A Robust Optimization Approach for Smart Energy Market Revenue Management
Abstract
:1. Introduction
1.1. Motivation
1.2. Research Gaps
1.3. Contributions and Advantages of the Proposed Model
- How to operate the energy market in such a way that accounts for risk trade-offs and various price structures?
- How to fulfill the future demands of energy so that total capacity does not exceed the estimated capacity under stochastic situations?
2. Notations and Assumptions
3. Stochastic Network Formulation
4. Stochastic Formulation in Robust Optimization Scheme
5. Improved Particle Swarm Optimization in Stochastic Robust Optimization Scheme
6. Illustrative Examples
6.1. Deterministic Situation for Single Scenario
6.2. Stochastic Situation for Two Scenarios
7. Conclusions and Future Directions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bilan, Y.; Serhiy, K.; Inna, M. Recent Advances in the Energy Market Development: Current Challenges and Perspectives of Energy Crises in Academia. Energies 2023, 16, 2332. [Google Scholar] [CrossRef]
- Cui, L.; Suyun, Y.; Xuan, N.; Mei, D. Exploring the risk and economic vulnerability of global energy supply chain interruption in the context of Russo-Ukrainian war. Resour. Policy 2023, 18, 103373. [Google Scholar] [CrossRef]
- Adebayo, T.S.; Kartal, M.T.; Ağa, M.; Al-Faryan, M.A.S. Role of country risks and renewable energy consumption on environmental quality: Evidence from MINT countries. J. Environ. Manag. 2023, 327, 116884. [Google Scholar] [CrossRef]
- Tomin, N.; Shakirov, V.; Kurbatsky, V.; Muzychuk, R.; Popova, E.; Sidorov, D.; Kozlov, A.; Yang, D. A multi-criteria approach to designing and managing a renewable energy community. Renew. Energ. 2022, 199, 1153–1175. [Google Scholar] [CrossRef]
- Nalan, Ç.B.; Murat, Ö.; Nuri, Ö. Renewable energy market conditions and barriers in Turkey. Renew. Sustain. Energy Rev. 2009, 13, 1428–1436. [Google Scholar] [CrossRef]
- Motalleb, M.; Ghorbani, R. Non-cooperative game-theoretic model of demand response aggregator competition for selling stored energy in storage devices. Appl. Energy 2017, 202, 581–596. [Google Scholar] [CrossRef]
- Pereira, B.A.; Lohmann, G.; Houghton, L. Technology trajectory in aviation: Innovations leading to value creation (2000–2019). Int. J. Innov. Stud. 2022, 6, 128–141. [Google Scholar] [CrossRef]
- Matsuoka, K. Effects of revenue management on perceived value, customer satisfaction, and customer loyalty. J. Bus. Res. 2022, 148, 131–148. [Google Scholar]
- Kunnumkal, S.; Talluri, K. Choice network revenue management based on new tractable approximations. Transp. Sci. 2019, 53, 1591–1608. [Google Scholar] [CrossRef]
- Namin, A.; Gauri, D.K.; Kwortnik, R.J. Improving revenue performance with third-degree price discrimination in the cruise industry. Int. J. Hosp. Manag. 2020, 89, 102597. [Google Scholar] [CrossRef]
- Crevier, B.; Cordeau, J.F.; Savard, G. Integrated operations planning and revenue management for rail freight transportation. Transp. Res B-Meth. 2012, 46, 100–119. [Google Scholar] [CrossRef]
