A Review on Cooling Systems for Portable Energy Storage Units
Abstract
:1. Introduction
1.1. PES Unit
1.2. Storage System
1.3. Power Inverter
1.4. PES Design Challenge
2. Cooling Systems
2.1. Active Liquid Cooling
2.2. Thermoelectric Cooling System
2.3. Heatsinks
3. Heat Pipe
3.1. Thermosyphon Heat Pipe
3.2. Conventional Heat Pipe
3.2.1. Micro Heat Pipes
3.2.2. Heat Pipe Limitations
Capillary Limit
Entrainment Limit
Boiling Limit
3.3. Loop Heat Pipe
3.4. Oscillating Heat Pipe
3.5. Vapour Chamber
Wick Structure Design | Working Fluid | Heat Load (W) | Vapour Chamber Thermal Resistance (°C/W) | Refs. |
---|---|---|---|---|
Radial-Gradient Hierarchical Wick | Dielectric Liquid (HFE-7100) | 900 | 0.046 | [119] |
Multi-artery | Deionised Water | 300 | 0.04 | [125] |
Fractal and Macroscopic Leaf Vein Network Microchannels | Deionised Water | 140 | 0.094 | [126] |
Composite Porous (with uniform radial grooves) | Ethanol | 440 | 0.15 | [127] |
Intersected Narrow Grooves | Deionised Water | 120 | 0.071 | [128] |
Micro-wick (Metal-etched Wick Plates) | Acetone | 140 | 0.76 | [117] |
Sintered Porous Copper | Water | 50 | 0.85 | [129] |
Copper Wire Mesh | Water | 130 | 0.123 | [130] |
4. Conclusions
5. Future Works and Challenges
Author Contributions
Funding
Conflicts of Interest
References
- Valadkhani, A.; Nguyen, J.; Bowden, M. Pathways to Reduce CO2 Emissions as Countries Proceed through Stages of Economic Development. Energy Policy 2019, 129, 268–278. [Google Scholar] [CrossRef]
- He, G.; Michalek, J.; Kar, S.; Chen, Q.; Zhang, D.; Whitacre, J.F. Utility-Scale Portable Energy Storage Systems. Joule 2021, 5, 379–392. [Google Scholar] [CrossRef]
- AceOn Group Co. Portable Solar Generator (SDS). Available online: https://www.aceongroup.com/residential-battery-energy-storage/portable-energy-storage/portable-solar-generator-sds/ (accessed on 3 September 2023).
- Liu, C.; Zhang, C.; Fu, H.; Nan, X.; Cao, G. Exploiting High-Performance Anode through Tuning the Character of Chemical Bonds for Li-Ion Batteries and Capacitors. Adv. Energy Mater. 2017, 7, 1601127. [Google Scholar] [CrossRef]
- Peters, J.F.; Baumann, M.; Binder, J.R.; Weil, M. On the Environmental Competitiveness of Sodium-Ion Batteries under a Full Life Cycle Perspective—A Cell-Chemistry Specific Modelling Approach. Sustain. Energy Fuels 2021, 5, 6414–6429. [Google Scholar] [CrossRef]
- Hwang, J.-Y.; Myung, S.-T.; Sun, Y.-K. Sodium-Ion Batteries: Present and Future. Chem. Soc. Rev. 2017, 46, 3529–3614. [Google Scholar] [CrossRef] [PubMed]
- Lebedeva, N.P.; Boon-Brett, L. Considerations on the Chemical Toxicity of Contemporary Li-Ion Battery Electrolytes and Their Components. J. Electrochem. Soc. 2016, 163, A821–A830. [Google Scholar] [CrossRef]
- Jin, Y.; Zhao, Z.; Miao, S.; Wang, Q.; Sun, L.; Lu, H. Explosion Hazards Study of Grid-Scale Lithium-Ion Battery Energy Storage Station. J. Energy Storage 2021, 42, 102987. [Google Scholar] [CrossRef]
- Pesaran, A.A. Battery Thermal Models for Hybrid Vehicle Simulations. J. Power Sources 2002, 110, 377–382. [Google Scholar] [CrossRef]
