Advancements in Solar Panel Technology in Civil Engineering for Revolutionizing Renewable Energy Solutions—A Review
Abstract
:1. Introduction
2. Types of PV Technologies
2.1. Monocrystalline Silicon (Mono-Si) Solar Cells
2.2. Polycrystalline Silicon (Poly-Si) Solar Cells
2.3. Monocrystalline Passivated Emitter and Rear Cell (Mono-PERC)
2.4. Half-Cut Solar Cells
3. Degradation of PV Modules
4. Solar Panels in Building Construction
4.1. Integration of Solar Panels in Building Designs
4.2. Structural Considerations for Solar Panel Installations
4.3. Energy Performance and Efficiency in Solar-Powered Buildings
5. Innovative Applications of Solar Panels in Infrastructure Development
Photovoltaic Canopies and Noise Barriers
6. Solar Panels in Water Management Systems
6.1. Solar-Powered Water Treatment Plants
6.2. Solar Panels for Water Pumping and Irrigation Systems
6.3. Energy-Efficient Solar Desalination Technologies
7. Solar Panels in Sustainable Urban Planning
7.1. Solar Energy in Urban Development Strategies
7.2. Solar Panel Applications in Smart Cities
7.3. Solar-Powered Public Spaces and Parks
7.4. Solar Panels and Urban Agriculture
8. Solar Panels in Construction Materials
8.1. Solar-Active Façade Systems
8.2. Solar-Powered Building Envelope Solutions
9. Environmental Impact
10. Architectural and Economic Impact
11. Future Trends and Challenges
- (i)
- Solar panel technology is likely to continue to advance for solar panels utilized in the construction industry. Solar panels will become more accessible and cost-effective for building owners and developers owing to efforts to improve solar efficiency, reduce manufacturing costs, and enhance energy-storage capabilities;
- (ii)
- The seamless integration of solar panels into building designs is an important future trend. As architects and engineers integrate solar solutions earlier in the construction planning process, buildings can maximize solar energy capture while maintaining aesthetically pleasing designs;
- (iii)
- For buildings to store excess solar energy, advancements in energy storage technologies, such as improved battery systems and grid-scale storage solutions, are essential. In addition, integrating smart grid technologies and advanced energy management systems will optimize the flow of electricity, thereby improving energy efficiency;
- (iv)
- Numerous building owners, particularly in the commercial and industrial sectors, continue to find the initial cost of solar panel installation prohibitive. Innovative financing options and cost-competitive solar technologies are required to overcome this challenge;
- (v)
- Integrating solar panels into the design of a building while preserving architectural aesthetics is challenging. Future trends will concentrate on creating solar panel options that are visually appealing and adaptable, allowing them to blend into a variety of architectural styles;
- (vi)
- A method to reduce the competitive pressure between solar energy production and food production is explored. One of the trends is considering agrivoltaic in urban agriculture or using solar panels in vertical farming systems that produce food outside of agricultural land.
12. Conclusions
- (i)
- Solar energy has emerged as a major contributor to the worldwide adoption of renewable energy. Its exponential growth and applications in numerous industries, including construction, have demonstrated its critical role in combating climate change;
- (ii)
- Solar energy systems provide eco-friendly power generation without noise or chemical emissions; but, environmental challenges, such as land use and manufacturing impacts, must be addressed. Adopting mitigating measures, such as technological advancements, guidelines, and impact assessments, is essential for sustainability;
- (iii)
- According to new research, organic photovoltaics have several environmental advantages over silicon cells, including faster energy and carbon payback. Product responsibility is essential for the management of solar panel waste modules. These findings highlight the need for eco-conscious decisions and robust policies for the sustainable integration of solar energy in urban environments;
- (iv)
- Incorporating solar panels into buildings presents a compelling long-term financial proposition, including reduced energy costs, employment opportunities during installation and maintenance, and a significant increase in property values. These advantages not only have the potential to stimulate local economies but could also increase the desirability of properties, thereby increasing their resale values;
- (v)
- The comprehensive studies conducted underscored the importance of assessing the financial viability of solar panel installations. While one study demonstrates the profitability of such systems under various circumstances, another advises against employing them when demand charge tariffs are in place. These insights highlight the significance of well-informed decision-making when undertaking solar panel integration projects, balancing both financial incentives and constraints for a sustainable and economically sensible future;
- (vi)
- Solar energy is becoming more accessible to building owners and developers as solar panel efficiency and cost-effectiveness continue to improve. This enables buildings to generate electricity on-site, promoting energy independence and reducing reliance on traditional grids. However, it also paves the way for smarter energy distribution and consumption, improving overall energy efficiency. In addition, solar panel integration plays a crucial role in reducing buildings’ carbon footprints, mitigating air pollution, and conserving finite fossil fuel resources, aligning with global environmental preservation efforts;
- (vii)
- Although there are many advantages, issues still need to be resolved before solar panels can be widely used in the building industry. These issues include high upfront costs, difficult grid integration, and aesthetic concerns.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Peng, H.Y.; Song, S.S.; Liu, H.J.; Dai, S.F.; Zhang, F.L. Investigation of wind loading characteristics of roof-mounted solar panels on tall buildings. Sustain. Energy Technol. Assess. 2022, 54, 102800. [Google Scholar] [CrossRef]