- Schauerte, R.; Feiereisen, S.; Malter, A.J. What does it take to survive in a digital world? Resource-based theory and strategic change in the TV industry. J. Cult. Econ. 2021, 45, 263–293. [Google Scholar]
- Petrick, A.; Steinhardt, C.; Gönsch, J.; Klein, R. Using flexible products to cope with demand uncertainty in revenue management. OR Spectr. 2012, 34, 215–242. [Google Scholar] [CrossRef]
- Kimms, A.; Müller-Bungart, M. Simulation of stochastic demand data streams for network revenue management problems. OR Spectrum 2007, 29, 5–20. [Google Scholar] [CrossRef]
- Ak, M.; Kentel, E.; Savasaneril, S. Operating policies for energy generation and revenue management in single-reservoir hydropower systems. Renew. Sust. Energ. Rev. 2017, 78, 1253–1261. [Google Scholar] [CrossRef]
- Morozko, N.; Morozko, N.; Didenko, V. Energy prices and households’ incomes growth proportions in russia’s case context. Int. J. Energy Econ. Policy 2021, 11, 243–250. [Google Scholar] [CrossRef]
- Nojavan, S.; Zare, K.; Mohammadi-Ivatloo, B. Optimal stochastic energy management of retailer based on selling price determination under smart grid environment in the presence of demand response program. Appl. Energy 2017, 187, 449–464. [Google Scholar] [CrossRef]
- Wang, Y.; Huang, Y.; Wang, Y.; Zeng, M.; Li, F.; Wang, Y.; Zhang, Y. Energy management of smart micro-grid with response loads and distributed generation considering demand response. J. Clean. Prod. 2018, 197, 1069–1083. [Google Scholar] [CrossRef]
- Lyu, W.; Liu, J. Soft skills, hard skills: What matters most? Evidence from job postings. Appl. Energy 2021, 300, 117307. [Google Scholar]
- Iris, Ç.; Lam, J.S.L. Optimal energy management and operations planning in seaports with smart grid while harnessing renewable energy under uncertainty. Omega 2021, 103, 102445. [Google Scholar] [CrossRef]
- Psaraftis, H.N.; Kontovas, C.A. Speed models for energy-efficient maritime transportation: A taxonomy and survey. Transp. Res. Part C Emerg. 2013, 26, 331–351. [Google Scholar] [CrossRef]
- Iris, Ç.; Lam, J.S.L. A review of energy efficiency in ports: Operational strategies, technologies and energy management systems. Renew. Sust. Energ. Rev. 2019, 112, 170–182. [Google Scholar]
- Özer, Ö.; Phillips, R. (Eds.) The Oxford Handbook of Pricing Management; OUP Oxford: Oxford, UK, 2012. [Google Scholar]
- Gomez-Herrera, J.A.; Miguel, F. Anjos. Optimization-based estimation of power capacity profiles for activity-based residential. Int. J. Electr. Power Energy Syst. 2019, 104, 664–672. [Google Scholar] [CrossRef]
- Funabashi, Y.; Shibata, A.; Negoro, S.; Taniguchi, I.; Tomiyama, H. A dynamic programming algorithm for energy-aware routing of delivery drones. In Advances in Artificial Intelligence and Data Engineering: Select Proceedings of AIDE 2019; Springer: Singapore, 2021; pp. 1217–1226. [Google Scholar]
- Lai, K.K.; Ng, W.L. A stochastic approach to hotel revenue optimization. Comput. Oper. Res. 2005, 32, 1059–1072. [Google Scholar] [CrossRef]
- Abada, I.; Ehrenmann, A.; Smeers, Y. Modeling gas markets with endogenous long-term contracts. Oper. Res. 2017, 65, 856–877. [Google Scholar] [CrossRef]
