Stochastic Dynamical Modeling of Wind Farm Turbulence
Abstract
:1. Introduction
1.1. Control-Oriented Wake Modeling
1.2. Stochastic Dynamical Turbulence Modeling
1.3. Motivation and Contribution
- Providing dynamical models of the velocity fluctuation fields within multi-turbine wind farms by linearizing the NS equations around static waked velocity profiles from engineering wake models;
- Adopting a volume penalization technique to account for the obstruction caused by turbine rotors instead of resolving the grid and implementing boundary conditions;
- Identifying a minimal training dataset of velocity correlations that are crucial for completing statistical signatures of wake turbulence even when turbine rotors are misaligned with the free stream.
1.4. Paper Outline
2. Problem Formulation
3. Stochastically Forced Linearized Navier–Stokes Equations
4. Stochastic Dynamical Modeling of Partially Available Second-Order Statistics
4.1. Second-Order Statistics of LTI Systems
4.2. Covariance Completion
4.3. Stochastic Realization
5. Numerical Experiment
5.1. Large-Eddy Simulations
5.2. Base Flow
5.3. Predicting Second-Order Turbulence Statistics
5.3.1. Predicting the Wake of a Single Turbine Using Partially Available Flow Statistics
5.3.2. Predicting Wind Farm Turbulence Impinging on a Cascade of Turbines
5.4. Verification in Stochastic Linear Simulations
6. Concluding Remarks
6.1. Discussion
6.2. Future Work
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ADM | Actuator Disk Model |
LES | Large-Eddy Simulations |
LiDAR | Light Detection And Ranging |
LTI | Linear Time Invariant |
MW | Megawatt |
NREL | National Renewable Energy Laboratory |
NS | Navier–Stokes |
RANS | Reynolds-Averaged Navier–Stokes |
SCADA | Supervisory Control And Data Acquisition |
1D | One Dimensional |
2D | Two Dimensional |
3D | Three Dimensional |
Appendix A. System Matrices in Linearized NS Equations in Evolution form and Boundary Conditions
References
- Fleming, P.; Annoni, J.; Shah, J.J.; Wan, L.; Ananthan, S.; Zhang, Z.; Hutchings, K.; Wang, P.; Chen, W.; Chen, L. Field test of wake steering at an offshore wind farm. Wind Energy Sci. 2017, 2, 229–239. [Google Scholar] [CrossRef]
- Ahmad, T.; Basit, A.; Ahsan, M.; Coupiac, O.; Girard, N.; Kazemtabrizi, B.; Matthews, P.C. Implementation and analyses of yaw based coordinated control of wind farms. Energies 2019, 12, 1266. [Google Scholar] [CrossRef]
- Duc, T.; Coupiac, O.; Girard, N.; Giebel, G.; Göçmen, T. Local turbulence parameterization improves the Jensen wake model and its implementation for power optimization of an operating wind farm. Wind Energy Sci. 2019, 4, 287–302. [Google Scholar] [CrossRef]
- Howland, M.F.; Lele, K.S.; Dabiri, J.O. Wind farm power optimization through wake steering. Proc. Natl. Acad. Sci. USA 2019, 116, 14495–14500. [Google Scholar] [CrossRef] [PubMed]
- Fleming, P.; King, J.; Simley, E.; Roadman, J.; Scholbrock, A.; Murphy, P.; Lundquist, J.K.; Moriarty, P.; Fleming, K.; van Dam, J.; et al. Continued results from a field campaign of wake steering applied at a commercial wind farm–Part 2. Wind Energy Sci. 2020, 5, 945–958. [Google Scholar] [CrossRef]
- Bossanyi, E.A.; Ruisi, R. Axial induction controller field test at Sedini wind farm. Wind. Energy Sci. Discuss. 2021, 6, 389–408. [Google Scholar] [CrossRef]
