Evaluating the Potential of Multi-Anodes in Constructed Wetlands Coupled with Microbial Fuel Cells for Treating Wastewater and Bioelectricity Generation under High Organic Loads
Abstract
:1. Introduction
2. Materials and Methods
2.1. Wastewater Composition
2.2. Configuration
2.3. Inoculation and Operation
2.4. Measurement and Calculations
3. Results and Discussion
3.1. Environmental Conditions of Microcosms
3.2. Chemical Oxygen Demand (COD) Removal Efficiency
3.3. Ammonium Removal
3.4. Electricity Generation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gupta, S.; Mittal, Y.; Panja, R.; Prajapati, K.B.; Yadav, A.K. Conventional Wastewater Treatment Technologies. Curr. Dev. Biotechnol. Bioeng. 2021, 35, 47–75. [Google Scholar]
- Srivastava, P.; Gupta, S.; Mittal, Y.; Dhal, N.K.; Saeed, T.; Martínez, F.; Yadav, A.K. Constructed Wetlands and Its Coupling with Other Technologies from Lab to Field Scale for Enhanced Wastewater Treatment and Resource Recovery. In Novel Approaches towards Wastewater Treatment and Resource Recovery Technologies; Elsevier: Amsterdam, The Netherlands, 2022; pp. 419–446. [Google Scholar]
- Doherty, L.; Zhao, Y.; Zhao, X.; Hu, Y.; Hao, X.; Xu, L.; Liu, R. A Review of a Recently Emerged Technology: Constructed Wetland–Microbial Fuel Cells. Water Res. 2015, 85, 38–45. [Google Scholar] [CrossRef] [PubMed]
- Yadav, A.K.; Dash, P.; Mohanty, A.; Abbassi, R.; Mishra, B.K. Performance Assessment of Innovative Constructed Wetland-Microbial Fuel Cell for Electricity Production and Dye Removal. Ecol. Eng. 2012, 47, 126–131. [Google Scholar] [CrossRef]
- Srivastava, P.; Dwivedi, S.; Kumar, N.; Abbassi, R.; Garaniya, V.; Yadav, A.K. Performance Assessment of Aeration and Radial Oxygen Loss Assisted Cathode Based Integrated Constructed Wetland-Microbial Fuel Cell Systems. Bioresour. Technol. 2017, 244, 1178–1182. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, P.; Abbassi, R.; Yadav, A.K.; Garaniya, V.; Lewis, T.; Zhao, Y.; Aminabhavi, T. Interrelation between Sulphur and Conductive Materials and Its Impact on Ammonium and Organic Pollutants Removal in Electroactive Wetlands. J. Hazard. Mater. 2021, 419, 126417. [Google Scholar] [CrossRef]
- Huang, X.; Duan, C.; Duan, W.; Sun, F.; Cui, H.; Zhang, S.; Chen, X. Role of Electrode Materials on Performance and Microbial Characteristics in the Constructed Wetland Coupled Microbial Fuel Cell (CW-MFC): A Review. J. Clean. Prod. 2021, 301, 126951. [Google Scholar] [CrossRef]
- Tamta, P.; Rani, N.; Yadav, A.K. Enhanced Wastewater Treatment and Electricity Generation Using Stacked Constructed Wetland–Microbial Fuel Cells. Environ. Chem. Lett. 2020, 18, 871–879. [Google Scholar] [CrossRef]
- Gupta, S.; Srivastava, P.; Patil, S.A.; Yadav, A.K. A Comprehensive Review on Emerging Constructed Wetland Coupled Microbial Fuel Cell Technology: Potential Applications and Challenges. Bioresour. Technol. 2021, 320, 124376. [Google Scholar] [CrossRef]