- Philpott, A.; Ferris, M.; Wets, R. Equilibrium, uncertainty and risk in hydro-thermal electricity systems. Math. Program. 2016, 157, 483–513. [Google Scholar] [CrossRef]
- Abada, I.; Ehrenmann, A.; Lambin, X. Unintended consequences: The snowball effect of energy communities. Energy Policy 2020, 143, 111597. [Google Scholar] [CrossRef]
- Abada, I.; de Maere d’Aertrycke, G.; Ehrenmann, A.; Smeers, Y. What models tell us about long-term contracts in times of the energy transition. Econ. Energy Environ. Policy 2019, 8, 163–182. [Google Scholar] [CrossRef]
- Feng, Y.; Xiao, B. Optimal policies of yield management with multiple predetermined prices. Oper. Res. 2000, 48, 332–343. [Google Scholar] [CrossRef]
- Mori, R.J. It’s not price; It’s quality. Satisfaction and price fairness perception. World Dev. 2021, 139, 105302. [Google Scholar] [CrossRef]
- Hong, B.; Zhang, W.; Zhou, Y.; Chen, J.; Xiang, Y.; Mu, Y. Energy-Internet-oriented microgrid energy management system architecture and its application in China. Appl. Energy 2018, 228, 2153–2164. [Google Scholar] [CrossRef]
- Akbari-Dibavar, A.; Nojavan, S.; Mohammadi-Ivatloo, B.; Zare, K. Smart home energy management using hybrid robust-stochastic optimization. Comput. Ind. Eng. 2020, 143, 106425. [Google Scholar] [CrossRef]
- Zhang, X.; Wu, T.; Chen, M.; Wei, T.; Zhou, J.; Hu, S.; Buyya, R. Energy-aware virtual machine allocation for cloud with resource reservation. J. Syst. Softw. 2019, 147, 147–161. [Google Scholar] [CrossRef]
- Akhter, N.; Othman, M. Energy aware resource allocation of cloud data center: Review and open issues. Clust. Comput. 2016, 16, 1163–1182. [Google Scholar] [CrossRef]
- Gosavi, A.; Ozkaya, E.; Kahraman, A.F. Simulation optimization for revenue management of airlines with cancellations and overbooking. OR Spectrum 2007, 29, 21–38. [Google Scholar] [CrossRef]
- Gabriel, S.A.; Conejo, A.J.; Plazas, M.A.; Balakrishnan, S. Optimal price and quantity determination for retail electric power contracts. IEEE Trans. Power Syst. 2006, 21, 180–187. [Google Scholar] [CrossRef]
- Russell, E.; Kennedy, J. Particle swarm optimization. Proc. IEEE Int. Conf. Neural Netw. 1995, 4, 1942–1948. [Google Scholar]
- Coelho, A.; Iria, J.; Soares, F.; Lopes, J.P. Real-time management of distributed multi-energy resources in multi-energy networks. Sustain. Energy Grids Netw. 2023, 34, 101022. [Google Scholar] [CrossRef]
- González, P.; Villar, J.; Díaz, C.A.; Campos, F.A. Joint energy and reserve markets: Current implementations and modeling trends. Electr. Power Syst. Res. 2014, 109, 101–111. [Google Scholar]
- Attia, S.; Gratia, E.; De Herde, A.; Hensen, J.L. Simulation-based decision support tool for early stages of zero-energy building design. Energy Build. 2012, 49, 2–15. [Google Scholar] [CrossRef]
i | (j) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
1 | 97.4 | 146.1 | 119.2 | 83.0 | 69.5 | 57.2 | 41.6 | 35.2 | 26.8 | 26.8 | 23.8 | 22.4 |
2 | 104.7 | 140.1 | 125.0 | 99.0 | 72.4 | 42.8 | 48.0 | 28.5 | 26.3 | 23.7 | 29.5 | |
3 | 105.1 | 132.3 | 124.2 | 82.5 | 75.1 | 44.0 | 30.7 | 45.3 | 31.2 | 30.1 | ||
4 | 107.3 | 131.9 | 108.7 | 84.4 | 60.6 | 46.9 | 33.4 | 32.4 | 29.6 | |||