- Doekemeijer, B.M.; Kern, S.; Maturu, S.; Kanev, S.; Salbert, B.; Schreiber, J.; Campagnolo, F.; Bottasso, C.L.; Schuler, S.; Wilts, F.; et al. Field experiment for open-loop yaw-based wake steering at a commercial onshore wind farm in Italy. Wind Energy Sci. 2021, 6, 159–176. [Google Scholar] [CrossRef]
- Simley, E.; Fleming, P.; Girard, N.; Alloin, L.; Godefroy, E.; Duc, T. Results from a wake-steering experiment at a commercial wind plant: Investigating the wind speed dependence of wake-steering performance. Wind Energy Sci. 2021, 6, 1427–1453. [Google Scholar] [CrossRef]
- Johnson, K.E.; Fritsch, G. Assessment of extremum seeking control for wind farm energy production. Wind Eng. 2012, 36, 701–715. [Google Scholar] [CrossRef]
- Creaby, J.; Li, Y.; Seem, J.E. Maximizing wind turbine energy capture using multivariable extremum seeking control. Wind Eng. 2009, 33, 361–387. [Google Scholar] [CrossRef]
- Ciri, U.; Rotea, M.A.; Leonardi, S. Model-free control of wind farms: A comparative study between individual and coordinated extremum seeking. Renew. Energy 2017, 113, 1033–1045. [Google Scholar] [CrossRef]
- Ciri, U.; Rotea, M.A.; Santoni, C.; Leonardi, S. Large-eddy simulations with extremum-seeking control for individual wind turbine power optimization. Wind Energy 2017, 20, 1617–1634. [Google Scholar] [CrossRef]
- Ciri, U.; Leonardi, S.; Rotea, M.A. Evaluation of log-of-power extremum seeking control for wind turbines using large eddy simulations. Wind Energy 2019, 22, 992–1002. [Google Scholar] [CrossRef]
- Kumar, D.; Rotea, M.A. Wind Turbine Power Maximization Using Log-Power Proportional-Integral Extremum Seeking. Energies 2022, 15, 1004. [Google Scholar] [CrossRef]
- Zho, K.; Doyle, J.C. Essentials of Robust Control; Prentice Hall: Upper Saddle River, NJ, USA, 1998; Volume 104. [Google Scholar]
- Skogestad, S.; Postlethwaite, I. Multivariable Feedback Control: Analysis and Design; Wiley: New York, NY, USA, 2007; Volume 2. [Google Scholar]
- Goit, J.P.; Meyers, J. Optimal control of energy extraction in wind-farm boundary layers. J. Fluid Mech. 2015, 768, 5–50. [Google Scholar] [CrossRef]
- Goit, J.P.; Munters, W.; Meyers, J. Optimal coordinated control of power extraction in LES of a wind farm with entrance effects. Energies 2016, 9, 29. [Google Scholar] [CrossRef]
- Munters, W.; Meyers, J. An optimal control framework for dynamic induction control of wind farms and their interaction with the atmospheric boundary layer. Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 2017, 375, 20160100. [Google Scholar] [CrossRef]
- Munters, W.; Meyers, J. Towards practical dynamic induction control of wind farms: Analysis of optimally controlled wind-farm boundary layers and sinusoidal induction control of first-row turbines. Wind Energy Sci. 2018, 3, 409–425. [Google Scholar] [CrossRef]
- Munters, W.; Meyers, J. Dynamic strategies for yaw and induction control of wind farms based on large-eddy simulation and optimization. Energies 2018, 11, 177. [Google Scholar] [CrossRef]
- Bauweraerts, P.; Meyers, J. On the feasibility of using large-eddy simulations for real-time turbulent-flow forecasting in the atmospheric boundary layer. Bound. Layer Meteorol. 2019, 171, 213–235. [Google Scholar] [CrossRef]