- Srivastava, P.; Gupta, S.; Garaniya, V.; Abbassi, R.; Yadav, A.K. Up to 399 MV Bioelectricity Generated by a Rice Paddy-Planted Microbial Fuel Cell Assisted with a Blue-Green Algal Cathode. Environ. Chem. Lett. 2019, 17, 1045–1051. [Google Scholar] [CrossRef]
- Srivastava, P.; Abbassi, R.; Yadav, A.; Garaniya, V.; Asadnia, M.; Lewis, T.; Khan, S.J. Influence of Applied Potential on Treatment Performance and Clogging Behaviour of Hybrid Constructed Wetland-Microbial Electrochemical Technologies. Chemosphere 2021, 284, 131296. [Google Scholar] [CrossRef]
- Ebrahimi, A.; Sivakumar, M.; McLauchlan, C. A Taxonomy of Design Factors in Constructed Wetland-Microbial Fuel Cell Performance: A Review. J. Environ. Manag. 2021, 291, 112723. [Google Scholar] [CrossRef] [PubMed]
- Guo, K.; Donose, B.C.; Soeriyadi, A.H.; Prévoteau, A.; Patil, S.A.; Freguia, S.; Gooding, J.J.; Rabaey, K. Flame Oxidation of Stainless Steel Felt Enhances Anodic Biofilm Formation and Current Output in Bioelectrochemical Systems. Environ. Sci. Technol. 2014, 48, 7151–7156. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Song, H.-L.; Yang, X.-L.; Zhang, S.; Yang, Y.-L.; Zhang, L.-M.; Xu, H.; Wang, Y.-W. A Continuous Flow MFC-CW Coupled with a Biofilm Electrode Reactor to Simultaneously Attenuate Sulfamethoxazole and Its Corresponding Resistance Genes. Sci. Total Environ. 2018, 637, 295–305. [Google Scholar] [CrossRef] [PubMed]
- Mittal, Y.; Srivastava, P.; Kumar, N.; Kumar, M.; Singh, S.K.; Martinez, F.; Yadav, A.K. Ultra-Fast and Low-Cost Electroactive Biochar Production for Electroactive-Constructed Wetland Applications: A Circular Concept for Plant Biomass Utilization. Chem. Eng. J. 2023, 452, 138587. [Google Scholar] [CrossRef]
- Taskan, E.; Hasar, H. Comprehensive Comparison of a New Tin-Coated Copper Mesh and a Graphite Plate Electrode as an Anode Material in Microbial Fuel Cell. Appl. Biochem. Biotechnol. 2015, 175, 2300–2308. [Google Scholar] [CrossRef]
- Srivastava, P.; Yadav, A.K.; Mishra, B.K. The Effects of Microbial Fuel Cell Integration into Constructed Wetland on the Performance of Constructed Wetland. Bioresour. Technol. 2015, 195, 223–230. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, R.; Zhang, G.; Yang, F.; Gao, F. Modified Graphite Electrode by Polyaniline/Tourmaline Improves the Performance of Bio-Cathode Microbial Fuel Cell. Int. J. Hydrog. Energy 2014, 39, 11250–11257. [Google Scholar] [CrossRef]
- Kim, C.; Kim, J.R.; Heo, J. Enhancement of Bioelectricity Generation by a Microbial Fuel Cell Using Ti Nanoparticle-modified Carbon Electrode. J. Chem. Technol. Biotechnol. 2019, 94, 1622–1627. [Google Scholar] [CrossRef]
- Wang, J.; Song, X.; Li, Q.; Bai, H.; Zhu, C.; Weng, B.; Yan, D.; Bai, J. Bioenergy Generation and Degradation Pathway of Phenanthrene and Anthracene in a Constructed Wetland-Microbial Fuel Cell with an Anode Amended with NZVI. Water Res. 2019, 150, 340–348. [Google Scholar] [CrossRef]
- Santoro, C.; Artyushkova, K.; Babanova, S.; Atanassov, P.; Ieropoulos, I.; Grattieri, M.; Cristiani, P.; Trasatti, S.; Li, B.; Schuler, A.J. Parameters Characterization and Optimization of Activated Carbon (AC) Cathodes for Microbial Fuel Cell Application. Bioresour. Technol. 2014, 163, 54–63. [Google Scholar] [CrossRef]