- Xiong, R.; Pan, Y.; Shen, W.; Li, H.; Sun, F. Lithium-Ion Battery Aging Mechanisms and Diagnosis Method for Automotive Applications: Recent Advances and Perspectives. Renew. Sustain. Energy Rev. 2020, 131, 110048. [Google Scholar] [CrossRef]
- Bodenes, L.; Naturel, R.; Martinez, H.; Dedryvère, R.; Menetrier, M.; Croguennec, L.; Pérès, J.P.; Tessier, C.; Fischer, F. Lithium Secondary Batteries Working at Very High Temperature: Capacity Fade and Understanding of Aging Mechanisms. J. Power Sources 2013, 236, 265–275. [Google Scholar] [CrossRef]
- Waldmann, T.; Hogg, B.I.; Wohlfahrt-Mehrens, M. Li Plating as Unwanted Side Reaction in Commercial Li-Ion Cells—A Review. J. Power Sources 2018, 384, 107–124. [Google Scholar] [CrossRef]
- Williard, N.D.; He, W.; Osterman, M.D.; Pecht, M.G. Reliability and Failure Analysis of Lithium Ion Batteries for Electronic Systems. In Proceedings of the 2012 13th International Conference on Electronic Packaging Technology & High Density Packaging, Guilin, China, 13–16 August 2012; pp. 1051–1055. [Google Scholar]
- Qian, K.; Li, Y.; He, Y.-B.; Liu, D.; Zheng, Y.; Luo, D.; Li, B.; Kang, F. Abuse Tolerance Behavior of Layered Oxide-Based Li-Ion Battery during Overcharge and over-Discharge. RSC Adv. 2016, 6, 76897–76904. [Google Scholar] [CrossRef]
- Christensen, J.; Newman, J. Stress Generation and Fracture in Lithium Insertion Materials. J. Solid State Electrochem. 2006, 10, 293–319. [Google Scholar] [CrossRef]
- Fu, R.; Xiao, M.; Choe, S.Y. Modeling, Validation and Analysis of Mechanical Stress Generation and Dimension Changes of a Pouch Type High Power Li-Ion Battery. J. Power Sources 2013, 224, 211–224. [Google Scholar] [CrossRef]
- Bostanci, H.; Van Ee, D.; Saarloos, B.A.; Rini, D.P.; Chow, L.C. Thermal Management of Power Inverter Modules at High Fluxes via Two-Phase Spray Cooling. IEEE Trans. Compon. Packag. Manuf. Technol. 2012, 2, 1480–1485. [Google Scholar] [CrossRef]
- Karimi, D.; Behi, H.; Jaguemont, J.; El Baghdadi, M.; Van Mierlo, J.; Hegazy, O. Thermal Concept Design of MOSFET Power Modules in Inverter Subsystems for Electric Vehicles. In Proceedings of the 2019 9th International Conference on Power and Energy Systems (ICPES), Perth, Australia, 10–12 December 2019; pp. 1–6. [Google Scholar]
- He, J.; Youssef, R.; Hosen, M.S.; Akbarzadeh, M.; Van Mierlo, J.; Berecibar, M. A Novel Methodology to Determine the Specific Heat Capacity of Lithium-Ion Batteries. J. Power Sources 2022, 520, 230869. [Google Scholar] [CrossRef]
- Mills, M. Hearing Aids and the History of Electronics Miniaturization. IEEE Ann. Hist. Comput. 2011, 33, 24–45. [Google Scholar] [CrossRef]
- Frazier, A.B.; Warrington, R.O.; Friedrich, C. The Miniaturization Technologies: Past, Present, and Future. IEEE Trans. Ind. Electron. 1995, 42, 423–430. [Google Scholar] [CrossRef]
- Wong, H.; Iwai, H. The Road to Miniaturization. Phys. World 2005, 18, 40. [Google Scholar] [CrossRef]
- Hua, W.; Zhang, L.; Zhang, X. Research on Passive Cooling of Electronic Chips Based on PCM: A Review. J. Mol. Liq. 2021, 340, 117183. [Google Scholar] [CrossRef]
- Feng, C.P.; Yang, L.Y.; Yang, J.; Bai, L.; Bao, R.Y.; Liu, Z.Y.; Yang, M.B.; Lan, H.B.; Yang, W. Recent Advances in Polymer-Based Thermal Interface Materials for Thermal Management: A Mini-Review. Compos. Commun. 2020, 22, 100528. [Google Scholar] [CrossRef]