- Doekemeijer, B.M.; van Wingerden, J.W.; Fleming, P.A. A tutorial on the synthesis and validation of a closed-loop wind farm controller using a steady-state surrogate model. In Proceedings of the 2019 American Control Conference (ACC), Philadelphia, PA, USA, 10–12 July 2019; pp. 2825–2836. [Google Scholar]
- Singh, P.; Seiler, P. Controlling the meandering wake using measurement feedback. In Proceedings of the 2019 American Control Conference (ACC), Philadelphia, PA, USA, 10–12 July 2019; pp. 4144–4150. [Google Scholar]
- Doekemeijer, B.M.; van der Hoek, D.; van Wingerden, J.W. Closed-loop model-based wind farm control using FLORIS under time-varying inflow conditions. Renew. Energy 2020, 156, 719–730. [Google Scholar] [CrossRef]
- Meyers, J.; Bottasso, C.; Dykes, K.; Fleming, P.; Gebraad, P.; Giebel, G.; Göçmen, T.; van Wingerden, J.W. Wind farm flow control: Prospects and challenges. Wind Energy Sci. Discuss. 2022, 7, 2271–2306. [Google Scholar] [CrossRef]
- Sood, I.; Meyers, J. Tuning of an engineering wind farm model using measurements from Large Eddy Simulations. J. Phys. Conf. Ser. 2022, 2265, 022045. [Google Scholar] [CrossRef]
- Jensen, N.O. A Note on Wind Generator Interaction; Risø National Laboratory: Roskilde, Denmark, 1983. [Google Scholar]
- Katic, I.; Højstrup, J.; Jensen, N.O. A simple model for cluster efficiency. In Proceedings of the European Wind Energy Association Conference and Exhibition, Rome, Italy, 7–9 October 1986; Volume 1, pp. 407–410. [Google Scholar]
- Ainslie, J.F. Calculating the flowfield in the wake of wind turbines. J. Wind Eng. Ind. Aerodyn. 1988, 27, 213–224. [Google Scholar] [CrossRef]
- Burton, T.; Jenkins, N.; Sharpe, D.; Bossanyi, E. Wind Energy Handbook; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Frandsen, S.; Barthelmie, R.; Pryor, S.; Rathmann, O.; Larsen, S.; Højstrup, J.; Thøgersen, M. Analytical modelling of wind speed deficit in large offshore wind farms. Wind. Energy Int. J. Prog. Appl. Wind. Power Convers. Technol. 2006, 9, 39–53. [Google Scholar] [CrossRef]
- Bastankhah, M.; Porté-Agel, F. A new analytical model for wind-turbine wakes. Renew. Energy 2014, 70, 116–123. [Google Scholar] [CrossRef]
- Martínez-Tossas, L.A.; Annoni, J.; Fleming, P.A.; Churchfield, M.J. The aerodynamics of the curled wake: A simplified model in view of flow control. Wind Energy Sci. 2019, 4, 127–138. [Google Scholar] [CrossRef]
- Martínez-Tossas, L.A.; Branlard, E. The curled wake model: Equivalence of shed vorticity models. J. Phys. Conf. Ser. 2020, 1452, 012069. [Google Scholar] [CrossRef]
- Zong, H.; Porté-Agel, F. A point vortex transportation model for yawed wind turbine wakes. J. Fluid Mech 2020, 890, A8. [Google Scholar] [CrossRef]
- Bastankhah, M.; Shapiro, C.R.; Shamsoddin, S.; Gayme, D.F.; Meneveau, C. A vortex sheet based analytical model of the curled wake behind yawed wind turbines. J. Fluid Mech. 2022, 933, A2. [Google Scholar] [CrossRef]
- Li, L.; Huang, Z.; Ge, M.; Zhang, Q. A novel three-dimensional analytical model of the added streamwise turbulence intensity for wind-turbine wakes. Energy 2022, 238, 121806. [Google Scholar] [CrossRef]
- Li, L.; Wang, B.; Ge, M.; Huang, Z.; Li, X.; Liu, Y. A novel superposition method for streamwise turbulence intensity of wind-turbine wakes. Energy 2023, 276, 127491. [Google Scholar] [CrossRef]