- Estrada-Arriaga, E.B.; Guadarrama-Pérez, O.; Silva-Martínez, S.; Cuevas-Arteaga, C.; Guadarrama-Pérez, V.H. Oxygen Reduction Reaction (ORR) Electrocatalysts in Constructed Wetland-Microbial Fuel Cells: Effect of Different Carbon-Based Catalyst Biocathode during Bioelectricity Production. Electrochim. Acta 2021, 370, 137745. [Google Scholar] [CrossRef]
- Liu, S.; Song, H.; Wei, S.; Yang, F.; Li, X. Bio-Cathode Materials Evaluation and Configuration Optimization for Power Output of Vertical Subsurface Flow Constructed Wetland—Microbial Fuel Cell Systems. Bioresour. Technol. 2014, 166, 575–583. [Google Scholar] [CrossRef] [PubMed]
- Tang, C.; Zhao, Y.; Kang, C.; Yang, Y.; Morgan, D.; Xu, L. Towards Concurrent Pollutants Removal and High Energy Harvesting in a Pilot-Scale CW-MFC: Insight into the Cathode Conditions and Electrodes Connection. Chem. Eng. J. 2019, 373, 150–160. [Google Scholar] [CrossRef]
- Oon, Y.-L.; Ong, S.-A.; Ho, L.-N.; Wong, Y.-S.; Dahalan, F.A.; Oon, Y.-S.; Lehl, H.K.; Thung, W.-E. Synergistic Effect of Up-Flow Constructed Wetland and Microbial Fuel Cell for Simultaneous Wastewater Treatment and Energy Recovery. Bioresour. Technol. 2016, 203, 190–197. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Pang, Q.; Zhou, Y.; Peng, F.; He, F.; Li, W.; Xu, B.; Cui, Y.; Zhu, X. Robust Nitrate Removal and Bioenergy Generation with Elucidating Functional Microorganisms under Carbon Constraint in a Novel Multianode Tidal Constructed Wetland Coupled with Microbial Fuel Cell. Bioresour. Technol. 2020, 314, 123744. [Google Scholar] [CrossRef]
- Yang, Y.; Zhao, Y.; Tang, C.; Liu, R.; Chen, T. Dual Role of Macrophytes in Constructed Wetland-Microbial Fuel Cells Using Pyrrhotite as Cathode Material: A Comparative Assessment. Chemosphere 2021, 263, 128354. [Google Scholar] [CrossRef]
- Xu, L.; Zhao, Y.; Wang, X.; Yu, W. Applying Multiple Bio-Cathodes in Constructed Wetland-Microbial Fuel Cell for Promoting Energy Production and Bioelectrical Derived Nitrification-Denitrification Process. Chem. Eng. J. 2018, 344, 105–113. [Google Scholar] [CrossRef]
- Oon, Y.-L.; Ong, S.-A.; Ho, L.-N.; Wong, Y.-S.; Oon, Y.-S.; Lehl, H.K.; Thung, W.-E. Hybrid System Up-Flow Constructed Wetland Integrated with Microbial Fuel Cell for Simultaneous Wastewater Treatment and Electricity Generation. Bioresour. Technol. 2015, 186, 270–275. [Google Scholar] [CrossRef]
- Logan, B.E.; Hamelers, B.; Rozendal, R.; Schröder, U.; Keller, J.; Freguia, S.; Aelterman, P.; Verstraete, W.; Rabaey, K. Microbial Fuel Cells: Methodology and Technology. Environ. Sci. Technol. 2006, 40, 5181–5192. [Google Scholar] [CrossRef]
- Chakrabarti, S.; Roychoudhury, P.; Bajpai, P. Biphasic Biomethanation of Wood-Hydrolysate Effluent. Artif. Cells Blood Substit. Biotechnol. 1999, 27, 461–467. [Google Scholar] [CrossRef]
