M. User’s Guide for MESSAGE III. 1995. Available online: https://pure.iiasa.ac.at/id/eprint/4527/1/wp-95-069.pdf. (accessed on 19 September 2023).
- Krien, U.; Schönfeldt, P.; Launer, J.; Hilpert, S.; Kaldemeyer, C.; Pleßmann, G. Oemof.solph—A model generator for linear and mixed-integer linear optimisation of energy systems. Softw. Impacts 2020, 6, 100028. [Google Scholar] [CrossRef]
- Löffler, K.; Hainsch, K.; Burandt, T.; Oei, P.-Y.; Kemfert, C.; von Hirschhausen, C. Designing a Model for the Global Energy System—GENeSYS-MOD: An Application of the Open-Source Energy Modeling System (OSeMOSYS). Energies 2017, 10, 1468. [Google Scholar] [CrossRef]
- Fragkos, P.; Tasios, N.; Paroussos, L.; Capros, P.; Tsani, S. Energy system impacts and policy implications of the European Intended Nationally Determined Contribution and low-carbon pathway to 2050. Energy Policy 2017, 100, 216–226. [Google Scholar] [CrossRef]
- Loulou, R.; Lehtilä, A.; Kanudia, A.; Remme, U.; Gary Goldstein, G. Documentation for the Times Model Part ii. 2005. Available online: https://iea-etsap.org/docs/documentation_for_the_times_model-partii.pdf. (accessed on 19 September 2023).
- Klein, S.A. TRNSYS 18: A Transient System Simulation Program. Available online: http://sel.me.wisc.edu/trnsys (accessed on 19 September 2023).
- Turnheim, B.; Berkhout, F.; Geels, F.W.; Hof, A.; McMeekin, A.; Nykvist, B.; van Vuuren, D. Evaluating sustainability transitions pathways: Bridging analytical approaches to address governance challenges. Glob. Environ. Chang. 2015, 35, 239–253. [Google Scholar] [CrossRef]
- Trutnevyte, E.; Hirt, L.; Bauer, N.; Cherp, A.; Hawkes, A.; Edelenbosch, O.; Pedde, S.; van Vuuren, D.P. Societal Transformations in Models for Energy and Climate Policy: The Ambitious Next Step. One Earth 2019, 1, 423–433. [Google Scholar] [CrossRef]
- Trutnevyte, E.; Barton, J.; O’Grady, Á.; Ogunkunle, D.; Pudjianto, D.; Robertson, E. Linking a storyline with multiple models: A cross-scale study of the UK power system transition. Technol. Forecast. Soc. Chang. 2014, 89, 26–42. [Google Scholar] [CrossRef]
- Li, F.G.; Trutnevyte, E.; Strachan, N. A review of socio-technical energy transition (STET) models. Technol. Forecast. Soc. Chang. 2015, 100, 290–305. [Google Scholar] [CrossRef]
Ref. | Authors | Title | Year | Citation per Year | Models Analyzed |
---|---|---|---|---|---|
[2] | Mancarella | MES (multi-energy systems): An overview of concepts and evaluation models | 2014 | 102.3 | 4 |
[3] | Connolly et al. | A review of computer tools for analysing the integration of renewable energy into various energy systems | 2010 | 86.9 | 37 |
[4] | Sinha and Chandel | Review of software tools for hybrid renewable energy systems | 2014 | 67.5 | 19 |
[5] | Ringkjøb et al. | A review of modelling tools for energy and electricity systems with large shares of variable renewables | 2018 | 66.3 | 75 |
[6] | Pfenninger et al. | Energy systems modeling for twenty-first century energy challenges | 2014 | 65.4 | 14 |
[7] | Allegrini et. al. | A review of modelling approaches and tools for the simulation of district-scale energy systems | 2015 | 40.0 | 24 |
[12] | Prina et al. | Classification and challenges of bottom-up energy system models—A review | 2020 | 31.5 | 22 |
[14] | Lopion et al. | A review of current challenges and trends in energy systems modeling | 2018 | 26.0 | 24 |
[15] | Manfren et al. | Paradigm shift in urban energy systems through distributed generation: Methods and models | 2011 | 25.5 | 14 |