- Krogstad, P.Å.; Davidson, P.A. Near-field investigation of turbulence produced by multi-scale grids. Phys. Fluids 2012, 24, 035103. [Google Scholar] [CrossRef]
- Niayifar, A.; Porté-Agel, F. Analytical Modeling of Wind Farms: A New Approach for Power Prediction. Energies 2016, 9, 741. [Google Scholar] [CrossRef]
- Larsen, G.C.; Madsen, H.A.; Thomsen, K.; Larsen, T.J. Wake meandering: A pragmatic approach. Wind Energy 2008, 11, 377–395. [Google Scholar] [CrossRef]
- Annoni, J.; Howard, K.; Seiler, P.; Guala, M. An experimental investigation on the effect of individual turbine control on wind farm dynamics. Wind Energy 2016, 19, 1453–1467. [Google Scholar] [CrossRef]
- Iungo, G.V.; Viola, F.; Ciri, U.; Leonardi, S.; Rotea, M. Reduced order model for optimization of power production from a wind farm. In Proceedings of the 34th Wind Energy Symposium, Wind Energy Symposium, San Diego, CA, USA, 4–8 January 2016; p. 2200. [Google Scholar]
- Boersma, S.; Doekemeijer, B.; Vali, M.; Meyers, J.; van Wingerden, J.W. A control-oriented dynamic wind farm model: WFSim. Wind Energy Sci. 2018, 3, 75–95. [Google Scholar] [CrossRef]
- Letizia, S.; Iungo, G.V. Pseudo-2D RANS: A LiDAR-driven mid-fidelity model for simulations of wind farm flows. J. Renew. Sustain. Energy 2022, 14, 023301. [Google Scholar] [CrossRef]
- Scott, R.; Martínez-Tossas, L.; Bossuyt, J.; Hamilton, N.; Cal, R.B. Evolution of eddy viscosity in the wake of a wind turbine. Wind Energy Sci. 2023, 8, 449–463. [Google Scholar] [CrossRef]
- Annoni, J.; Bay, C.; Johnson, K.; Dall’Anese, E.; Quon, E.; Kemper, T.; Fleming, P. Wind direction estimation using SCADA data with consensus-based optimization. Wind Energy Sci. 2019, 4, 355–368. [Google Scholar] [CrossRef]
- Bernardoni, F.; Ciri, U.; Rotea, M.A.; Leonardi, S. Identification of wind turbine clusters for effective real time yaw control optimization. J. Renew. Sustain. Energy 2021, 13, 043301. [Google Scholar] [CrossRef]
- Starke, G.M.; Stanfel, P.; Meneveau, C.; Gayme, D.F.; King, J. Network based estimation of wind farm power and velocity data under changing wind direction. In Proceedings of the 2021 American Control Conference, New Orleans, LA, USA, 26–28 May 2021; pp. 1803–1810. [Google Scholar]
- Zhang, H.; Chen, J.; Tian, T. Bayesian inference of stochastic dynamic models using early-rejection methods based on sequential stochastic simulations. IEEE/ACM Trans. Comput. Biol. Bioinform. 2020, 19, 1484–1494. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Nair, N.K.C. A two-stage stochastic dynamic economic dispatch model considering wind uncertainty. IEEE Trans. Sustain. Energy 2015, 7, 819–829. [Google Scholar] [CrossRef]
- VerHulst, C.; Meneveau, C. Large eddy simulation study of the kinetic energy entrainment by energetic turbulent flow structures in large wind farms. Phys. Fluids 2014, 26, 025113. [Google Scholar] [CrossRef]
- Annoni, J.; Gebraad, P.; Seiler, P. Wind farm flow modeling using an input-output reduced-order model. In Proceedings of the 2016 American Control Conference (ACC), Boston, MA, USA, 6–8 July 2016; pp. 506–512. [Google Scholar]
- Raach, S.; Schlipf, D.; Cheng, P.W. Lidar-based wake tracking for closed-loop wind farm control. Wind Energy Sci. 2017, 2, 257–267. [Google Scholar] [CrossRef]