- Dai, S.F.; Liu, H.J.; Yang, J.H.; Peng, H.Y. Wind loads on roof-mounted isolated solar panels of tall buildings through wind tunnel testing. Sol. Energy 2022, 231, 607–622. [Google Scholar] [CrossRef]
- El-Khawad, L.; Bartkowiak, D.; Kümmerer, K. Improving the end-of-life management of solar panels in Germany. Renew. Sustain. Energy Rev. 2022, 168, 112678. [Google Scholar] [CrossRef]
- Ghosh, A. Potential of building integrated and attached/applied photovoltaic (BIPV/BAPV) for adaptive less energy-hungry building’s skin: A comprehensive review. J. Clean. Prod. 2020, 276, 123343. [Google Scholar] [CrossRef]
- Kumar, C.M.S.; Singh, S.; Gupta, M.K.; Nimdeo, Y.M.; Raushan, R.; Deorankar, A.V.; Kumar, T.A.; Rout, P.K.; Chanotiya, C.; Pakhale, V.D.; et al. Solar energy: A promising renewable source for meeting energy demand in Indian agriculture applications. Sustain. Energy Technol. Assess. 2023, 55, 102905. [Google Scholar] [CrossRef]
- Al-Radhi, Y.; Roy, K.; Liang, H.; Ghosh, K.; Clifton, G.C.; Lim, J.B.P. Thermal performance of different construction materials used in New Zealand dwellings comparatively to international practice—A systematic literature review. J. Build. Eng. 2023, 72, 106346. [Google Scholar] [CrossRef]
- Hosseinnia, S.M.; Sorin, M. Techno-economic approach for optimum solar assisted ground source heat pump integration in buildings. Energy Convers. Manag. 2022, 267, 115947. [Google Scholar] [CrossRef]
- Dezhdar, A.; Assareh, E.; Agarwal, N.; Bedakhanian, A.; Keykhah, S.; Fard, G.Y.; Zadsar, N.; Aghajari, M.; Lee, M. Transient optimization of a new solar-wind multi-generation system for hydrogen production, desalination, clean electricity, heating, cooling, and energy storage using TRNSYS. Renew. Energy 2023, 208, 512–537. [Google Scholar] [CrossRef]
- Alshibil, A.M.A.; Farkas, I.; Víg, P. Sustainability contribution of hybrid solar collector towards net-zero energy buildings concerning solar cells wasted heat. Energy Sustain. Dev. 2023, 74, 185–195. [Google Scholar] [CrossRef]
- Yang, L.; He, B.J.; Ye, M. The application of solar technologies in building energy efficiency: BISE design in solar-powered residential buildings. Technol. Soc. 2014, 38, 111–118. [Google Scholar] [CrossRef]
- Kim, B.; Han, S.U.; Heo, J.; Jung, J. Proof-of-concept of a two-stage approach for selecting suitable slopes on a highway network for solar photovoltaic systems: A case study in South Korea. Renew. Energy 2020, 151, 366–377. [Google Scholar] [CrossRef]
- Venugopal, P.; Shekhar, A.; Visser, E.; Scheele, N.; Mouli, G.R.C.; Bauer, P.; Silvester, S. Roadway to self-healing highways with integrated wireless electric vehicle charging and sustainable energy harvesting technologies. Appl. Energy 2018, 212, 1226–1239. [Google Scholar] [CrossRef]
- Vivar, M.; Fuentes, M.; Torres, J.; Rodrigo, M.J. Solar disinfection as a direct tertiary treatment of a wastewater plant using a photochemical-photovoltaic hybrid system. J. Water Process Eng. 2021, 42, 102196. [Google Scholar] [CrossRef]
- Bouhadjar, S.I.; Kopp, H.; Britsch, P.; Deowan, S.A.; Hoinkis, J.; Bundschuh, J. Solar powered nanofiltration for drinking water production from fluoride-containing groundwater—A pilot study towards developing a sustainable and low-cost treatment plant. J. Environ. Manag. 2019, 231, 1263–1269. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, M.F.; Qasim, M.A.; Velkin, V.I. Stand-alone transformer-less multilevel inverter fed by solar energy for irrigation purposes. Mater. Today Proc. 2023, 80, 1071–1078. [Google Scholar] [CrossRef]
- Sun, J.; Zuo, Y.; Sun, R.; Zhou, L. Research on the conversion efficiency and preparation technology of monocrystalline silicon cells based on statistical distribution. Sustain. Energy Technol. Assess. 2021, 47, 101482. [Google Scholar] [CrossRef]
- Boulmrharj, S.; Bakhouya, M.; Khaidar, M. Performance evaluation of grid-connected silicon-based PV systems integrated into institutional buildings: An experimental and simulation comparative study. Sustain. Energy Technol. Assess. 2022, 53, 102632. [Google Scholar] [CrossRef]
- Tariq, M.; Safdar, N.; Scheffler, S.; Rolfes, R. Numerical homogenization of poly-crystalline silicon wafer based photovoltaic modules including pre-cracks. Mater. Today Commun. 2022, 33, 104752. [Google Scholar] [CrossRef]
- Kazem, H.A.; Chaichan, M.T.; Al-Waeli, A.H.A.; Sopian, K. Effect of dust and cleaning methods on mono and polycrystalline solar photovoltaic performance: An indoor experimental study. Sol. Energy 2022, 236, 626–643. [Google Scholar] [CrossRef]
- Es, F.; Semiz, E.; Orhan, E.; Genç, E.; Kökbudak, G.; Baytemir, G.; Turan, R. Optimization of PERC fabrication based on loss analysis in an industrially relevant environment: First results from GÜNAM photovoltaic line (GPVL). Renew. Energy 2020, 146, 1676–1681. [Google Scholar] [CrossRef]
- Lunardi, M.M.; Alvarez-Gaitan, J.P.; Chang, N.L.; Corkish, R. Life cycle assessment on PERC solar modules. Sol. Energy Mater. Sol. Cells 2018, 187, 154–159. [Google Scholar] [CrossRef]
- Shukir, S.S. Half-Cut Cell Solar Panels to Reduce the Effect of High Temperature and Shadow on the Productivity of Solar Panels. J. Altern. Renew. Energy Sources 2022, 3, 1–8. Available online: www.matjournals.com (accessed on 15 June 2023).
- Kiray, V. A Research Study to Increase Usage of PVs in Residential Areas. Front. Energy Res. 2021, 9, 680304. [Google Scholar] [CrossRef]
- Khan, F.; Kim, J.H. Performance Degradation Analysis of c-Si PV Modules Mounted on a Concrete Slab under Hot-Humid Conditions Using Electroluminescence Scanning Technique for Potential Utilization in Future Solar Roadways. Materials 2019, 12, 4047. [Google Scholar] [CrossRef] [PubMed]
- Khan, F.; Alshahrani, T.; Fareed, I.; Kim, J.H. A comprehensive degradation assessment of silicon photovoltaic modules installed on a concrete base under hot and low-humidity environments: Building applications. Sustain. Energy Technol. Assess. 2022, 52, 102314. [Google Scholar] [CrossRef]
