Green Building Technologies Targeting Carbon Neutrality
- Low-carbon building;
- Building-integrated renewable energy technology;
- Eco-friendly building material;
- Advancing building envelope;
- Intelligent building;
- Building flexibility;
- Building energy storage;
- Healthy building;
- Energy-efficient lighting;
- Waste heat utilization in buildings.
- China (12);
- USA (5);
- Greece (3);
- Korea (3);
- Italy (2);
- Egypt (2);
- Slovakia (2).
Acknowledgments
Conflicts of Interest
References
- Fan, C.; Xiao, F.; Yan, D. Advanced data analytics for building energy modeling and management. Build. Simul. 2020, 14, 1–2. [Google Scholar] [CrossRef]
- Chan, M.; Masrom, A.N.; Yasin, S.S. Selection of Low-Carbon Building Materials in Construction Projects: Construction Professionals’ Perspectives. Buildings 2022, 12, 486. [Google Scholar] [CrossRef]
- Pillai, D.S.; Shabunko, V.; Krishna, A. A comprehensive review on building integrated photovoltaic systems: Emphasis to technological advancements, outdoor testing, and predictive maintenance. Renew. Sustain. Energy Rev. 2022, 156, 111946. [Google Scholar] [CrossRef]
- Zakariyyah, K.I.; John, I.B.; Ijaola, I.A. Cultural orientations and strategic capability for the adoption of building information modeling in construction firms. Eng. Rep. 2021, 3, e12417. [Google Scholar] [CrossRef]
- Bonoli, A.; Zanni, S.; Serrano-Bernardo, F. Sustainability in Building and Construction within the Framework of Circular Cities and European New Green Deal. The Contribution of Concrete Recycling. Sustainability 2021, 13, 2139. [Google Scholar] [CrossRef]
- Neto, A.H.; Durante, L.C.; Callejas, I.J.A.; da Guarda, E.L.A.; Moreira, J.V.R. The challenges on operating a zero net energy building facing global warming conditions. Build. Simul. 2021, 15, 435–451. [Google Scholar] [CrossRef]
- Dovì, V.; Battaglini, A. Energy Policy and Climate Change: A Multidisciplinary Approach to a Global Problem. Energies 2015, 8, 13473–13480. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Wang, S. New challenges for optimal design of nearly/net zero energy buildings under post-occupancy performance-based design standards and a risk-benefit based solution. Build. Simul. 2021, 15, 685–698. [Google Scholar] [CrossRef]
- Roose, B. Perovskite Solar Cells. Energies 2022, 15, 6399. [Google Scholar] [CrossRef]
- Deng, Z.; Chen, Y.; Yang, J.; Chen, Z. Archetype identification and urban building energy modeling for city-scale buildings based on GIS datasets. Build. Simul. 2022, 15, 1547–1559. [Google Scholar] [CrossRef]
- Sowiżdżał, A. Geothermal Systems—An Overview. Energies 2022, 15, 6377. [Google Scholar] [CrossRef]
- Yan, D.; Zhou, X.; An, J.; Kang, X.; Bu, F.; Chen, Y.; Pan, Y.; Gao, Y.; Zhang, Q.; Zhou, H.; et al. DeST 3.0: A new-generation building performance simulation platform. Build. Simul. 2022, 15, 1849–1868. [Google Scholar] [CrossRef]
- Baccega, E.; Bottarelli, M. Granular PCM-Enhanced Plaster for Historical Buildings: Experimental Tests and Numerical Studies. Energies 2022, 15, 975. [Google Scholar] [CrossRef]
- Gao, Q.; Wu, T.; Liu, L.; Yao, Y.; Jiang, B. Prediction of Wall and Indoor Hygrothermal Properties of Rammed Earth Folk House in Northwest Sichuan. Energies 2022, 15, 1936. [Google Scholar] [CrossRef]
- Yang, J.; Dong, Z.; Yang, H.; Liu, Y.; Wang, Y.; Chen, F.; Chen, H. Numerical and Experimental Study on Thermal Comfort of Human Body by Split-Fiber Air Conditioner. Energies 2022, 15, 3755. [Google Scholar] [CrossRef]
- Moghaddasi, H.; Culp, C.; Vanegas, J.; Das, S.; Ehsani, M. An Adaptable Net Zero Model: Energy Analysis of a Monitored Case Study. Energies 2022, 15, 4016. [Google Scholar] [CrossRef]
- Stamatellos, G.; Zogou, O.; Stamatelos, A. Energy Analysis of a NZEB Office Building with Rooftop PV Installation: Exploitation of the Employees’ Electric Vehicles Battery Storage. Energies 2022, 15, 6206. [Google Scholar] [CrossRef]
- Lee, Y.-K.; Kim Il, Y.; Ga-Hyeon, K. Indoor air quality diagnosis program for school multi-purpose activity and office spaces. Energies 2022, 15, 8134. [Google Scholar] [CrossRef]
- Elshafei, G.; Katunský, D.; Zeleňáková, M.; Negm, A. Opportunities for Using Analytical Hierarchy Process in Green Building Optimization. Energies 2022, 15, 4490. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, J.; Wu, W.; Hu, M.; Wang, Y. Green Building Technologies Targeting Carbon Neutrality. Energies 2023, 16, 836. https://doi.org/10.3390/en16020836
Cao J, Wu W, Hu M, Wang Y. Green Building Technologies Targeting Carbon Neutrality. Energies. 2023; 16(2):836. https://doi.org/10.3390/en16020836
Chicago/Turabian StyleCao, Jingyu, Wei Wu, Mingke Hu, and Yunfeng Wang. 2023. "Green Building Technologies Targeting Carbon Neutrality" Energies 16, no. 2: 836. https://doi.org/10.3390/en16020836
APA StyleCao, J., Wu, W., Hu, M., & Wang, Y. (2023). Green Building Technologies Targeting Carbon Neutrality. Energies, 16(2), 836. https://doi.org/10.3390/en16020836