- Gao, C.; Shen, Y.; Wang, T. Enhanced Thermal Conductivity for Traditional Epoxy Packaging Composites by Constructing Hybrid Conductive Network. Mater. Res. Express 2020, 7, 065308. [Google Scholar] [CrossRef]
- Chiodo, E.; De Falco, P.; Di Noia, L.P. Challenges and New Trends in Power Electronic Devices Reliability. Electronics 2021, 10, 925. [Google Scholar] [CrossRef]
- Chen, Y.; Kang, Y.; Zhao, Y.; Wang, L.; Liu, J.; Li, Y.; Liang, Z.; He, X.; Li, X.; Tavajohi, N.; et al. A Review of Lithium-Ion Battery Safety Concerns: The Issues, Strategies, and Testing Standards. J. Energy Chem. 2021, 59, 83–99. [Google Scholar] [CrossRef]
- Zanoni, E.; Pavan, P. Improving the Reliability and Safety of Automotive Electronics. IEEE Micro 1993, 13, 30–48. [Google Scholar] [CrossRef]
- Zhang, P.; Xue, S.; Wang, J. New Challenges of Miniaturization of Electronic Devices: Electromigration and Thermomigration in Lead-Free Solder Joints. Mater. Des. 2020, 192, 108726. [Google Scholar] [CrossRef]
- Albarbar, A.; Batunlu, C. Thermal Analysis of Power Electronic Devices Used in Renewable Energy Systems, 1st ed.; Springer: Cham, Switzerland, 2018. [Google Scholar]
- Suhir, E. Thermal Stress Failures in Electronics and Photonics: Physics, Modeling, Prevention. J. Therm. Stress. 2013, 36, 537–563. [Google Scholar] [CrossRef]
- Wu, B.; Liu, H.; Fu, R.; Song, X.; Su, X.; Liu, X. Epoxy-Matrix Composite with Low Dielectric Constant and High Thermal Conductivity Fabricated by HGMs/Al2O3 Co-Continuous Skeleton. J. Alloys Compd. 2021, 869, 159332. [Google Scholar] [CrossRef]
- Chen, C.; Xue, Y.; Li, X.; Wen, Y.; Liu, J.; Xue, Z.; Shi, D.; Zhou, X.; Xie, X.; Mai, Y.W. High-Performance Epoxy/Binary Spherical Alumina Composite as Underfill Material for Electronic Packaging. Compos. Part A Appl. Sci. Manuf. 2019, 118, 67–74. [Google Scholar] [CrossRef]
- Guo, Y.; Lyu, Z.; Yang, X.; Lu, Y.; Ruan, K.; Wu, Y.; Kong, J.; Gu, J. Enhanced Thermal Conductivities and Decreased Thermal Resistances of Functionalized Boron Nitride/Polyimide Composites. Compos. B Eng. 2019, 164, 732–739. [Google Scholar] [CrossRef]
- Wu, X.; Song, K.; Zhang, X.; Hu, N.; Li, L.; Li, W.; Zhang, L.; Zhang, H. Safety Issues in Lithium Ion Batteries: Materials and Cell Design. Front. Energy Res. 2019, 7, 65. [Google Scholar] [CrossRef]
- Kong, L.; Li, C.; Jiang, J.; Pecht, M.G. Li-Ion Battery Fire Hazards and Safety Strategies. Energies 2018, 11, 2191. [Google Scholar] [CrossRef]
- Williard, N.; He, W.; Hendricks, C.; Pecht, M. Lessons Learned from the 787 Dreamliner Issue on Lithium-Ion Battery Reliability. Energies 2013, 6, 4682–4695. [Google Scholar] [CrossRef]
- Kim, G.-H.; Gonder, J.; Lustbader, J.; Pesaran, A. Thermal Management of Batteries in Advanced Vehicles Using Phase-Change Materials. World Electr. Veh. J. 2008, 2, 134–147. [Google Scholar] [CrossRef]
- Moore, A.L.; Shi, L. Emerging Challenges and Materials for Thermal Management of Electronics. Mater. Today 2014, 17, 163–174. [Google Scholar] [CrossRef]
- Anandan, S.S.; Ramalingam, V. Thermal Management of Electronics: A Review of Literature. Therm. Sci. 2008, 12, 5–26. [Google Scholar] [CrossRef]