- Vassiliades, C.; Agathokleous, R.; Barone, G.; Forzano, C.; Giuzio, G.F.; Palombo, A.; Buonomano, A.; Kalogirou, S. Building integration of active solar energy systems: A review of geometrical and architectural characteristics. Renew. Sustain. Energy Rev. 2022, 164, 112482. [Google Scholar] [CrossRef]
- Behzadi, A.; Arabkoohsar, A. Comparative performance assessment of a novel cogeneration solar-driven building energy system integrating with various district heating designs. Energy Convers. Manag. 2020, 220, 113101. [Google Scholar] [CrossRef]
- Hosseinnia, S.M.; Sorin, M. Energy targeting approach for optimum solar assisted ground source heat pump integration in buildings. Energy 2022, 248, 123528. [Google Scholar] [CrossRef]
- Allouhi, A.; Benzakour Amine, M.; Reisch, C. Multi-objective optimization of solar energy systems for electricity and hot water generation in collective residential buildings considering the power-to-heat concept. Appl. Therm. Eng. 2023, 230, 120658. [Google Scholar] [CrossRef]
- Eltayeb, W.A.; Somlal, J.; Kumar, S.; Rao, S.K. Design and analysis of a solar-wind hybrid renewable energy tree. Results Eng. 2023, 17, 100958. [Google Scholar] [CrossRef]
- Choi, S.M.; Park, C.D.; Cho, S.H.; Lim, B.J. Effects of various inlet angle of wind and wave loads on floating photovoltaic system considering stress distributions. J. Clean. Prod. 2022, 387, 135876. [Google Scholar] [CrossRef]
- Khan, A.K.; Shah, T.R.; Khosa, A.A.; Ali, H.M. Evaluation of wind load effects on solar panel support frame: A numerical study. Eng. Anal. Bound. Elem. 2023, 153, 88–101. [Google Scholar] [CrossRef]
- Meiramov, D.; Ju, H.; Seo, Y.; Lee, S.J.; Ha, T. Investigation of column-to-base connections of pole-mounted solar panel structures. J. Constr. Steel Res. 2023, 208, 108025. [Google Scholar] [CrossRef]
- Deymi-Dashtebayaz, M.; Baranov, I.V.; Nikitin, A.; Davoodi, V.; Sulin, A.; Norani, M.; Nikitina, V. An investigation of a hybrid wind-solar integrated energy system with heat and power energy storage system in a near-zero energy building-A dynamic study. Energy Convers. Manag. 2022, 269, 116085. [Google Scholar] [CrossRef]
- Sulaiman, A.Y.; Obasi, G.I.; Chang, R.; Moghaieb, H.S.; Mondol, J.D.; Smyth, M.; Kamkari, B.; Hewitt, N.J. A solar powered off-grid air conditioning system with natural refrigerant for residential buildings: A theoretical and experimental evaluation. Clean. Energy Syst. 2023, 5, 100077. [Google Scholar] [CrossRef]
- Temiz, M.; Dincer, I. Design and assessment of a solar energy based integrated system with hydrogen production and storage for sustainable buildings. Int. J. Hydrogen Energy 2023, 48, 15817–15830. [Google Scholar] [CrossRef]
- Woo, J.R.; Moon, S.; Choi, H. Economic value and acceptability of advanced solar power systems for multi-unit residential buildings: The case of South Korea. Appl. Energy 2022, 324, 119671. [Google Scholar] [CrossRef]
- Baniasadi, E.; Ziaei-Rad, M.; Behvand, M.A.; Javani, N. Exergy-economic analysis of a solar-geothermal combined cooling, heating, power and water generation system for a zero-energy building. Int. J. Hydrogen Energy, 2023, in press. [CrossRef]
- Acar, C.; Erturk, E.; Firtina-Ertis, I. Performance analysis of a stand-alone integrated solar hydrogen energy system for zero energy buildings. Int. J. Hydrogen Energy 2023, 48, 1664–1684. [Google Scholar] [CrossRef]
- Abu-Hamdeh, N.H.; Khoshaim, A.; Alzahrani, M.A.; Hatamleh, R.I. Study of the flat plate solar collector’s efficiency for sustainable and renewable energy management in a building by a phase change material: Containing paraffin-wax/Graphene and Paraffin-wax/graphene oxide carbon-based fluids. J. Build. Eng. 2022, 57, 104804. [Google Scholar] [CrossRef]
- Aleksiejuk-Gawron, J.; Chochowski, A. Study of Dynamics of Heat Transfer in the Flat-Plate Solar Collector. Processes 2020, 8, 1607. [Google Scholar] [CrossRef]
- Zhong, T.; Zhang, K.; Chen, M.; Wang, Y.; Zhu, R.; Zhang, Z.; Zhou, Z.; Qian, Z.; Lv, G.; Yan, J. Assessment of solar photovoltaic potentials on urban noise barriers using street-view imagery. Renew. Energy 2021, 1, 181–194. [Google Scholar] [CrossRef]
- Lee, H.P.; Lim, K.M.; Kumar, S. Noise assessment of elevated rapid transit railway lines and acoustic performance comparison of different noise barriers for mitigation of elevated railway tracks noise. Appl. Acoust. 2021, 183, 108340. [Google Scholar] [CrossRef]
- Vallati, A.; De Lieto Vollaro, R.; Tallini, A.; Cedola, L. Photovoltaics noise barrier: Acoustic and energetic study. Energy Procedia 2015, 82, 716–723. [Google Scholar] [CrossRef]
- Soares, L.; Wang, H. Sustainability impact of photovoltaic noise barriers with different design configurations. Transp. Res. Part D Transp. Environ. 2023, 116, 103624. [Google Scholar] [CrossRef]
- Iringová, A.; Kovačic, M. Design and optimization of photovoltaic systems in a parking garage-a case study. Transp. Res. Procedia 2021, 55, 1171–1179. [Google Scholar] [CrossRef]
- Deshmukh, S.S.; Pearce, J.M. Electric vehicle charging potential from retail parking lot solar photovoltaic awnings. Renew. Energy 2021, 169, 608–617. [Google Scholar] [CrossRef]
- Abdolahzadeh, M.; Mofrad, N.P.; Tayebi, A. Numerical simulation of dust deposition on rooftop of photovoltaic parking lots supporting electric vehicles charging. J. Wind Eng. Ind. Aerodyn. 2023, 239, 105444. [Google Scholar] [CrossRef]
- Rudge, K. The potential for community solar in Connecticut: A geospatial analysis of solar canopy siting on parking lots. Sol. Energy 2021, 230, 635–644. [Google Scholar] [CrossRef]
- Ruiz-Aguirre, A.; Villachica-Llamosas, J.G.; Polo-López, M.I.; Cabrera-Reina, A.; Colón, G.; Peral, J.; Malato, S. Assessment of pilot-plant scale solar photocatalytic hydrogen generation with multiple approaches: Valorization, water decontamination and disinfection. Energy 2022, 260, 125199. [Google Scholar] [CrossRef]