- Sinner, M.; Pao, L.Y.; King, J. Estimation of large-scale wind field characteristics using supervisory control and data acquisition measurements. In Proceedings of the 2020 American Control Conference (ACC), Denver, CO, USA, 1–3 July 2020; pp. 2357–2362. [Google Scholar]
- Noack, B.R.; Morzyński, M.; Tadmor, G. Reduced-Order Modelling for Flow Control; CISM Courses and Lectures; Springer: Berlin/Heidelberg, Germany, 2011; Volume 528. [Google Scholar]
- Tadmor, G.; Noack, B.R. Bernoulli, Bode, and Budgie [Ask the Experts]. IEEE Contr. Syst. Mag. 2011, 31, 18–23. [Google Scholar]
- Wang, J.X.; Wu, J.L.; Xiao, H. Physics-informed machine learning approach for reconstructing Reynolds stress modeling discrepancies based on DNS data. Phys. Rev. Fluids 2017, 2, 034603. [Google Scholar] [CrossRef]
- Wu, J.L.; Xiao, H.; Paterson, E. Physics-informed machine learning approach for augmenting turbulence models: A comprehensive framework. Phys. Rev. Fluids 2018, 3, 074602. [Google Scholar] [CrossRef]
- Karniadakis, G.E.; Kevrekidis, I.G.; Lu, L.; Perdikaris, P.; Wang, S.; Yang, L. Physics-informed machine learning. Nat. Rev. Phys. 2021, 3, 422–440. [Google Scholar] [CrossRef]
- Soleimanzadeh, M.; Wisniewski, R.; Brand, A. State-space representation of the wind flow model in wind farms. Wind Energy 2014, 17, 627–639. [Google Scholar] [CrossRef]
- Boersma, S.; Vali, M.; Kühn, M.; van Wingerden, J.W. Quasi linear parameter varying modeling for wind farm control using the 2D Navier-Stokes equations. In Proceedings of the 2016 American Control Conference (ACC), Boston, MA, USA, 6–8 July 2016; pp. 4409–4414. [Google Scholar]
- Hœpffner, J.; Chevalier, M.; Bewley, T.R.; Henningson, D.S. State estimation in wall-bounded flow systems. Part 1. Perturbed laminar flows. J. Fluid Mech. 2005, 534, 263–294. [Google Scholar] [CrossRef]
- Chevalier, M.; Hœpffner, J.; Bewley, T.R.; Henningson, D.S. State estimation in wall-bounded flow systems. Part 2. Turbulent flows. J. Fluid Mech. 2006, 552, 167–187. [Google Scholar] [CrossRef]
- Zare, A.; Jovanovic, M.R.; Georgiou, T.T. Colour of turbulence. J. Fluid Mech. 2017, 812, 636–680. [Google Scholar] [CrossRef]
- Zare, A.; Georgiou, T.T.; Jovanovic, M.R. Stochastic dynamical modeling of turbulent flows. Annu. Rev. Control Robot. Auton. Syst. 2020, 3, 195–219. [Google Scholar] [CrossRef]
- Butler, K.M.; Farrell, B.F. Three-Dimensional Optimal Perturbations in Viscous Shear Flow. Phys. Fluids A 1992, 4, 1637. [Google Scholar] [CrossRef]
- Trefethen, L.N.; Trefethen, A.E.; Reddy, S.C.; Driscoll, T.A. Hydrodynamic Stability without Eigenvalues. Science 1993, 261, 578–584. [Google Scholar] [CrossRef]
- Farrell, B.F.; Ioannou, P.J. Stochastic Forcing of the Linearized Navier-Stokes Equations. Phys. Fluids A 1993, 5, 2600–2609. [Google Scholar] [CrossRef]
- Bamieh, B.; Dahleh, M. Energy Amplification in Channel Flows with Stochastic Excitation. Phys. Fluids 2001, 13, 3258–3269. [Google Scholar] [CrossRef]
- Jovanovic, M.R.; Bamieh, B. Componentwise energy amplification in channel flows. J. Fluid Mech. 2005, 534, 145–183. [Google Scholar] [CrossRef]
- Ran, W.; Zare, A.; Hack, M.J.P.; Jovanovic, M.R. Stochastic receptivity analysis of boundary layer flow. Phys. Rev. Fluids 2019, 4, 093901. [Google Scholar] [CrossRef]