5 | 125.3 | 156.2 | 146.5 | 93.6 | 78.1 | 47.1 | 51.0 | 32.1 | ||||
6 | 149.1 | 148.0 | 145.4 | 99.3 | 77.5 | 46.4 | 30.5 | |||||
7 | 149.6 | 147.4 | 114.9 | 81.8 | 65.6 | 44.7 | ||||||
8 | 137.1 | 151.9 | 128.6 | 100.2 | 79.7 | |||||||
9 | 138.7 | 139.9 | 110.7 | 104.8 | ||||||||
10 | 111.5 | 125.3 | 118.6 | |||||||||
11 | 107.4 | 125.9 | ||||||||||
12 | 91.9 |
i | (j) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
1 | 97.3 | 138.9 | 118.5 | 102.3 | 64.8 | 40.1 | 39.7 | 29.5 | 37.2 | 33.8 | 21.0 | 31.2 |
2 | 96.4 | 143.4 | 116.7 | 95.2 | 64.2 | 49.0 | 37.4 | 32.3 | 33.6 | 27.4 | 23.6 | |
3 | 104.9 | 139.1 | 122.4 | 79.6 | 69.7 | 42.2 | 34.9 | 42.4 | 28.6 | 31.4 | ||
4 | 105.9 | 146.2 | 108.8 | 98.4 | 65.5 | 50.7 | 37.9 | 38.7 | 26.5 | |||
5 | 111.5 | 162.2 | 140.8 | 80.4 | 61.8 | 57.9 | 35.8 | 35.6 | ||||
6 | 141.2 | 160.6 | 135.3 | 87.8 | 70.9 | 45.8 | 37.2 | |||||
7 | 141.5 | 156.7 | 114.3 | 91.2 | 77.5 | 58.3 | ||||||
8 | 132.1 | 155.5 | 114.4 | 84.6 | 69.6 | |||||||
9 | 128.2 | 125.1 | 128.4 | 87.8 | ||||||||
10 | 123.0 | 149.1 | 107.9 | |||||||||
11 | 107.3 | 144.3 | ||||||||||
12 | 97.5 |
i | (j) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
1 | 128.8 | 132.9 | 112.2 | 62.9 | 71.4 | 45.8 | 30.7 | 37.2 | 24.8 | 28.0 | 31.6 | 23.5 |
2 | 134.6 | 117.1 | 115.2 | 62.7 | 60.6 | 54.7 | 36.2 | 49.8 | 25.1 | 26.4 | 20.4 | |
3 | 144.3 | 131.5 | 130.6 | 78.7 | 74.5 | 45.9 | 39.2 | 38.5 | 26.4 | 37.8 | ||
4 | 142.5 | 123.4 | 107.4 | 67.6 | 76.2 | 52.9 | 36.3 | 41.6 | 25.9 | |||
5 | 148.9 | 127.9 | 150.9 | 68.6 | 72.8 | 46.3 | 29.0 | 38.3 | ||||
6 | 173.9 | 126.2 | 129.8 | 65.9 | 70.5 | 52.2 | 43.8 | |||||
7 | 165.7 | 130.4 | 110.8 | 76.0 | 74.6 | 42.0 | ||||||
8 | 170.9 | 141.8 | 113.7 | 80.9 | 78.2 | |||||||
9 | 154.5 | 113.6 | 116.8 | 82.8 | ||||||||
10 | 143.6 | 117.9 | 134.4 | |||||||||
11 | 131.6 | 111.3 | ||||||||||
12 | 125.0 |
i | (j) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
1 | 143.8 | 129.3 | 86.7 | 97.5 | 69.9 | 51.7 | 46.3 | 39.1 | 21.0 | 29.7 | 39.9 | 39.6 |
2 | 145.7 | 115.8 | 89.5 | 94.6 | 71.9 | 43.1 | 34.1 | 34.2 | 37.3 | 20.7 | 33.0 | |
3 | 144.1 | 127.4 | 110.6 | 80.3 | 65.4 | 41.2 | 48.8 | 32.6 | 35.2 | 23.6 | ||
4 | 156.7 | 125.4 | 102.2 | 90.5 | 67.2 | 46.6 | 43.3 | 47.1 | 31.5 | |||
5 | 157.6 | 142.5 | 134.5 | 90.6 | 64.1 | 50.7 | 50.9 | 35.3 | ||||
6 | 175.2 | 143.2 | 124.6 | 87.2 | 63.5 | 40.4 | 48.9 | |||||
7 | 172.6 | 136.1 | 87.2 | 79.8 | 66.5 | 51.6 | ||||||
8 | 180.0 | 121.6 | 86.1 | 78.6 | 73.5 | |||||||
9 | 168.3 | 132.1 | 97.8 | 91.8 | ||||||||
10 | 155.2 | 132.1 | 122.9 | |||||||||
11 | 137.8 | 100.5 | ||||||||||
12 | 130.0 |
I | (j) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
1 | 117.2 | 136.4 | 111.1 | 91.6 | 65.3 | 51.6 | 33.7 | 44.2 | 36.9 | 23.2 | 35.7 | 32.0 |
2 | 117.2 | 115.3 | 132.1 | 85.1 | 78.1 | 56.9 | 40.6 | 27.4 | 26.7 | 29.1 | 22.6 | |
3 | 128.0 | 133.7 | 129.0 | 76.0 | 71.8 | 52.7 | 37.8 | 37.7 | 36.9 | 39.4 | ||
4 | 135.9 | 141.7 | 115.1 | 91.4 | 78.7 | 52.0 | 33.6 | 39.2 | 40.0 | |||
5 | 131.0 | 136.8 | 150.5 | 96.6 | 69.8 | 41.6 | 46.1 | 38.7 | ||||
6 | 157.1 | 157.6 | 123.3 | 84.1 | 61.2 | 45.4 | 28.1 | |||||