- Hu, L.; Yan, G.; Chauhan, B.S.; Elbadawy, I.; Abouelela, M.; Marefati, M.; Salah, B. Development and evaluation of an electro-Fenton-based integrated hydrogen production and wastewater treatment plant coupled with the solar and electrodialysis units. Process Saf. Environ. Prot. 2023, 177, 568–580. [Google Scholar] [CrossRef]
- Shumiye, W.B.; Ancha, V.R.; Tadese, A.K.; Zeru, B.A. Exergy analysis of solar-geothermal based power plant integrated with boiling, and reverse osmosis water purification. Energy Convers. Manag. X 2022, 15, 100255. [Google Scholar] [CrossRef]
- Salmerón, I.; Plakas, K.V.; Sirés, I.; Oller, I.; Maldonado, M.I.; Karabelas, A.J.; Malato, S. Optimization of electrocatalytic H2O2 production at pilot plant scale for solar-assisted water treatment. Appl. Catal. B Environ. 2018, 242, 327–336. [Google Scholar] [CrossRef]
- Alrawashdeh, K.A.B.; Al-Zboon, K.K.; A Al-Samrraie, L.; Momani, R.; Momani, T.; Gul, E.; Bartocci, P.; Fantozzi, F. Performance of dual multistage flashing—Recycled brine and solar power plant, in the framework of the water-energy nexus. Energy Nexus 2022, 5, 100046. [Google Scholar] [CrossRef]
- Berruti, I.; Nahim-Granados, S.; Abeledo-Lameiro, M.J.; Oller, I.; Polo-López, M.I. Peroxymonosulfate/Solar process for urban wastewater purification at a pilot plant scale: A techno-economic assessment. Sci. Total Environ. 2023, 881, 163407. [Google Scholar] [CrossRef]
- Andronic, L.; Isac, L.; Miralles-Cuevas, S.; Visa, M.; Oller, I.; Duta, A.; Malato, S. Pilot-plant evaluation of TiO2 and TiO2-based hybrid photocatalysts for solar treatment of polluted water. J. Hazard. Mater. 2016, 320, 469–478. [Google Scholar] [CrossRef]
- Xiong, J.; Yi, J.; Peng, S.; Yang, Z.; Wu, Y.; Wang, W.; Lv, S.; Peng, J.; Xue, C.; Min, X.; et al. Plant transpiration-inspired environmental energy-enhanced solar evaporator fabricated by polypyrrole decorated polyester fiber bundles for efficient water purification. J. Clean. Prod. 2022, 379, 134683. [Google Scholar] [CrossRef]
- Vishnupriyan, J.; Partheeban, P.; Dhanasekaran, A.; Shiva, M. Analysis of tilt angle variation in solar photovoltaic water pumping system. Mater. Today Proc. 2022, 58, 416–421. [Google Scholar] [CrossRef]
- Ramli, R.M.; Jabbar, W.A. Design and implementation of solar-powered with IoT-Enabled portable irrigation system. Internet Things Cyber-Phys. Syst. 2022, 2, 212–225. [Google Scholar] [CrossRef]
- Wanyama, J.; Soddo, P.; Nakawuka, P.; Tumutegyereize, P.; Bwambale, E.; Oluk, I.; Mutumba, W.; Komakech, A.J. Development of a solar powered smart irrigation control system Kit. Smart Agric. Technol. 2023, 5, 100273. [Google Scholar] [CrossRef]
- Hilali, A.; Mardoude, Y.; Essahlaoui, A.; Rahali, A.; El Ouanjli, N. Migration to solar water pump system: Environmental and economic benefits and their optimization using genetic algorithm Based MPPT. Energy Rep. 2022, 8, 10144–10153. [Google Scholar] [CrossRef]
- Ashraf, A.; Jamil, K. Solar-powered irrigation system as a nature-based solution for sustaining agricultural water management in the Upper Indus Basin. Nat.-Based Solut. 2022, 2, 100026. [Google Scholar] [CrossRef]
- Kumar, S.; Bibin, C.; Akash, K.; Aravindan, K.; Kishore, M.; Magesh, G. Solar powered water pumping systems for irrigation: A comprehensive review on developments and prospects towards a green energy approach. Mater. Today Proc. 2020, 33, 303–307. [Google Scholar] [CrossRef]
- Abhilash, P.; Kumar, R.N.; Kumar, R.P. Solar powered water pump with single axis tracking system for irrigation purpose. Mater. Today Proc. 2020, 39, 553–557. [Google Scholar] [CrossRef]
- Yavuz, A.H. Solar thermoelectric generator assisted irrigation water pump: Design, simulation and economic analysis. Sustain. Energy Technol. Assess. 2020, 41, 100786. [Google Scholar] [CrossRef]
- Kumar, R.; Kumar, A.; Gupta, M.K.; Yadav, J.; Jain, A. Solar tree-based water pumping for assured irrigation in sustainable Indian agriculture environment. Sustain. Prod. Consum. 2022, 33, 15–27. [Google Scholar] [CrossRef]
- Huang, C.-F.; Chen, W.-T.; Kao, C.-K.; Chang, H.-J.; Kao, P.-M.; Wan, T.-J. Application of Fuzzy Multi-Objective Programming to Regional Sewer System Planning. Processes 2023, 11, 183. [Google Scholar] [CrossRef]
- Huang, C.-F.; Huang, A.C.; Hsieh, Y.F.; Chu, F.J.; Wan, T.J. The effects of magnetic nanoparticles embedded with SA/PVA and pH on chemical-mechanical polishing wastewater and magnetic particle regeneration and recycle. Water Resour. Ind. 2017, 18, 9–16. [Google Scholar] [CrossRef]
- Wilson, H.M.; Suh, Y.; Lim, H.W.; Shakeelur Raheman, A.R.; Lee, S.J. A low-cost plant transpiration inspired 3D popsicle design for highly efficient solar desalination. Desalination 2023, 563, 116731. [Google Scholar] [CrossRef]
- Ahmed, F.; Sharizal Abdul Aziz, M.; Palaniandy, P.; Shaik, F. A review on application of renewable energy for desalination technologies with emphasis on concentrated solar power. Sustain. Energy Technol. Assess. 2022, 53, 102772. [Google Scholar] [CrossRef]
- Li, X.; Wang, M.; Tao, H.; Ge, B.; Liu, S.; Liu, J.; Ren, G.; Zhang, Z. Constructing of efficient interface solar evaporator: In-situ colloid foaming strategy for solar desalination and visible light response sewage purification. J. Colloid Interface Sci. 2023, 649, 107–117. [Google Scholar] [CrossRef]
- Menon, A.K.; Jia, M.; Kaur, S.; Dames, C.; Prasher, R.S. Distributed desalination using solar energy: A technoeconomic framework to decarbonize nontraditional water treatment. iScience 2023, 26, 105966. [Google Scholar] [CrossRef] [PubMed]
- Tunsound, V.; Krasian, T.; Daranarong, D.; Jantanasakulwong, K.; Punyodom, W.; Sriyai, M.; Somsunan, R.; Manokruang, K.; Rachtanapun, P.; Tipduangta, P.; et al. Ethyl cellulose composite membranes containing a 2D material (MoS2) and helical carbon nanotubes for efficient solar steam generation and desalination. Int. J. Biol. Macromol. 2023, 244, 125390. [Google Scholar] [CrossRef] [PubMed]
- He, F.; You, H.; Liu, X.; Shen, X.; Zhang, J.; Wang, Z. Interfacial-heating solar desalination of high-salinity brine: Recent progress on salt management and water production. Chem. Eng. J. 2023, 470, 144332. [Google Scholar] [CrossRef]
