Towards Social Understanding of Energy Storage Systems—A Perspective
Abstract
:1. Introduction
1.1. Scenario
1.2. EESs: State-of-the-Art
2. ESSs: Trends in Recent Literature
3. ESSs: Social Pillars
3.1. Towards a Unitary Framework
3.2. Implications
4. Conclusions, Limits, and Future Research
Author Contributions
Funding
Conflicts of Interest
References
- European Commission. 2030 Climate & Energy Framework. 2020. Available online: https://ec.europa.eu/clima/policies/strategies/2030_en (accessed on 3 April 2020).
- Derkenbaeva, E.; Vega, S.H.; Hofstede, G.J.; van Leeuwen, E. Positive Energy Districts: Mainstreaming Energy Transition in Urban Areas. Renew. Sustain. Energy Rev. 2022, 153, 111782. [Google Scholar] [CrossRef]
- Sibilla, M.; Abanda, F.H. Multi-Criteria Decision Making Optimisation Framework for Positive Energy Blocks for Cities. Sustainability 2022, 14, 446. [Google Scholar] [CrossRef]
- Bourdin, S.; Chassy, A. Are Citizens Ready to Make an Environmental Effort? A Study of the Social Acceptability of Biogas in France. Env. Manag. 2023, 71, 1228–1239. [Google Scholar] [CrossRef] [PubMed]
- Trevisan, R.; Ghiani, E. Renewable Energy Communities in Positive Energy Districts: A Governance and Realisation Framework in Compliance with the Italian Regulation. Smart Cities 2023, 6, 563–585. [Google Scholar] [CrossRef]
- Muche, T. A Real Option-Based Simulation Model to Evaluate Investments in Pump Storage Plants. Energy Policy 2009, 37, 4851–4862. [Google Scholar] [CrossRef]
- Das, T.; Krishnan, V.; Mccalley, J.D.; Carlo, M. High-Fidelity Dispatch Model of Storage Technologies for Production Costing Studies. IEEE Trans. Sustain. Energy 2014, 5, 1242–1252. [Google Scholar] [CrossRef]
- Locatelli, G.; Colette, D.; Mancini, M. Investment and Risk Appraisal in Energy Storage Systems: A Real Options Approach. Energy 2016, 104, 114–131. [Google Scholar] [CrossRef]
- Locatelli, G.; Palerma, E.; Mancini, M. Assessing the Economics of Large Energy Storage Plants with an Optimisation Methodology. Energy 2015, 83, 15–28. [Google Scholar] [CrossRef]
- Devine-wright, P.; Batel, S.; Aas, O.; Sovacool, B.; Carnegie, M.; Ruud, A. A Conceptual Framework for Understanding the Social Acceptance of Energy Infrastructure: Insights from Energy Storage. Energy Policy 2017, 107, 27–31. [Google Scholar] [CrossRef]
- Thomas, G.; Demski, C.; Pidgeon, N. Deliberating the Social Acceptability of Energy Storage in the UK. Energy Policy 2019, 133, 110908. [Google Scholar] [CrossRef]
- Von Wirth, T.; Gislason, L.; Seidl, R. Distributed Energy Systems on a Neighborhood Scale: Reviewing Drivers of and Barriers to Social Acceptance. Renew. Sustain. Energy Rev. 2018, 82, 2618–2628. [Google Scholar] [CrossRef]
- Nguyen, M.T.; Batel, S. A Critical Framework to Develop Human-Centric Positive Energy Districts: Towards Justice, Inclusion, and Well-Being. Front. Sustain. Cities 2021, 3, 191236. [Google Scholar] [CrossRef]
- Sovacool, B.K. What Are We Doing Here? Analyzing Fifteen Years of Energy Scholarship and Proposing a Social Science Research Agenda. Energy Res. Soc. Sci. 2014, 1, 1–29. [Google Scholar] [CrossRef]
- Peñaloza, D.; Mata, É.; Fransson, N.; Fridén, H.; Samperio, Á.; Quijano, A.; Cuneo, A. Social and Market Acceptance of Photovoltaic Panels and Heat Pumps in Europe: A Literature Review and Survey. Renew. Sustain. Energy Rev. 2022, 155, 111876. [Google Scholar] [CrossRef]
- Sovacool, B.K.; Lakshmi Ratan, P. Conceptualizing the Acceptance of Wind and Solar Electricity. Renew. Sustain. Energy Rev. 2012, 16, 5268–5279. [Google Scholar] [CrossRef]