- McKeon, B.J.; Sharma, A.S. A critical-layer framework for turbulent pipe flow. J. Fluid Mech. 2010, 658, 336–382. [Google Scholar] [CrossRef]
- Hwang, Y.; Cossu, C. Linear non-normal energy amplification of harmonic and stochastic forcing in the turbulent channel flow. J. Fluid Mech. 2010, 664, 51–73. [Google Scholar] [CrossRef]
- Jovanovic, M.R. From bypass transition to flow control and data-driven turbulence modeling: An input-output viewpoint. Annu. Rev. Fluid Mech. 2020, 53, 311–345. [Google Scholar] [CrossRef]
- Zare, A.; Chen, Y.; Jovanovic, M.R.; Georgiou, T.T. Low-complexity modeling of partially available second-order statistics: Theory and an efficient matrix completion algorithm. IEEE Trans. Autom. Control 2017, 62, 1368–1383. [Google Scholar] [CrossRef]
- Zare, A.; Jovanovic, M.R.; Georgiou, T.T. Perturbation of system dynamics and the covariance completion problem. In Proceedings of the 55th IEEE Conference on Decision and Control, Las Vegas, NV, USA, 12–14 December 2016; pp. 7036–7041. [Google Scholar]
- Zare, A.; Mohammadi, H.; Dhingra, N.K.; Georgiou, T.T.; Jovanović, M.R. Proximal algorithms for large-scale statistical modeling and sensor/actuator selection. IEEE Trans. Autom. Control 2020, 65, 3441–3456. [Google Scholar] [CrossRef]
- Zare, A. Data-enhanced Kalman filtering of colored process noise. In Proceedings of the 60th IEEE Conference on Decision and Control, Austin, TX, USA, 13–15 December 2021; pp. 6603–6607. [Google Scholar]
- Schmid, P.J. Dynamic mode decomposition of numerical and experimental data. J. Fluid Mech. 2010, 656, 5–28. [Google Scholar] [CrossRef]
- Jovanovic, M.R.; Schmid, P.J.; Nichols, J.W. Sparsity-promoting dynamic mode decomposition. Phys. Fluids 2014, 26, 024103. [Google Scholar] [CrossRef]
- Annoni, J.R.; Nichols, J.; Seiler, P.J. Wind farm modeling and control using dynamic mode decomposition. In Proceedings of the 34th Wind Energy Symposium, San Diego, CA, USA, 4–8 January 2016; p. 2201. [Google Scholar]
- Schmid, P.J. Dynamic mode decomposition and its variants. Annu. Rev. Fluid Mech. 2022, 54, 225–254. [Google Scholar] [CrossRef]
- Khadra, K.; Angot, P.; Parneix, S.; Caltagirone, J. Fictitious domain approach for numerical modelling of Navier-Stokes equations. Int. J. Numer. Methods Fluids 2000, 34, 651–684. [Google Scholar] [CrossRef]
- Georgiou, T.T. The structure of state covariances and its relation to the power spectrum of the input. IEEE Trans. Autom. Control 2002, 47, 1056–1066. [Google Scholar] [CrossRef]
- Georgiou, T.T. Spectral analysis based on the state covariance: The maximum entropy spectrum and linear fractional parametrization. IEEE Trans. Autom. Control 2002, 47, 1811–1823. [Google Scholar] [CrossRef]
- Fazel, M. Matrix Rank Minimization with Applications. Ph.D. Thesis, Stanford University, Stanford, CA, USA, 2002. [Google Scholar]
- Recht, B.; Fazel, M.; Parrilo, P.A. Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization. SIAM Rev. 2010, 52, 471–501. [Google Scholar] [CrossRef]
- Toh, K.C.; Todd, M.J.; Tütüncü, R.H. SDPT3—A MATLAB Software Package for Semidefinite Programming, version 1.3. Optim. Methods Softw. 1999, 11, 545–581. [Google Scholar] [CrossRef]
- Grant, M.; Boyd, S. CVX: Matlab Software for Disciplined Convex Programming, Version 2.1. 2014. Available online: http://cvxr.com/cvx (accessed on 9 September 2023).