- Deng, Y.; Liu, J. A Liquid Metal Cooling System for the Thermal Management of High Power LEDs. Int. Commun. Heat Mass Transf. 2010, 37, 788–791. [Google Scholar] [CrossRef]
- Putra, N.; Ariantara, B.; Pamungkas, R.A. Experimental Investigation on Performance of Lithium-Ion Battery Thermal Management System Using Flat Plate Loop Heat Pipe for Electric Vehicle Application. Appl. Therm. Eng. 2016, 99, 784–789. [Google Scholar] [CrossRef]
- Smith, J.; Singh, R.; Hinterberger, M.; Mochizuki, M. Battery Thermal Management System for Electric Vehicle Using Heat Pipes. Int. J. Therm. Sci. 2018, 134, 517–529. [Google Scholar] [CrossRef]
- Tran, T.H.; Harmand, S.; Desmet, B.; Filangi, S. Experimental Investigation on the Feasibility of Heat Pipe Cooling for HEV/EV Lithium-Ion Battery. Appl. Therm. Eng. 2014, 63, 551–558. [Google Scholar] [CrossRef]
- Narendran, N.; Gu, Y.; Freyssinier, J.P.; Yu, H.; Deng, L. Solid-State Lighting: Failure Analysis of White LEDs. J. Cryst. Growth 2004, 268, 449–456. [Google Scholar] [CrossRef]
- Maaspuro, M. Piezoelectric Oscillating Cantilever Fan for Thermal Management of Electronics and LEDs—A Review. Microelectron. Reliab. 2016, 63, 342–353. [Google Scholar] [CrossRef]
- Xu, Y.; Sun, B.; Ling, Y.; Fei, Q.; Chen, Z.; Li, X.; Guo, P.; Jeon, N.; Goswami, S.; Liao, Y.; et al. Multiscale Porous Elastomer Substrates for Multifunctional On-Skin Electronics with Passive-Cooling Capabilities. Proc. Natl. Acad. Sci. USA 2020, 117, 205–213. [Google Scholar] [CrossRef] [PubMed]
- Watson, J.; Castro, G. A Review of High-Temperature Electronics Technology and Applications. J. Mater. Sci. Mater. Electron. 2015, 26, 9226–9235. [Google Scholar] [CrossRef]
- Kizilel, R.; Sabbah, R.; Selman, J.R.; Al-Hallaj, S. An Alternative Cooling System to Enhance the Safety of Li-Ion Battery Packs. J. Power Sources 2009, 194, 1105–1112. [Google Scholar] [CrossRef]
- Yu, S.H.; Lee, K.S.; Yook, S.J. Optimum Design of a Radial Heat Sink under Natural Convection. Int. J. Heat Mass. Transf. 2011, 54, 2499–2505. [Google Scholar] [CrossRef]
- Yan, Z.; Zhao, R.; Duan, F.; Wong, T.N.; Toh, K.C.; Choo, K.F.; Chan, P.K.; Chua, Y.S. Spray Cooling. In Two Phase Flow, Phase Change and Numerical Modeling; Ahsan, A., Ed.; IntechOpen: Rijeka, Croatia, 2011. [Google Scholar]
- Kim, J. Spray Cooling Heat Transfer: The State of the Art. Int. J. Heat Fluid Flow 2007, 28, 753–767. [Google Scholar] [CrossRef]
- Wu, R.; Fan, Y.; Hong, T.; Zou, H.; Hu, R.; Luo, X. An Immersed Jet Array Impingement Cooling Device with Distributed Returns for Direct Body Liquid Cooling of High Power Electronics. Appl. Therm. Eng. 2019, 162, 114259. [Google Scholar] [CrossRef]
- Liang, G.; Mudawar, I. Review of Spray Cooling—Part 2: High Temperature Boiling Regimes and Quenching Applications. Int. J. Heat Mass Transf. 2017, 115, 1206–1222. [Google Scholar] [CrossRef]
- Zhang, J.Z.; Gao, S.; Tan, X.M. Convective Heat Transfer on a Flat Plate Subjected to Normally Synthetic Jet and Horizontally Forced Flow. Int. J. Heat Mass Transf. 2013, 57, 321–330. [Google Scholar] [CrossRef]