- Ecker, F.; Spada, H.; Hahnel, U.J.J. Independence without Control: Autarky Outperforms Autonomy Benefits in the Adoption of Private Energy Storage Systems. Energy Policy 2018, 122, 214–228. [Google Scholar] [CrossRef]
- Olabi, A.G. Renewable Energy and Energy Storage Systems. Energy 2017, 136, 1–6. [Google Scholar] [CrossRef]
- Wüstenhagen, R.; Wolsink, M.; Bürer, M.J. Social Acceptance of Renewable Energy Innovation: An Introduction to the Concept. Energy Policy 2007, 35, 2683–2691. [Google Scholar] [CrossRef]
- Fang, X.; Guo, H.; Zhang, X.; Wang, X.; Chen, Q. An Efficient and Incentive-Compatible Market Design for Energy Storage Participation. Appl. Energy 2022, 311, 118731. [Google Scholar] [CrossRef]
- Krumm, A.; Süsser, D.; Blechinger, P. Modelling Social Aspects of the Energy Transition: What Is the Current Representation of Social Factors in Energy Models? Energy 2022, 239, 121706. [Google Scholar] [CrossRef]
- Turnheim, B.; Berkhout, F.; Geels, F.; Hof, A.; McMeekin, A.; Nykvist, B.; van Vuuren, D. Evaluating Sustainability Transitions Pathways: Bridging Analytical Approaches to Address Governance Challenges. Glob. Environ. Change 2015, 35, 239–253. [Google Scholar] [CrossRef]
- Silvast, A.; Laes, E.; Abram, S.; Bombaerts, G. What Do Energy Modellers Know? An Ethnography of Epistemic Values and Knowledge Models. Energy Res. Soc. Sci. 2020, 66, 101495. [Google Scholar] [CrossRef]
- Geels, F.W. Disruption and Low-Carbon System Transformation: Progress and New Challenges in Socio-Technical Transitions Research and the Multi-Level Perspective. Energy Res. Soc. Sci. 2018, 37, 224–231. [Google Scholar] [CrossRef]
- Wu, Y.; Zhang, T.; Gao, R.; Wu, C. Portfolio Planning of Renewable Energy with Energy Storage Technologies for Different Applications from Electricity Grid. Appl. Energy 2021, 287, 116562. [Google Scholar] [CrossRef]
- Haque, A.N.; Lemanski, C.; de Groot, J. Why Do Low-Income Urban Dwellers Reject Energy Technologies? Exploring the Socio-Cultural Acceptance of Solar Adoption in Mumbai and Cape Town. Energy Res. Soc. Sci. 2021, 74, 101954. [Google Scholar] [CrossRef]
- Junior, P.R.; Luiz, C.; Morioka, S.N.; Bolis, I.; Chicco, G.; Mazza, A.; Janda, K. Economic Analysis of the Investments in Battery Energy Storage Systems: Review and Current Perspectives. Energies 2021, 14, 2503. [Google Scholar] [CrossRef]
- Smdani, G.; Islam, M.R.; Naim, A.; Yahaya, A. A Performance Evaluation of Advanced Energy Storage Systems: A Review. Energy Environ. 2023, 34, 1094–1141. [Google Scholar] [CrossRef]
- Olabi, A.G.; Abdelkareem, M.A. Energy Storage Systems towards 2050. Energy 2021, 219, 119634. [Google Scholar] [CrossRef]
- Georgious, R.; Refaat, R.; Garcia, J. Review on Energy Storage Systems in Microgrids. Energies 2021, 10, 2134. [Google Scholar] [CrossRef]
- Forrest, K.; Shaffer, B.; Blakers, A.; Stocks, M.; Lu, B.; Cheng, C. A Review of Pumped Hydro Energy Storage. Prog. Energy 2021, 3, 022003. [Google Scholar] [CrossRef]
- Olabi, A.G.; Wilberforce, T.; Ramadan, M.; Ali, M.; Hai, A. Compressed Air Energy Storage Systems: Components and Operating Parameters—A Review. J. Energy Storage 2021, 34, 102000. [Google Scholar] [CrossRef]
- Schonauer, A.-L.; Glanz, S. Hydrogen in Future Energy Systems: Social Acceptance of the Technology and Its Large-Scale Infrastructure. Int. J. Hydrogen Energy 2022, 47, 12251–12263. [Google Scholar] [CrossRef]
- Huckebrink, D.; Bertsch, V. Integrating Behavioural Aspects in Energy System Modelling—A Review. Energies 2021, 14, 4579. [Google Scholar] [CrossRef]