- Wijewardane, S.; Ghaffour, N. Inventions, innovations, and new technologies: Solar Desalination. Sol. Compass 2023, 5, 100037. [Google Scholar] [CrossRef]
- Burhan, M.; Jin, Y.; Ybyraiymkul, D.; Ja, M.K.; AIRowais, R.; Shahzad, M.W.; Chen, Q.; Ng, K.C.M. Long term rating (LTR) and energy efficacy of solar driven desalination systems in KSA using a common energy platform of standard solar energy (SSE). Sol. Compass 2023, 6, 100044. [Google Scholar] [CrossRef]
- Elhenawy, Y.; Moustafa, G.H.; Attia, A.M.; Mansi, A.E.; Majozi, T.; Bassyouni, M. Performance enhancement of a hybrid multi effect evaporation/membrane distillation system driven by solar energy for desalination. J. Environ. Chem. Eng. 2022, 10, 108855. [Google Scholar] [CrossRef]
- He, W.; Huang, G.; Markides, C.N. Synergies and potential of hybrid solar photovoltaic-thermal desalination technologies. Desalination 2023, 552, 116424. [Google Scholar] [CrossRef]
- Li, J.; Wang, Y.; Xia, Y. A novel geometric parameter to evaluate the effects of block form on solar radiation towards sustainable urban design. Sustain. Cities Soc. 2022, 84, 104001. [Google Scholar] [CrossRef]
- Kaleshwarwar, A.; Bahadure, S. Assessment of the solar energy potential of diverse urban built forms in Nagpur, India. Sustain. Cities Soc. 2023, 96, 104681. [Google Scholar] [CrossRef]
- Guillén-Lambea, S.; Sierra-Pérez, J.; García-Pérez, S.; Montealegre, A.L.; Monzón-Chavarrías, M. Energy Self-Sufficiency Urban Module (ESSUM): GIS-LCA-based multi-criteria methodology to analyze the urban potential of solar energy generation and its environmental implications. Sci. Total Environ. 2023, 879, 163077. [Google Scholar] [CrossRef] [PubMed]
- Zdunek-Wielgołaska, J.; Kantorowicz, K.; Rudzki, K. Use of renewable energy sources as a tool supporting the protection of cultural values of Warsaw’s suburbs: Case study of manor in Warsaw-Białołęka. Acta Sci. Pol. Archit. 2021, 20, 13–23. [Google Scholar] [CrossRef]
- Liu, K.; Xu, X.; Zhang, R.; Kong, L.; Wang, W.; Deng, W. Impact of urban form on building energy consumption and solar energy potential: A case study of residential blocks in Jianhu, China. Energy Build. 2023, 280, 112727. [Google Scholar] [CrossRef]
- Cantoni, R.; Caprotti, F.; de Groot, J. Solar energy at the peri-urban frontier: An energy justice study of urban peripheries from Burkina Faso and South Africa. Energy Res. Soc. Sci. 2022, 94, 102884. [Google Scholar] [CrossRef]
- Kumar, D. Spatial variability analysis of the solar energy resources for future urban energy applications using Meteosat satellite-derived datasets. Remote Sens. Appl. Soc. Environ. 2021, 22, 100481. [Google Scholar] [CrossRef]
- Jo, J.H.; Carlson, J.; Golden, J.S.; Bryan, H. Sustainable urban energy: Development of a mesoscale assessment model for solar reflective roof technologies. Energy Policy 2010, 38, 7951–7959. [Google Scholar] [CrossRef]
- Xie, M.; Wang, M.; Zhong, H.; Li, X.; Li, B.; Mendis, T.; Xu, S. The impact of urban morphology on the building energy consumption and solar energy generation potential of university dormitory blocks. Sustain. Cities Soc. 2023, 96, 104644. [Google Scholar] [CrossRef]
- Ranalli, J.; Calvert, K.; Bayrakci Boz, M.; Brownson, J.R.S. Toward comprehensive solar energy mapping systems for urban electricity system planning and development. Electr. J. 2018, 31, 8–15. [Google Scholar] [CrossRef]
- Grochulska-Salak, M.; Wężyk, T. Structure and nodal points of Smart City infrastructure. Acta Sci. Pol. Archit. 2020, 19, 15–26. [Google Scholar] [CrossRef]
- Heinisch, V.; Göransson, L.; Erlandsson, R.; Hodel, H.; Johnsson, F.; Odenberger, M. Smart electric vehicle charging strategies for sectoral coupling in a city energy system. Appl. Energy 2021, 288, 116640. [Google Scholar] [CrossRef]
- Kappagantu, R.; Daniel, S.A.; Venkatesh, M. Analysis of Rooftop Solar PV System Implementation Barrier in Puducherry Smart Grid Pilot Project. Procedia Technol. 2015, 21, 490–497. [Google Scholar] [CrossRef]
- Byrne, J.; Taminiau, J.; Kurdgelashvili, L.; Kim, K.N. A review of the solar city concept and methods to assess rooftop solar electric potential, with an illustrative application to the city of Seoul. Renew. Sustain. Energy Rev. 2015, 41, 830–844. [Google Scholar] [CrossRef]
- Abu-Rayash, A.; Dincer, I. Development and analysis of an integrated solar energy system for smart cities. Sustain. Energy Technol. Assess. 2020, 46, 101170. [Google Scholar] [CrossRef]
- Hsiao, M.; Zhang, K.; Gou, M.; Liang, Y. Development and application of graphene silk solar panel concept in smart bus stop design. Energy Rep. 2023, 9, 142–150. [Google Scholar] [CrossRef]
- Dispenza, G.; Sergi, F.; Napoli, G.; Randazzo, N.; Di Novo, S.; Micari, S.; Antonucci, V.; Andaloro, L. Development of a solar powered hydrogen fueling station in smart cities applications. Int. J. Hydrogen Energy 2017, 42, 27884–27893. [Google Scholar] [CrossRef]
- Calvillo, C.F.; Sánchez-Miralles, A.; Villar, J. Energy management and planning in smart cities. Renew. Sustain. Energy Rev. 2016, 55, 273–287. [Google Scholar] [CrossRef]
- Varghese, P. Exploring Other Concepts of Smart-Cities within the Urbanising Indian Context. Procedia Technol. 2016, 24, 1858–1867. [Google Scholar] [CrossRef]
- Blazy, R.; Błachut, J.; Ciepiela, A.; Łabuz, R.; Papież, R. Renewable Energy Sources vs. an Air Quality Improvement in Urbanized Areas—The Metropolitan Area of Kraków Case. Front. Energy Res. 2021, 9, 767418. [Google Scholar] [CrossRef]
- Behzadi, A.; Arabkoohsar, A. Feasibility study of a smart building energy system comprising solar PV/T panels and a heat storage unit. Energy 2020, 210, 118528. [Google Scholar] [CrossRef]
- Mosannenzadeh, F.; Di Nucci, M.R.; Vettorato, D. Identifying and prioritizing barriers to implementation of smart energy city projects in Europe: An empirical approach. Energy Policy 2017, 105, 191–201. [Google Scholar] [CrossRef]
- Ghadami, N.; Gheibi, M.; Kian, Z.; Faramarz, M.G.; Naghedi, R.; Eftekhari, M.; Fathollahi-Fard, A.M.; Dulebenets, M.A.; Tian, G. Implementation of solar energy in smart cities using an integration of artificial neural network, photovoltaic system and classical Delphi methods. Sustain. Cities Soc. 2021, 74, 103149. [Google Scholar] [CrossRef]