- Muszynski, T. The Influence of Microjet Array Area Ratio on Heat Transfer in the Compact Heat Exchanger. Exp. Therm. Fluid Sci. 2018, 99, 336–343. [Google Scholar] [CrossRef]
- Chandratilleke, T.T.; Jagannatha, D.; Narayanaswamy, R. Heat Transfer Enhancement in Microchannels with Cross-Flow Synthetic Jets. Int. J. Therm. Sci. 2010, 49, 504–513. [Google Scholar] [CrossRef]
- Kandlikar, S.G.; Bapat, A.V. Evaluation of Jet Impingement, Spray and Microchannel Chip Cooling Options for High Heat Flux Removal. Heat Transf. Eng. 2007, 28, 911–923. [Google Scholar] [CrossRef]
- Lohrasbi, S.; Hammer, R.; Essl, W.; Reiss, G.; Defregger, S.; Sanz, W. A Comprehensive Review on the Core Thermal Management Improvement Concepts in Power Electronics. IEEE Access 2020, 8, 166880–166906. [Google Scholar] [CrossRef]
- Di Capua H, M.; Jahn, W. Performance Assessment of Thermoelectric Self-Cooling Systems for Electronic Devices. Appl. Therm. Eng. 2021, 193, 117020. [Google Scholar] [CrossRef]
- Baru, S.; Bhatia, S. A Review on Thermoelectric Cooling Technology and Its Applications. IOP Conf. Ser. Mater Sci. Eng. 2020, 912, 042004. [Google Scholar] [CrossRef]
- Chein, R.; Huang, G. Thermoelectric Cooler Application in Electronic Cooling. Appl. Therm. Eng. 2004, 24, 2207–2217. [Google Scholar] [CrossRef]
- Chen, L.; Liu, R.; Shi, X. Thermoelectric Materials and Devices; Elsevier: Amsterdam, The Netherlands, 2020. [Google Scholar]
- Cermak, M.; Faure, X.; Saket, M.A.; Bahrami, M.; Ordonez, M. Natural Graphite Sheet Heat Sinks with Embedded Heat Pipes. IEEE Access 2020, 8, 80827–80835. [Google Scholar] [CrossRef]
- Huaiyu, Y.; Guoqi, Z. A Review of Passive Thermal Management of LED Module. J. Semicond. 2011, 32, 14008. [Google Scholar] [CrossRef]
- Zhang, P.; Yuan, P.; Jiang, X.; Zhai, S.; Zeng, J.; Xian, Y.; Qin, H.; Yang, D. A Theoretical Review on Interfacial Thermal Transport at the Nanoscale. Small 2018, 14, 1702769. [Google Scholar] [CrossRef]
- Cui, Y.; Li, M.; Hu, Y. Emerging Interface Materials for Electronics Thermal Management: Experiments, Modeling, and New Opportunities. J. Mater. Chem. C 2020, 8, 10568–10586. [Google Scholar] [CrossRef]
- Grujicic, M.; Zhao, C.L.; Dusel, E.C. The Effect of Thermal Contact Resistance on Heat Management in the Electronic Packaging. Appl. Surf. Sci. 2005, 246, 290–302. [Google Scholar] [CrossRef]
- Tong, X.C. Advanced Materials for Thermal Management of Electronic Packaging; Springer: New York, NY, USA, 2011. [Google Scholar]
- Gwinn, J.P.; Webb, R.L. Performance and Testing of Thermal Interface Materials. Microelectron. J. 2003, 34, 215–222. [Google Scholar] [CrossRef]
- Razeeb, K.M.; Dalton, E.; Cross, G.L.W.; Robinson, A.J. Present and Future Thermal Interface Materials for Electronic Devices. Int. Mater. Rev. 2018, 63, 1–21. [Google Scholar] [CrossRef]
- Prasher, R. Thermal Interface Materials: Historical Perspective, Status, and Future Directions. Proc. IEEE 2006, 94, 1571–1586. [Google Scholar] [CrossRef]
- Reay, D.; Kew, P.; McGlen, R. Heat Pipes: Theory, Design and Applications, 6th ed.; Butterworth-Heinemann: Oxford, UK, 2014. [Google Scholar]
- Srimuang, W.; Amatachaya, P. A Review of the Applications of Heat Pipe Heat Exchangers for Heat Recovery. Renew. Sustain. Energy Rev. 2012, 16, 4303–4315. [Google Scholar] [CrossRef]