- Komendantova, N.; Neumueller, S.; Nkoana, E. Public Attitudes, Co-Production and Polycentric Governance in Energy Policy. Energy Policy 2021, 153, 112241. [Google Scholar] [CrossRef]
- Aranzabal, I.; Gomez-Cornejo, J.; López, I.; Energies, A.Z. Optimal Management of an Energy Community with PV and Battery-Energy-Storage Systems. Energies 2022, 16, 789. [Google Scholar] [CrossRef]
- Liu, Z.; Fan, G.; Sun, D.; Wu, D.; Guo, J.; Zhang, S.; Energy, X.Y. A Novel Distributed Energy System Combining Hybrid Energy Storage and a Multi-Objective Optimization Method for Nearly Zero-Energy Communities and Buildings. Energy 2022, 239 pt E, 122577. [Google Scholar] [CrossRef]
- Huang, P.; Sun, Y.; Lovati, M.; Zhang, X. Solar-Photovoltaic-Power-Sharing-Based Design Optimization of Distributed Energy Storage Systems for Performance Improvements. Energy 2021, 222, 119931. [Google Scholar] [CrossRef]
- Gul, E.; Baldinelli, G.; Bartocci, P.; Bianchi, F.; Piergiovanni, D.; Cotana, F.; Wang, J. A Techno-Economic Analysis of a Solar PV and DC Battery Storage System for a Community Energy Sharing. Energy 2022, 244, 123191. [Google Scholar] [CrossRef]
- Lindholm, O.; ur Rehman, H.; Reda, F. Positioning Positive Energy Districts in European Cities. Buildings 2021, 11, 19. [Google Scholar] [CrossRef]
- Walker, C.; Devine-Wright, P.; Rohse, M.; Gooding, L.; Devine-Wright, H.; Gupta, R. What Is ‘Local’ about Smart Local Energy Systems? Emerging Stakeholder Geographies of Decentralised Energy in the United Kingdom. Energy Res. Soc. Sci. 2021, 80, 102182. [Google Scholar] [CrossRef]
- Hedman, Å.; Rehman, H.U.; Gabaldón, A.; Bisello, A.; Albert-Seifried, V.; Zhang, X.; Guarino, F.; Grynning, S.; Eicker, U.; Neumann, H.M.; et al. IEA EBC Annex83 Positive Energy Districts. Buildings 2021, 11, 130. [Google Scholar] [CrossRef]
- Trivedi, R.; Patra, S.; Sidqi, Y.; Bowler, B.; Zimmermann, F.; Deconinck, G.; Papaemmanouil, A.; Khadem, S. Community-Based Microgrids: Literature Review and Pathways to Decarbonise the Local Electricity Network. Energies 2022, 15, 918. [Google Scholar] [CrossRef]
- Li, N.; Hakvoort, R.A.; Lukszo, Z. Cost Allocation in Integrated Community Energy Systems—A Review. Renew. Sustain. Energy Rev. 2021, 144, 111001. [Google Scholar] [CrossRef]
- Nagpal, H.; Avramidis, I.; Member, S.; Capitanescu, F. Local Energy Communities in Service of Sustainability and Grid Flexibility Provision: Hierarchical Management of Shared Energy Storage. IEEE Trans. Sustain. Energy 2022, 13, 1523–1535. [Google Scholar] [CrossRef]
- Zhang, H.; Gao, S.; Zhou, P. Role of Digitalization in Energy Storage Technological Innovation: Evidence from China. Renew. Sustain. Energy Rev. 2023, 171, 113014. [Google Scholar] [CrossRef]
- Liu, J.; Huang, Z.; Fan, M.; Yang, J.; Xiao, J.; Wang, Y. Future Energy Infrastructure, Energy Platform and Energy Storage. Nano Energy 2022, 104, 107915. [Google Scholar] [CrossRef]
- Umar, A.; Kumar, D.; Ghose, T. Blockchain-Based Decentralized Energy Intra-Trading with Battery Storage Flexibility in a Community Microgrid System. Appl. Energy 2022, 322, 119544. [Google Scholar] [CrossRef]
- Hoicka, C.E.; Lowitzsch, J.; Brisbois, M.C.; Kumar, A.; Ramirez Camargo, L. Implementing a Just Renewable Energy Transition: Policy Advice for Transposing the New European Rules for Renewable Energy Communities. Energy Policy 2021, 156, 112435. [Google Scholar] [CrossRef]