- Mukilan, P.; Balasubramanian, M.; Narayanamoorthi, R.; Supraja, P.; Velan, C. Integrated solar PV and piezoelectric based torched fly ash tiles for smart building applications with machine learning forecasting. Sol. Energy 2023, 258, 404–417. [Google Scholar] [CrossRef]
- Guo, Q.; Chen, Y.; Xu, Y.; Nojavan, S.; Bagherzadeh, H.; Valipour, E. Integration of hydrogen storage system and solar panels in smart buildings. Int. J. Hydrogen Energy 2022, 47, 19237–19251. [Google Scholar] [CrossRef]
- Ashwin, M.; Alqahtani, A.S.; Mubarakali, A. Iot based intelligent route selection of wastage segregation for smart cities using solar energy. Sustain. Energy Technol. Assess. 2021, 46, 101281. [Google Scholar] [CrossRef]
- Yao, Z.; Wang, Z.; Ran, L. Smart charging and discharging of electric vehicles based on multi-objective robust optimization in smart cities. Appl. Energy 2023, 343, 121185. [Google Scholar] [CrossRef]
- Mosannenzadeh, F.; Bisello, A.; Vaccaro, R.; D’Alonzo, V.; Hunter, G.W.; Vettorato, D. Smart energy city development: A story told by urban planners. Cities 2017, 64, 54–65. [Google Scholar] [CrossRef]
- Yang, L.; Entchev, E.; Rosato, A.; Sibilio, S. Smart thermal grid with integration of distributed and centralized solar energy systems. Energy 2017, 122, 471–481. [Google Scholar] [CrossRef]
- Bandyopadhyay, A.; Leibowicz, B.D.; Webber, M.E. Solar panels and smart thermostats: The power duo of the residential sector? Appl. Energy 2020, 290, 116747. [Google Scholar] [CrossRef]
- Abas, K.; Obraczka, K.; Miller, L. Solar-powered, wireless smart camera network: An IoT solution for outdoor video monitoring. Comput. Commun. 2017, 118, 217–233. [Google Scholar] [CrossRef]
- Sohani, A.; Sayyaadi, H.; Miremadi, S.R.; Samiezadeh, S.; Doranehgard, M.H. Thermo-electro-environmental analysis of a photovoltaic solar panel using machine learning and real-time data for smart and sustainable energy generation. J. Clean. Prod. 2021, 353, 131611. [Google Scholar] [CrossRef]
- Li, Q.; Zheng, Y.; Wei, Z.; Xie, J.; Zou, C.; Liu, X.; Liu, D.; Zhou, Z.; Yang, H.G.; Yang, S.; et al. Halide Diffusion Equilibrium and Its Impact on Efficiency Evolution of Perovskite Solar Cells. Adv. Energy Mater. 2022, 12, 2982. [Google Scholar] [CrossRef]
- Zhao, F.; He, D.; Zou, C.; Li, Y.; Wang, K.; Zhang, J.; Yang, S.; Tu, Y.; Wang, C.; Lin, Y. Fullerene-Liquid-Crystal-Induced Micrometer-Scale Charge-Carrier Diffusion in Organic Bulk Heterojunction. Adv. Mater. 2023, 35, 2210463. [Google Scholar] [CrossRef] [PubMed]
- Stock, R. Illuminant intersections: Injustice and inequality through electricity and water infrastructures at the Gujarat Solar Park in India. Energy Res. Soc. Sci. 2021, 82, 102309. [Google Scholar] [CrossRef]
- Obaideen, K.; AlMallahi, M.N.; Alami, A.H.; Ramadan, M.; Ali Abdelkareem, M.; Shehata, N.; Olabi, A.G. On the contribution of solar energy to sustainable developments goals: Case study on Mohammed bin Rashid Al Maktoum Solar Park. Int. J. Thermofluids 2021, 12, 100123. [Google Scholar] [CrossRef]
- Sekyere, C.K.K.; Davis, F.; Opoku, R.; Otoo, E.; Takyi, G.; Atepor, L. Performance evaluation of a 20 MW grid-coupled solar park located in the southern oceanic environment of Ghana. Clean. Eng. Technol. 2021, 5, 100273. [Google Scholar] [CrossRef]
- Golroodbari, S.Z.M.; Vaartjes, D.F.; Meit, J.B.L.; van Hoeken, A.P.; Eberveld, M.; Jonker, H.; van Sark, W.G.J.H.M. Pooling the cable: A techno-economic feasibility study of integrating offshore floating photovoltaic solar technology within an offshore wind park. Sol. Energy 2020, 219, 65–74. [Google Scholar] [CrossRef]
- Wei, P.; Ning, Z.; Westerdahl, D.; Lam, Y.F.; Louie, P.K.K.; Sharpe, R.; Williams, R.; Hagler, G. Solar-powered air quality monitor applied under subtropical conditions in Hong Kong: Performance evaluation and application for pollution source tracking. Atmos. Environ. 2019, 214, 116825. [Google Scholar] [CrossRef]
- Mohamed, A.S.A.; Maghrabie, H.M. Techno-economic feasibility analysis of Benban solar Park. Alex. Eng. J. 2022, 61, 12593–12607. [Google Scholar] [CrossRef]
- Chen, H.; Sui, Y.; Shang, W.; Sun, R.; Chen, Z.; Wang, C.; Han, C.; Zhang, Y.; Zhang, H. Towards renewable public transport: Mining the performance of electric buses using solar-radiation as an auxiliary power source. Appl. Energy 2022, 325, 119863. [Google Scholar] [CrossRef]
- Stock, R. Triggering resistance: Contesting the injustices of solar park development in India. Energy Res. Soc. Sci. 2022, 86, 102464. [Google Scholar] [CrossRef]
- Carlisle, J.E.; Solan, D.; Kane, S.L.; Joe, J. Utility-scale solar and public attitudes toward siting: A critical examination of proximity. Land Use Policy 2016, 58, 491–501. [Google Scholar] [CrossRef]
- Uldrijan, D.; Kováčiková, M.; Jakimiuk, A.; Vaverková, M.D.; Winkler, J. Ecological effects of preferential vegetation composition developed on sites with photovoltaic power plants. Ecol. Eng. 2021, 168, 106274. [Google Scholar] [CrossRef]
- Dupraz, C.; Marrou, H.; Talbot, G.; Dufour, L.; Nogier, A.; Ferard, Y. Combining solar photovoltaic panels and food crops for optimising land use: Towards new agrivoltaic schemes. Renew. Energy 2011, 36, 2725–2732. [Google Scholar] [CrossRef]
- Thomas, S.J.; Thomas, S.; Sahoo, S.S.; Kumar, A.; Awad, M.M. Solar Parks: A Review on Impacts, Mitigation Mechanism through Agrivoltaics and Techno-Economic Analysis. Energy Nexus 2023, 11, 100220. [Google Scholar] [CrossRef]
- Sinha, P.; Hoffman, B.; Sakers, J.; Althouse, L.D. Best Practices in Responsible Land Use for Improving Biodiversity at a Utility-Scale Solar Facility. Case Stud. Environ. 2018, 2, 1–12. [Google Scholar] [CrossRef]
- Schindele, S.; Trommsdorff, M.; Schlaak, A.; Obergfell, T.; Bopp, G.; Reise, C.; Braun, C.; Weselek, A.; Bauerle, A.; Högy, P.; et al. Implementation of agrophotovoltaics: Techno-economic analysis of the price-performance ratio and its policy implications. Appl. Energy 2020, 265, 114737. [Google Scholar] [CrossRef]