- Villasenor, J.; Capilla, P.; Rodrigo, M.; Canizares, P.; Fernandez, F. Operation of a Horizontal Subsurface Flow Constructed Wetland–Microbial Fuel Cell Treating Wastewater under Different Organic Loading Rates. Water Res. 2013, 47, 6731–6738. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Song, X.; Wang, Y.; Zhao, Z.; Wang, B.; Yan, D. Effects of Electrode Material and Substrate Concentration on the Bioenergy Output and Wastewater Treatment in Air-Cathode Microbial Fuel Cell Integrating with Constructed Wetland. Ecol. Eng. 2017, 99, 191–198. [Google Scholar] [CrossRef]
- Wu, D.; Yang, L.; Gan, L.; Chen, Q.; Li, L.; Chen, X.; Wang, X.; Guo, L.; Miao, A. Potential of Novel Wastewater Treatment System Featuring Microbial Fuel Cell to Generate Electricity and Remove Pollutants. Ecol. Eng. 2015, 84, 624–631. [Google Scholar] [CrossRef]
- Ghangrekar, M.; Shinde, V. Performance of Membrane-Less Microbial Fuel Cell Treating Wastewater and Effect of Electrode Distance and Area on Electricity Production. Bioresour. Technol. 2007, 98, 2879–2885. [Google Scholar] [CrossRef]
- Srivastava, P.; Yadav, A.K.; Garaniya, V.; Lewis, T.; Abbassi, R.; Khan, S.J. Electrode Dependent Anaerobic Ammonium Oxidation in Microbial Fuel Cell Integrated Hybrid Constructed Wetlands: A New Process. Sci. Total Environ. 2020, 698, 134248. [Google Scholar] [CrossRef]
- Riley, K.A.; Stein, O.R.; Hook, P.B. Ammonium Removal in Constructed Wetland Microcosms as Influenced by Season and Organic Carbon Load. J. Environ. Sci. Health 2005, 40, 1109–1121. [Google Scholar] [CrossRef]
- Mittal, Y.; Dash, S.; Srivastava, P.; Mishra, P.M.; Aminabhavi, T.M.; Yadav, A.K. Azo Dye Containing Wastewater Treatment in Earthen Membrane Based Unplanted Two Chambered Constructed Wetlands-Microbial Fuel Cells: A New Design for Enhanced Performance. Chem. Eng. J. 2022, 427, 131856. [Google Scholar] [CrossRef]
- Saket, P.; Mittal, Y.; Bala, K.; Joshi, A.; Kumar Yadav, A. Innovative Constructed Wetland Coupled with Microbial Fuel Cell for Enhancing Diazo Dye Degradation with Simultaneous Electricity Generation. Bioresour. Technol. 2022, 345, 126490. [Google Scholar] [CrossRef]
- Xie, T.; Jing, Z.; Hu, J.; Yuan, P.; Liu, Y.; Cao, S. Degradation of Nitrobenzene-Containing Wastewater by a Microbial-Fuel-Cell-Coupled Constructed Wetland. Ecol. Eng. 2018, 112, 65–71. [Google Scholar] [CrossRef]
- Yadav, A.K.; Mittal, Y.; Basu, S.; Kumar, T.P.; Srivastava, P.; Gupta, S. Earthen Membrane Based Two Chambered Constructed Wetland Cum Micriobial Fuel Cell for Treatment and Detoxification of Waste Water Containing Azo Dye; Wiley: Hoboken, NJ, USA, 2022. [Google Scholar]
- Xu, L.; Zhao, Y.; Tang, C.; Doherty, L. Influence of Glass Wool as Separator on Bioelectricity Generation in a Constructed Wetland-Microbial Fuel Cell. J. Environ. Manag. 2018, 207, 116–123. [Google Scholar] [CrossRef]
- Velvizhi, G.; Mohan, S.V. Electrogenic Activity and Electron Losses under Increasing Organic Load of Recalcitrant Pharmaceutical Wastewater. Int. J. Hydrog. Energy 2012, 37, 5969–5978. [Google Scholar] [CrossRef]