- Adams, S.; Kuch, D.; Diamond, L.; Fröhlich, P.; Henriksen, I.M.; Katzeff, C.; Ryghaug, M.; Yilmaz, S. Social License to Automate: A Critical Review of Emerging Approaches to Electricity Demand Management. Energy Res. Soc. Sci. 2021, 80, 102210. [Google Scholar] [CrossRef]
- Krug, M.; Di Nucci, M.R.; Caldera, M.; De Luca, E. Mainstreaming Community Energy: Is the Renewable Energy Directive a Driver for Renewable Energy Communities in Germany and Italy? Sustainability 2022, 14, 7181. [Google Scholar] [CrossRef]
- Bauwens, T.; Schraven, D.; Drewing, E.; Radtke, J.; Holstenkamp, L.; Gotchev, B.; Yildiz, Ö. Conceptualizing Community in Energy Systems: A Systematic Review of 183 Definitions. Renew. Sustain. Energy Rev. 2022, 156, 111999. [Google Scholar] [CrossRef]
- Zhang, Q.; Vega, P. Towards a New Renewable Power System Using Energy Storage: An Economic and Social Analysis. Energy Convers. Manag. 2022, 252, 115056. [Google Scholar] [CrossRef]
- Luiz, C.; Rotella, P.; Aquila, G.; Maheri, A. Multiobjective Optimization of Hybrid Wind-Photovoltaic Plants with Battery Energy Storage System: Current Situation and Possible Regulatory Changes. J. Energy Storage 2022, 51, 104467. [Google Scholar] [CrossRef]
- Li, L.; Cao, X.; Zhang, S. Shared Energy Storage System for Prosumers in a Community: Investment Decision, Economic Operation, and Benefits Allocation under a Cost-Effective Way. J. Energy Storage 2022, 50, 104710. [Google Scholar] [CrossRef]
- Karami, M.; Madlener, R. Business Models for Peer-to-Peer Energy Trading in Germany Based on Households’ Beliefs and Preferences. Appl. Energy 2022, 306, 118053. [Google Scholar] [CrossRef]
- Eitan, A.; Fischhendler, I. The Social Dimension of Renewable Energy Storage in Electricity Markets: The Role of Partnerships. Energy Res. Soc. Sci. 2021, 76, 102072. [Google Scholar] [CrossRef]
- Burkert, A.; Fechtner, H.; Schmuelling, B. Interdisciplinary Analysis of Social Acceptance Regarding Electric Vehicles with a Focus on Charging Infrastructure and Driving Range in Germany. World Electr. Veh. J. 2021, 12, 25. [Google Scholar] [CrossRef]
- Ravi, S.S.; Aziz, M. Utilization of Electric Vehicles for Vehicle-to-Grid Services: Progress and Perspectives. Energies 2022, 15, 25. [Google Scholar] [CrossRef]
- Schelly, C.; Lee, D.; Matz, E.; Pearce, J.M. Applying a Relationally and Socially Embedded Decision Framework to Solar Photovoltaic Adoption: A Conceptual Exploration. Sustainability 2021, 13, 711. [Google Scholar] [CrossRef]
- Xue, Y.; Temeljotov-Salaj, A.; Lindkvist, C.M. Renovating the Retrofit Process: People-Centered Business Models and Co-Created Partnerships for Low-Energy Buildings in Norway. Energy Res. Soc. Sci. 2022, 85, 102406. [Google Scholar] [CrossRef]
- Baur, D.; Emmerich, P.; Baumann, M.J.; Weil, M. Assessing the Social Acceptance of Key Technologies for the German Energy Transition. Energy Sustain. Soc. 2022, 12, 4. [Google Scholar] [CrossRef]
- Bögel, P.M.; Upham, P.; Shahrokni, H.; Kordas, O. What Is Needed for Citizen-Centered Urban Energy Transitions: Insights on Attitudes towards Decentralized Energy Storage. Energy Policy 2021, 149, 112032. [Google Scholar] [CrossRef]
- Tushar, W.; Yuen, C.; Saha, T.K.; Morstyn, T.; Chapman, A.C.; Alam, M.J.E.; Hanif, S.; Poor, H.V. Peer-to-Peer Energy Systems for Connected Communities: A Review of Recent Advances and Emerging Challenges. Appl. Energy 2021, 282, 116131. [Google Scholar] [CrossRef]
- Esmat, A.; de Vos, M.; Ghiassi-Farrokhfal, Y.; Palensky, P.; Epema, D. A Novel Decentralized Platform for Peer-to-Peer Energy Trading Market with Blockchain Technology. Appl. Energy 2021, 282, 116123. [Google Scholar] [CrossRef]