- Semeraro, T.; Pomes, A.; Giudice, C.D.; Negro, D.; Aretano, R. Planning ground based utility scale solar energy as green infrastructure to enhance ecosystem services. Energy Policy 2018, 117, 218–227. [Google Scholar] [CrossRef]
- Uldrijan, D.; Winkler, J.; Vaverková, M.D. Bioindication of Environmental Conditions Using Solar Park Vegetation. Environments 2023, 10, 86. [Google Scholar] [CrossRef]
- Vaverková, M.D.; Winkler, J.; Uldrijan, D.; Ogrodnik, P.; Vespalcová, T.; Aleksiejuk-Gawron, J.; Adamcová, D.; Koda, E. Fire hazard associated with different types of photovoltaic power plants: Effect of vegetation management. Renew. Sustain. Energy Rev. 2022, 162, 112491. [Google Scholar] [CrossRef]
- Barron-Gafford, G.A.; Pavao-Zuckerman, M.A.; Minor, R.L.; Sutter, L.F.; Barnett-Moreno, I.; Blackett, D.T.; Thompson, M.; Dimond, K.; Gerlak, A.K.; Nabhan, G.P.; et al. Agrivoltaics provide mutual benefits across the food–energy–water nexus in drylands. Nat. Sustain. 2019, 2, 848–855. [Google Scholar] [CrossRef]
- Nowak, A.; Świsłowski, P.; Świerszcz, S.; Nowak, S.; Rajfur, M.; Wacławek, M. Ecovoltaics—A Truly Ecological and Green Source of Renewable Goods. Ecol. Chem. Eng. S 2023, 30, 3923. [Google Scholar] [CrossRef]
- Xia, Z.; Li, Y.; Zhang, W.; Guo, S.; Zheng, L.; Jia, N.; Chen, R.; Guo, X.; Du, P. Quantitatively distinguishing the impact of solar photovoltaics programs on vegetation in dryland using satellite imagery. Land Degrad. Dev. 2023, 7, 4373–4385. [Google Scholar] [CrossRef]
- Lambert, Q.; Bischoff, A.; EneaMand Gros, R. Photovoltaic power stations: An opportunity to promote European seminatural grasslands? Front. Environ. Sci. 2023, 11, 1137845. [Google Scholar] [CrossRef]
- Mok, H.F.; Williamson, V.G.; Grove, J.R.; Burry, K.; Barker, S.F.; Hamilton, A.J. Strawberry fields forever? Urban agriculture in developed countries: A review. Agron. Sustain. Dev. 2014, 34, 21–43. [Google Scholar] [CrossRef]
- Nowysz, A.; Mazur, Ł.; Vaverková, M.D.; Koda, E.; Winkler, J. Urban Agriculture as an Alternative Source of Food andWater Security in Today’s Sustainable Cities. Int. J. Environ. Res. Public Health 2022, 19, 15597. [Google Scholar] [CrossRef]
- Vassiliades, C.; Savvides, A.; Buonomano, A. Building integration of active solar energy systems for façades renovation in the urban fabric: Effects on the thermal comfort in outdoor public spaces in Naples and Thessaloniki. Renew. Energy 2022, 190, 30–47. [Google Scholar] [CrossRef]
- Tariq, R.; Torres-Aguilar, C.E.; Sheikh, N.A.; Ahmad, T.; Xamán, J.; Bassam, A. Data engineering for digital twining and optimization of naturally ventilated solar façade with phase changing material under global projection scenarios. Renew. Energy 2022, 187, 1184–1203. [Google Scholar] [CrossRef]
- Giovanardi, A.; Passera, A.; Zottele, F.; Lollini, R. Integrated solar thermal façade system for building retrofit. Sol. Energy 2015, 122, 1100–1116. [Google Scholar] [CrossRef]
- Noaman, D.S.; Moneer, S.A.; Megahed, N.A.; El-Ghafour, S.A. Integration of active solar cooling technology into passively designed facade in hot climates. J. Build. Eng. 2021, 56, 104658. [Google Scholar] [CrossRef]
- Vanaga, R.; Narbuts, J.; Zundāns, Z.; Blumberga, A. On-site testing of dynamic facade system with the solar energy storage. Energy 2023, 283, 128257. [Google Scholar] [CrossRef]
- Tariq, R.; Bassam, A.; Orozco-del-Castillo, M.G.; Ricalde, L.J.; Carvente, O. Sustainability framework of intelligent social houses with a synergy of double-façade architecture and active air conditioning systems. Energy Convers. Manag. 2023, 288, 117120. [Google Scholar] [CrossRef]
- Li, R.; Cui, G. Thermal performance and parametric analysis of a dual-function active solar thermal façade system. J. Build. Eng. 2021, 42, 103042. [Google Scholar] [CrossRef]
- Yongga, A.; Li, N.; Long, J.; He, Y. Thermal performance of a novel solar thermal facade system in a hot-summer and cold-winter zone. Sol. Energy 2020, 204, 106–114. [Google Scholar] [CrossRef]
- Liang, R.; Wang, P.; Zhou, C.; Pan, Q.; Riaz, A.; Zhang, J. Thermal performance study of an active solar building façade with specific PV/T hybrid modules. Energy 2020, 191, 116532. [Google Scholar] [CrossRef]
- Italos, C.; Patsias, M.; Yiangou, A.; Stavrinou, S.; Vassiliades, C. Use of double skin façade with building integrated solar systems for an energy renovation of an existing building in Limassol, Cyprus: Energy performance analysis. Energy Rep. 2022, 8, 15144–15161. [Google Scholar] [CrossRef]
- Wang, P.; Liu, Z.; Zhang, X.; Hu, M.; Zhang, L.; Fan, J. Adaptive dynamic building envelope integrated with phase change material to enhance the heat storage and release efficiency: A state-of-the-art review. Energy Build. 2023, 286, 112928. [Google Scholar] [CrossRef]
- Luo, Y.; Cui, D.; Cheng, N.; Zhang, S.; Su, X.; Chen, X.; Tian, Z.; Deng, J.; Fan, J. A novel active building envelope with reversed heat flow control through coupled solar photovoltaic-thermoelectric-battery systems. Build. Environ. 2022, 222, 109401. [Google Scholar] [CrossRef]
- Elghamry, R.; Hassan, H.; Hawwash, A.A. A parametric study on the impact of integrating solar cell panel at building envelope on its power, energy consumption, comfort conditions, and CO2 emissions. J. Clean. Prod. 2020, 249, 119374. [Google Scholar] [CrossRef]
- Zhou, S.; Razaqpur, A.G. Efficient heating of buildings by passive solar energy utilizing an innovative dynamic building envelope incorporating phase change material. Renew. Energy 2022, 197, 305–319. [Google Scholar] [CrossRef]
- Vakilinezhad, R.; Khabir, S. Evaluation of thermal and energy performance of cool envelopes on low-rise residential buildings in hot climates. J. Build. Eng. 2023, 72, 106643. [Google Scholar] [CrossRef]
- Qiu, Z.; Wang, J.; Yu, B.; Liao, L.; Li, J. Identification of passive solar design determinants in office building envelopes in hot and humid climates using data mining techniques. Build. Environ. 2021, 196, 2020. [Google Scholar] [CrossRef]