- Boyd, S.; Vandenberghe, L. Convex Optimization; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Zare, A.; Jovanovic, M.R.; Georgiou, T.T. Completion of partially known turbulent flow statistics. In Proceedings of the 2014 American Control Conference, Portland, OR, USA, 4–6 June 2014; pp. 1680–1685. [Google Scholar]
- Zare, A.; Jovanovic, M.R.; Georgiou, T.T. Alternating direction optimization algorithms for covariance completion problems. In Proceedings of the 2015 American Control Conference, Chicago, IL, USA, 1–3 July 2015; pp. 515–520. [Google Scholar]
- Jonkman, J.; Butterfiled, S.; Musial, W.; Scott, G. Definition of a 5-MW Reference Wind Turbine for Offshore System Development; Technical Report NREL/TP-500-38060; NREL—National Renewable Energy Laboratory: Golden, CO, USA, 2009. [Google Scholar]
- Santoni, C.; Ciri, U.; Rotea, M.; Leonardi, S. Development of a high fidelity CFD code for wind farm control. In Proceedings of the 2015 American Control Conference (ACC), Chicago, IL, USA, 1–3 July 2015; pp. 1715–1720. [Google Scholar]
- Santoni, C.; Carrasquillo, K.; Arenas-Navarro, I.; Leonardi, S. Effect of tower and nacelle on the flow past a wind turbine. Wind Energy 2017, 20, 1927–1939. [Google Scholar] [CrossRef]
- Ciri, U.; Petrolo, G.; Salvetti, M.V.; Leonardi, S. Large-eddy simulations of two in-line turbines in a wind tunnel with different inflow conditions. Energies 2017, 10, 821. [Google Scholar] [CrossRef]
- Ciri, U.; Salvetti, M.; Carrasquillo, K.; Santoni, C.; Iungo, G.; Leonardi, S. Effects of the subgrid-scale modeling in the large-eddy simulations of wind turbines. In Direct and Large-Eddy Simulation X; Springer: Berlin/Heidelberg, Germany, 2018; pp. 109–115. [Google Scholar]
- Orlandi, P.; Leonardi, S. DNS of turbulent channel flows with two- and three-dimensional roughness. J. Turbul. 2006, 7, 1–22. [Google Scholar] [CrossRef]
- Orlanski, I. A simple boundary condition for unbounded hyperbolic flows. J. Comput. Phys. 1976, 21, 251–269. [Google Scholar] [CrossRef]
- Johnson, K.E.; Pao, L.Y.; Balas, M.J.; Fingersh, L.J. Control of variable-speed wind turbines: Standard and adaptive techniques for maximizing energy capture. IEEE Control Syst. Mag. 2006, 26, 70–81. [Google Scholar]
- Laks, J.H.; Pao, L.Y.; Wright, A.D. Control of wind turbines: Past, present, and future. In Proceedings of the 2009 American Control Conference (ACC), St. Louis, MO, USA, 10–12 June 2009; pp. 2096–2103. [Google Scholar]
- Leonardi, S.; Castro, I.P. Channel flow over large cube roughness: A direct numerical simulation study. J. Fluid Mech. 2010, 651, 519–539. [Google Scholar] [CrossRef]