[16] | Klemm and Vennemann | Modeling and optimization of multi-energy systems in mixed-use districts: A review of existing methods and approaches | 2021 | 25.3 | 13 |
[22] | Fattahi et al. | A systemic approach to analyze integrated energy system modeling tools: A review of national models | 2020 | 17.8 | 19 |
[23] | Mendes et al. | On the planning and analysis of Integrated Community Energy Systems: A review and survey of available tools | 2011 | 17.7 | 6 |
[24] | Liu et al. | Modeling, planning, application and management of energy systems for isolated areas: A review | 2018 | 17.5 | 12 |
[28] | M. Fodstad et al. | Next frontiers in energy system modelling: A review on challenges and the state of the art | 2022 | 16.0 | 13 |
[32] | Groissböck | Are open-source energy system optimization tools mature enough for serious use? | 2019 | 15.0 | 31 |
[34] | Bhattacharyya and Timilsina | A review of energy system models | 2011 | 14.8 | 10 |
Criteria | [2] | [3] | [4] | [5] | [6] | [7] | [12] | [14] | [15] | [16] | [22] | [23] | [24] | [28] | [32] | [34] | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
General Model Logic | Analytical Approach | x | x | x | x | x | x | x | x | ||||||||
Mathematical Approach | x | x | x | x | x | x | |||||||||||
Methodology | x | x | x | x | x | x | x | x | x | x | x | x | |||||
Transformation Path | x | x | x | ||||||||||||||
Model Structure | Geographical Coverage | x | x | x | x | x | x | x | |||||||||
Modeling Horizon | x | x | x | x | x | x | x | x | x | x | |||||||
Spatial Resolution | x | x | x | x | x | x | x | ||||||||||
Temporal Resolution | x | x | x | x | x | x | x | x | x | x | x | ||||||
Assessment Criteria | x | x | x | x | x | ||||||||||||
Model Application | Accessibility | x | x | x | x | x | x | x | x | ||||||||
Application | x | x | x | x | x | x | x | x | |||||||||
Data Source | x | ||||||||||||||||
Purpose | x | x | x | x | |||||||||||||
Programming Environment | x | x | x | ||||||||||||||
Technological Details | DSM or DR | x | x | x | |||||||||||||
Demand Sectors | x | x | x | x | |||||||||||||
Energy Sectors | x | x | x | x | x | x | x | x | |||||||||
Energy Storage | x | x | x | x | x | ||||||||||||
Generation Details | x | x | x | x | x | x | x | x | x | x | |||||||
Grid Modeling | x | x | x | x | |||||||||||||
Emission Modeling | x | x | |||||||||||||||
Economic Details | Cost | x | x | x | |||||||||||||
Market | x | x | x | ||||||||||||||
Policy/Subsidies | x | x | |||||||||||||||
Social Details | Consumer Behavior | x | x | x | x | x | x | ||||||||||
Urban-rural divide | x |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liegl, T.; Schramm, S.; Kuhn, P.; Hamacher, T. Considering Socio-Technical Parameters in Energy System Models—The Current Status and Next Steps. Energies 2023, 16, 7020. https://doi.org/10.3390/en16207020
Liegl T, Schramm S, Kuhn P, Hamacher T. Considering Socio-Technical Parameters in Energy System Models—The Current Status and Next Steps. Energies. 2023; 16(20):7020. https://doi.org/10.3390/en16207020
Chicago/Turabian StyleLiegl, Theresa, Simon Schramm, Philipp Kuhn, and Thomas Hamacher. 2023. "Considering Socio-Technical Parameters in Energy System Models—The Current Status and Next Steps" Energies 16, no. 20: 7020. https://doi.org/10.3390/en16207020
APA StyleLiegl, T., Schramm, S., Kuhn, P., & Hamacher, T. (2023). Considering Socio-Technical Parameters in Energy System Models—The Current Status and Next Steps. Energies, 16(20), 7020. https://doi.org/10.3390/en16207020