7 | 165.0 | 146.9 | 117.5 | 76.5 | 71.2 | 44.1 | ||||||
8 | 165.1 | 132.6 | 122.9 | 103.4 | 65.7 | |||||||
9 | 140.2 | 122.7 | 128.2 | 98.6 | ||||||||
10 | 141.8 | 117.5 | 110.5 | |||||||||
11 | 122.4 | 136.2 | ||||||||||
12 | 118.4 |
i | (j) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
1 | 125.4 | 137.4 | 128.5 | 89.9 | 62.7 | 54.8 | 40.5 | 35.1 | 39.7 | 20.8 | 23.3 | 19.5 |
2 | 118.5 | 130.3 | 113.6 | 83.4 | 66.5 | 52.6 | 44.2 | 51.0 | 24.6 | 34.4 | 36.6 | |
3 | 135.8 | 137.6 | 104.4 | 104.3 | 60.4 | 54.7 | 40.2 | 30.5 | 32.4 | 31.6 | ||
4 | 126.1 | 125.9 | 120.5 | 82.9 | 64.5 | 56.5 | 45.9 | 49.1 | 24.0 | |||
5 | 133.9 | 160.4 | 138.4 | 101.2 | 73.2 | 48.4 | 37.0 | 28.8 | ||||
6 | 151.5 | 154.8 | 143.0 | 95.6 | 67.7 | 37.9 | 41.8 | |||||
7 | 166.2 | 139.8 | 122.1 | 94.6 | 61.6 | 38.3 | ||||||
8 | 162.2 | 135.1 | 127.0 | 93.7 | 64.4 | |||||||
9 | 153.4 | 120.3 | 119.1 | 83.3 | ||||||||
10 | 133.7 | 122.4 | 111.1 | |||||||||
11 | 113.1 | 140.7 | ||||||||||
12 | 112.8 |
i | (j) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | EE | |
1 | 1 | 1 | 5 | 5 | 5 | 1 | 5 | 5 | 3 | 3 | 1 | 1 | 131.74 |
2 | 1 | 2 | 1 | 5 | 5 | 5 | 5 | 5 | 1 | 2 | 1 | 5 | 130.13 |
3 | 5 | 3 | 5 | 5 | 1 | 1 | 5 | 3 | 5 | 1 | 3 | 5 | 130.22 |
4 | 1 | 1 | 4 | 5 | 5 | 1 | 4 | 1 | 1 | 4 | 2 | 2 | 131.73 |
5 | 1 | 5 | 1 | 1 | 5 | 4 | 1 | 3 | 1 | 5 | 4 | 3 | 128.57 |
6 | 1 | 1 | 2 | 1 | 1 | 1 | 3 | 1 | 1 | 5 | 5 | 2 | 126.86 |
7 | 1 | 1 | 1 | 5 | 1 | 1 | 3 | 3 | 1 | 1 | 5 | 3 | 127.71 |
8 | 5 | 1 | 5 | 1 | 1 | 5 | 1 | 5 | 1 | 5 | 1 | 1 | 118.46 |
9 | 2 | 5 | 5 | 5 | 2 | 2 | 5 | 5 | 5 | 5 | 5 | 5 | 125.74 |
10 | 1 | 1 | 1 | 1 | 1 | 1 | 4 | 1 | 1 | 1 | 4 | 1 | 120.57 |
11 | 5 | 5 | 1 | 1 | 5 | 5 | 5 | 1 | 5 | 5 | 5 | 1 | 103.52 |
12 | 5 | 1 | 3 | 4 | 3 | 5 | 1 | 4 | 1 | 4 | 4 | 1 | 135.80 |
Sl. No. | |||||||
---|---|---|---|---|---|---|---|
1 | 120.97 | 118.38 | 132.24 | 133.04 | 115.35 | 128.13 | 130.45 |
2 | 129.95 | 129.95 | 135.44 | 122.82 | 131.02 | 127.66 | 133.14 |
3 | 117.61 | 117.61 | 117.44 | 133.57 | 130.62 | 124.05 | 118.32 |
4 | 112.38 | 112.38 | 114.15 | 122.29 | 125.95 | 121.89 | 139.25 |
5 | 134.52 | 134.52 | 113.61 | 109.18 | 116.71 | 119.62 | 120.73 |
6 | 122.24 | 122.24 | 133.26 | 121.10 | 135.35 | 131.72 | 116.60 |
7 | 109.82 | 109.82 | 129.73 | 123.60 | 135.68 | 122.51 | 146.58 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, B.; Sun, L.; Yang, M.; Lai, K.-K.; Ram, B. A Robust Optimization Approach for Smart Energy Market Revenue Management. Energies 2023, 16, 7000. https://doi.org/10.3390/en16197000
Zhang B, Sun L, Yang M, Lai K-K, Ram B. A Robust Optimization Approach for Smart Energy Market Revenue Management. Energies. 2023; 16(19):7000. https://doi.org/10.3390/en16197000
Chicago/Turabian StyleZhang, Bin, Li Sun, Mengyao Yang, Kin-Keung Lai, and Bhagwat Ram. 2023. "A Robust Optimization Approach for Smart Energy Market Revenue Management" Energies 16, no. 19: 7000. https://doi.org/10.3390/en16197000
APA StyleZhang, B., Sun, L., Yang, M., Lai, K. -K., & Ram, B. (2023). A Robust Optimization Approach for Smart Energy Market Revenue Management. Energies, 16(19), 7000. https://doi.org/10.3390/en16197000