- Weerasinghe, N.P.; Yang, R.J.; Wang, C. Learning from success: A machine learning approach to guiding solar building envelope applications in non-domestic market. J. Clean. Prod. 2022, 374, 133997. [Google Scholar] [CrossRef]
- Li, W.; Ling, X. Performance analysis of a sorption heat storage-photocatalytic combined passive solar envelope for space heating and air purification. Energy 2023, 280, 128189. [Google Scholar] [CrossRef]
- Li, W.; Luo, X.; Yang, P.; Wang, Q.; Zeng, M.; Markides, C.N. Solar-thermal energy conversion prediction of building envelope using thermochemical sorbent based on established reaction kinetics. Energy Convers. Manag. 2022, 252, 115117. [Google Scholar] [CrossRef]
- Gholamian, E.; Bagheri Barmas, R.; Zare, V.; Ranjbar, S.F. The effect of Incorporating phase change materials in building envelope on reducing the cost and size of the integrated hybrid-solar energy system: An application of 3E dynamic simulation with reliability consideration. Sustain. Energy Technol. Assess. 2022, 52, 102067. [Google Scholar] [CrossRef]
- Winkler, J.; Malovcová, M.; Adamcová, D.; Ogrodnik, P.; Pasternak, G.; Zumr, D.; Kosmala, M.; Koda, E.; Vaverková, M.D. Significance of Urban Vegetation on Lawns Regarding the Risk of Fire. Sustainability 2021, 13, 11027. [Google Scholar] [CrossRef]
- Saini, G.; Cengiz, K.; Srinivasan, S.; Padmanaban, S.; Kumar, K. Solar Energy Advancements and Their Environmental Impacts. In Solar Energy: Advancements and Challenges; Taylor & Francis Group: New York, NY, USA, 2023. [Google Scholar] [CrossRef]
- Tsang, M.P.; Sonnemann, G.W.; Bassani, D.M. Life-cycle assessment of cradle-to-grave opportunities and environmental impacts of organic photovoltaic solar panels compared to conventional technologies. Sol. Energy Mater. Sol. Cells 2016, 156, 37–48. [Google Scholar] [CrossRef]
- Oteng, D.; Zuo, J.; Sharifi, E. An evaluation of the impact framework for product stewardship on end-of-life solar photovoltaic modules: An environmental lifecycle assessment. J. Clean. Prod. 2023, 411, 137357. [Google Scholar] [CrossRef]
- Marchwiński, J. Architectural analysis of photovoltaic (PV) module applications on non-flat roofs. Acta Sci. Polonorum. Archit. 2023, 22, 1–10. [Google Scholar] [CrossRef]
- Ali, S.; Yan, Q.; Dilanchiev, A.; Irfan, M.; Fahad, S. Modeling the economic viability and performance of solar home systems: A roadmap towards clean energy for environmental sustainability. Environ. Sci. Pollut. Res. 2022, 30, 30612–30631. [Google Scholar] [CrossRef]
- D’Adamo, I.; Falcone, P.M.; Gastaldi, M.; Morone, P. The economic viability of photovoltaic systems in public buildings: Evidence from Italy. Energy 2020, 207, 118316. [Google Scholar] [CrossRef]
- Zeraatpisheh, M.; Arababadi, R.; Saffari Pour, M. Economic Analysis for Residential Solar PV Systems Based on Different Demand Charge Tariffs. Energies 2018, 11, 3271. [Google Scholar] [CrossRef]
S. No. | Source by Authors | Types of PV Technologies Used | Study Setting | The Primary Focus of the Study |
---|---|---|---|---|
1 | Sun et al. [16] | Mono-Si | Computational Research | Validation of statistical methods for monocrystalline silicon solar cell efficiency and developing a forensic algorithm to differentiate between natural and computer-generated images. |
2 | Boulmrharj et al. [17] | Mono-Si, Poly-Si | Field Research | Analysis of silicon-based grid-connected PV systems in Morocco’s transition to renewable energy sources, focusing on the performance advantages of polycrystalline and monocrystalline silicon over micro morph tandem systems. |
3 | Tariq et al. [18] | Poly-Si | Computational Research | Mechanical analysis of PSSCs in PV modules using finite element methods, comparing heterogeneous and homogeneous modeling to predict changes in stiffness due to microcracks |
4 | Kazem et al. [19] | Poly-Si, Mono-Si | Field Research | The effect of dust accumulation on PV modules in North Al Batinah, Oman, and the resulting power loss analysis, recommending periodic cleaning intervals for both polycrystalline and monocrystalline modules. |
5 | Es et al. [20] | Mono-PERC | Experimental Research | The application of loss analysis to standard PERC solar cells with a p-type base and Al2O3 rear passivation in an industrially relevant environment, with particular emphasis on the role of pilot lines in bridging laboratory concepts with mass production. |
6 | Kiray et al. [23] | Half-Cut | Field Research | Exploration of challenges to the residential self-generation of energy, with the proposal of a dual-axis Sun-tracking system integrated with an aesthetically pleasing gazebo as a solution, supported by a design study and energy calculations using the “PV performance tool”. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vijayan, D.S.; Koda, E.; Sivasuriyan, A.; Winkler, J.; Devarajan, P.; Kumar, R.S.; Jakimiuk, A.; Osinski, P.; Podlasek, A.; Vaverková, M.D. Advancements in Solar Panel Technology in Civil Engineering for Revolutionizing Renewable Energy Solutions—A Review. Energies 2023, 16, 6579. https://doi.org/10.3390/en16186579
Vijayan DS, Koda E, Sivasuriyan A, Winkler J, Devarajan P, Kumar RS, Jakimiuk A, Osinski P, Podlasek A, Vaverková MD. Advancements in Solar Panel Technology in Civil Engineering for Revolutionizing Renewable Energy Solutions—A Review. Energies. 2023; 16(18):6579. https://doi.org/10.3390/en16186579
Chicago/Turabian StyleVijayan, Dhanasingh Sivalinga, Eugeniusz Koda, Arvindan Sivasuriyan, Jan Winkler, Parthiban Devarajan, Ramamoorthy Sanjay Kumar, Aleksandra Jakimiuk, Piotr Osinski, Anna Podlasek, and Magdalena Daria Vaverková. 2023. "Advancements in Solar Panel Technology in Civil Engineering for Revolutionizing Renewable Energy Solutions—A Review" Energies 16, no. 18: 6579. https://doi.org/10.3390/en16186579
APA StyleVijayan, D. S., Koda, E., Sivasuriyan, A., Winkler, J., Devarajan, P., Kumar, R. S., Jakimiuk, A., Osinski, P., Podlasek, A., & Vaverková, M. D. (2023). Advancements in Solar Panel Technology in Civil Engineering for Revolutionizing Renewable Energy Solutions—A Review. Energies, 16(18), 6579. https://doi.org/10.3390/en16186579