- Wang, L.; Ma, Y.; Zhu, L.; Wang, X.; Cong, H.; Shi, T. Design of Integrated Energy Market Cloud Service Platform Based on Blockchain Smart Contract. Int. J. Electr. Power Energy Syst. 2022, 135, 107515. [Google Scholar] [CrossRef]
- Ambrosio-Albala, P.; Upham, P.; Bale, C.S.E.; Taylor, P.G. Exploring Acceptance of Decentralised Energy Storage at Household and Neighbourhood Scales: A UK Survey. Energy Policy 2020, 138, 111194. [Google Scholar] [CrossRef]
- Knox, S.; Hannon, M.; Stewart, F.; Ford, R. Energy Research & Social Science The (in)Justices of Smart Local Energy Systems: A Systematic Review, Integrated Framework, and Future Research Agenda. Energy Res. Soc. Sci. 2022, 83, 102333. [Google Scholar] [CrossRef]
- Chen, X.; Jia, S.; Xiang, Y. A Review: Knowledge Reasoning over Knowledge Graph. Expert Syst. Appl. 2020, 141, 112948. [Google Scholar] [CrossRef]
- Peng, C.; Xia, F.; Naseriparsa, M.; Osborne, F. Knowledge Graphs: Opportunities and Challenges. Artif. Intell. Rev. 2023. [Google Scholar] [CrossRef]
Sources (2021–2023) | Social Implementation of ESSs at Scale | ||
---|---|---|---|
Key Social Component | Authors’ Comment on the Necessary Factors | Authors’ Perspective of Future Research | |
[27,28] | Financial mechanisms | (multi-level) institutional capabilities to support innovative social initiatives | To deal with the multi-dimensional aspects that characterise the geography of a territory rather than to focus on single or limited social components |
[29,30,31,32] | Environmental awareness | ||
[4,15,33,34,35] | Social understanding | ||
[2,20,36,37,38,39,40,41,42,43,44] | Spatial organisation (Energy Cluster/Districts) | the re-definition of spatial organization of renewable-energy based settlements integrating ESSs inside and outside buildings | To explore the role of stakeholder groups in the spatial and temporal flexibility organisation of the citizen-centred energy system |
[45,46,47,48,49,50] | Temporal flexibility (Renewable sources) | a focus on the temporal flexibility of ESSs in relation to the community needs | |
[51,52,53,54,55,56,57,58,59,60] | Stakeholders’ groups (Social norms and capital) | the development of energy transition routes designed by and for the different types of actors | |
[64,65,66] | Digital platforms (Energy services) | digital platforms to deliver a new set of energy services to manage the spatial and temporal flexibility of the renewable and decentralised systems controlled by different actors | To develop digital platforms to facilitate the collaboration among stakeholder groups in the early stage of citizen-centred system organisation |
[62,63] | Co-creation/acceptance (Collaborative platforms) | co-creation approaches as opportunities to promote awareness and new forms of collaboration |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sibilla, M.; Kurul, E. Towards Social Understanding of Energy Storage Systems—A Perspective. Energies 2023, 16, 6868. https://doi.org/10.3390/en16196868
Sibilla M, Kurul E. Towards Social Understanding of Energy Storage Systems—A Perspective. Energies. 2023; 16(19):6868. https://doi.org/10.3390/en16196868
Chicago/Turabian StyleSibilla, Maurizio, and Esra Kurul. 2023. "Towards Social Understanding of Energy Storage Systems—A Perspective" Energies 16, no. 19: 6868. https://doi.org/10.3390/en16196868
APA StyleSibilla, M., & Kurul, E. (2023). Towards Social Understanding of Energy Storage Systems—A Perspective. Energies, 16(19), 6868. https://doi.org/10.3390/en16196868