- Bastankhah, M.; Porté-Agel, F. Experimental and theoretical study of wind turbine wakes in yawed conditions. J. Fluid Mech. 2016, 806, 506–541. [Google Scholar] [CrossRef]
- Lissaman, P.B.S. Energy effectiveness of arbitrary arrays of wind turbines. J. Energy 1979, 3, 323–328. [Google Scholar] [CrossRef]
- Voutsinas, S.; Rados, K.; Zervos, A. On the analysis of wake effects in wind parks. Wind Eng. 1990, 14, 204–219. [Google Scholar]
- Santoni, C.; García-Cartagena, E.J.; Ciri, U.; Zhan, L.; Iungo, G.V.; Leonardi, S. One-way mesoscale-microscale coupling for simulating a wind farm in North Texas: Assessment against SCADA and LiDAR data. Wind Energy 2020, 23, 691–710. [Google Scholar] [CrossRef]
- Iungo, G.V.; Wu, Y.T.; Porté-Agel, F. Field measurements of wind turbine wakes with lidars. J. Atmos. Ocean. Technol. 2013, 30, 274–287. [Google Scholar] [CrossRef]
- Husaru, D.E.; Bârsănescu, P.D.; Zahariea, D. Effect of yaw angle on the global performances of Horizontal Axis Wind Turbine-QBlade simulation. IOP Conf. Ser. Mater. Sci. Eng. 2019, 595, 012047. [Google Scholar] [CrossRef]
- Giannelos, S.; Jain, A.; Borozan, S.; Falugi, P.; Moreira, A.; Bhakar, R.; Mathur, J.; Strbac, G. Long-term expansion planning of the transmission network in India under multi-dimensional uncertainty. Energies 2021, 14, 7813. [Google Scholar] [CrossRef]
- Nichols, J.W.; Lele, S.K. Global modes and transient response of a cold supersonic jet. J. Fluid Mech. 2011, 669, 225–241. [Google Scholar] [CrossRef]
- Mani, A. Analysis and optimization of numerical sponge layers as a nonreflective boundary treatment. J. Comput. Phys. 2012, 231, 704–716. [Google Scholar] [CrossRef]
- Ran, W.; Zare, A.; Nichols, J.W.; Jovanovic, M.R. The effect of sponge layers on global stability analysis of Blasius boundary layer flow. In Proceedings of the 47th AIAA Fluid Dynamics Conference, AIAA Fluid Dynamics Conference, Denver, CO, USA, 5–9 June 2017; p. 3456. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bhatt, A.H.; Rodrigues, M.; Bernardoni, F.; Leonardi, S.; Zare, A. Stochastic Dynamical Modeling of Wind Farm Turbulence. Energies 2023, 16, 6908. https://doi.org/10.3390/en16196908
Bhatt AH, Rodrigues M, Bernardoni F, Leonardi S, Zare A. Stochastic Dynamical Modeling of Wind Farm Turbulence. Energies. 2023; 16(19):6908. https://doi.org/10.3390/en16196908
Chicago/Turabian StyleBhatt, Aditya H., Mireille Rodrigues, Federico Bernardoni, Stefano Leonardi, and Armin Zare. 2023. "Stochastic Dynamical Modeling of Wind Farm Turbulence" Energies 16, no. 19: 6908. https://doi.org/10.3390/en16196908
APA StyleBhatt, A. H., Rodrigues, M., Bernardoni, F., Leonardi, S., & Zare, A. (2023). Stochastic Dynamical Modeling of Wind Farm Turbulence. Energies, 16(19), 6908. https://doi.org/10.3390/en16196908