- Sun, Y.; Wei, J.; Liang, P.; Huang, X. Electricity Generation and Microbial Community Changes in Microbial Fuel Cells Packed with Different Anodic Materials. Bioresour. Technol. 2011, 102, 10886–10891. [Google Scholar] [CrossRef]
- Yang, Y.; Zhao, Y.; Tang, C.; Mao, Y.; Shen, C. Significance of Water Level in Affecting Cathode Potential in Electro-Wetland. Bioresour. Technol. 2019, 285, 121345. [Google Scholar] [CrossRef] [PubMed]
- Oon, Y.-L.; Ong, S.-A.; Ho, L.-N.; Wong, Y.-S.; Dahalan, F.A.; Oon, Y.-S.; Lehl, H.K.; Thung, W.-E.; Nordin, N. Role of Macrophyte and Effect of Supplementary Aeration in Up-Flow Constructed Wetland-Microbial Fuel Cell for Simultaneous Wastewater Treatment and Energy Recovery. Bioresour. Technol. 2017, 224, 265–275. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Cheng, S.; Logan, B.E. Power Generation in Fed-Batch Microbial Fuel Cells as a Function of Ionic Strength, Temperature, and Reactor Configuration. Environ. Sci. Technol. 2005, 39, 5488–5493. [Google Scholar] [CrossRef]
- Bolton, C.R.; Randall, D.G. Development of an Integrated Wetland Microbial Fuel Cell and Sand Filtration System for Greywater Treatment. J. Environ. Chem. Eng. 2019, 7, 103249. [Google Scholar] [CrossRef]
- Wang, X.; Tian, Y.; Liu, H.; Zhao, X.; Wu, Q. Effects of Influent COD/TN Ratio on Nitrogen Removal in Integrated Constructed Wetland–Microbial Fuel Cell Systems. Bioresour. Technol. 2019, 271, 492–495. [Google Scholar] [CrossRef]
CW-MFC(GG) | CW-MFC(GAC) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Organic Loading Rate | 890.11 g COD/m3-d | 1781.32 g COD/m3-d | 890.11 g COD/m3-d | 1781.32 g COD/m3-d | ||||||||
Connections | Pdmax (mW/m3) | Cdmax (mA/m3) | Vmax (mV) | Pdmax (mW/m3) | Cdmax (mA/m3) | Vmax (mV) | Pdmax (mW/m3) | Cdmax (mA/m3) | Vmax (mV) | Pdmax (mW/m3) | Cdmax (mA/m3) | Vmax (mV) |
A1-C | 2.26 | 75.25 | 30.1 | 2.25 | 75 | 30 | 0.462 | 36.75 | 13.6 | 0.43 | 35.67 | 13.2 |
A2-C | 1.69 | 65 | 26.4 | 2.13 | 73 | 29.2 | 1.42 | 64.59 | 23.9 | 4.47 | 114.32 | 42.3 |
A3-C | 3.80 | 97.5 | 39.5 | 2.73 | 82.75 | 33.1 | 17.80 | 228.10 | 84.4 | 16.76 | 221.35 | 81.9 |
A4-C | 5.52 | 117.5 | 47.9 | 4.36 | 104.5 | 41.8 | 48.30 | 375.67 | 139.9 | 30.25 | 297.3 | 110.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tamta, P.; Rani, N.; Mittal, Y.; Yadav, A.K. Evaluating the Potential of Multi-Anodes in Constructed Wetlands Coupled with Microbial Fuel Cells for Treating Wastewater and Bioelectricity Generation under High Organic Loads. Energies 2023, 16, 784. https://doi.org/10.3390/en16020784
Tamta P, Rani N, Mittal Y, Yadav AK. Evaluating the Potential of Multi-Anodes in Constructed Wetlands Coupled with Microbial Fuel Cells for Treating Wastewater and Bioelectricity Generation under High Organic Loads. Energies. 2023; 16(2):784. https://doi.org/10.3390/en16020784
Chicago/Turabian StyleTamta, Prashansa, Neetu Rani, Yamini Mittal, and Asheesh Kumar Yadav. 2023. "Evaluating the Potential of Multi-Anodes in Constructed Wetlands Coupled with Microbial Fuel Cells for Treating Wastewater and Bioelectricity Generation under High Organic Loads" Energies 16, no. 2: 784. https://doi.org/10.3390/en16020784