- Jouhara, H.; Chauhan, A.; Nannou, T.; Almahmoud, S.; Delpech, B.; Wrobel, L.C. Heat Pipe Based Systems—Advances and Applications. Energy 2017, 128, 729–754. [Google Scholar] [CrossRef]
- Smith, K.; Siedel, S.; Robinson, A.J.; Kempers, R. The Effects of Bend Angle and Fill Ratio on the Performance of a Naturally Aspirated Thermosyphon. Appl. Therm. Eng. 2016, 101, 455–467. [Google Scholar] [CrossRef]
- Liu, Z.-h.; Yang, X.-f.; Wang, G.-s.; Guo, G.-l. Influence of Carbon Nanotube Suspension on the Thermal Performance of a Miniature Thermosyphon. Int. J. Heat Mass Transf. 2010, 53, 1914–1920. [Google Scholar] [CrossRef]
- Mantelli, M.B.H. Thermosyphons and Heat Pipes: Theory and Applications; Springer: Cham, Switzerland, 2020. [Google Scholar]
- Chaudhry, H.N.; Hughes, B.R.; Ghani, S.A. A Review of Heat Pipe Systems for Heat Recovery and Renewable Energy Applications. Renew. Sustain. Energy Rev. 2012, 16, 2249–2259. [Google Scholar] [CrossRef]
- Faghri, A. Heat Pipe Science and Technology, 2nd ed.; Global Digital Press: Seattle, DC, USA, 2016. [Google Scholar]
- Nemec, P.; Čaja, A.; Malcho, M. Mathematical Model for Heat Transfer Limitations of Heat Pipe. Math. Comput. Model. 2013, 57, 126–136. [Google Scholar] [CrossRef]
- Badran, B.; Gerner, F.M.; Ramadas, P.; Henderson, T.; Baker, K.W. Experimental Results for Low-Temperature Silicon Micromachined Micro Heat Pipe Arrays Using Water and Methanol as Working Fluids. Exp. Heat Transf. 1997, 10, 253–272. [Google Scholar] [CrossRef]
- Vasiliev, L.L. Micro and Miniature Heat Pipes—Electronic Component Coolers. Appl. Therm. Eng. 2008, 28, 266–273. [Google Scholar] [CrossRef]
- Le Berre, M.; Launay, S.; Sartre, V.; Lallemand, M. Fabrication and Experimental Investigation of Silicon Micro Heat Pipes for Cooling Electronics. J. Micromechanics Microengineering 2003, 13, 436. [Google Scholar] [CrossRef]
- Tang, H.; Tang, Y.; Wan, Z.; Li, J.; Yuan, W.; Lu, L.; Li, Y.; Tang, K. Review of Applications and Developments of Ultra-Thin Micro Heat Pipes for Electronic Cooling. Appl. Energy 2018, 223, 383–400. [Google Scholar] [CrossRef]
- Faghri, A.; Zhang, Y. Introduction to Transport Phenomena. In Transport Phenomena in Multiphase Systems; Elsevier: Amsterdam, The Netherlands, 2006; pp. 1–106. [Google Scholar]
- Zohuri, B. Different Types of Heat Pipes. In Functionality, Advancements and Industrial Applications of Heat Pipes; Elsevier: Amsterdam, The Netherlands, 2020; pp. 183–238. [Google Scholar]
- Zohuri, B. Heat Pipe Design and Technology: Modern Applications for Practical Thermal Management, 2nd ed.; Springer: Cham, Switzerland, 2016. [Google Scholar]
- Bejan, A.; Kraus, A.D. Heat Pipes. In Heat Transfer Handbook; John Wiley & Sons: Hoboken, NJ, USA, 2003; Volume 1. [Google Scholar]
- Guangming, X.; Yanxia, D.; Yewei, G.; Lei, L.; Xiaofeng, Y.; Dong, W. Heat Transfer Characteristics and Limitations Analysis of Heat-Pipe-Cooled Thermal Protection Structure. Appl. Therm. Eng. 2014, 70, 655–664. [Google Scholar] [CrossRef]
- Li, J.; Zheng, W.; Su, Y.; Hong, F. Pore Scale Study on Capillary Pumping Process in Three-Dimensional Heterogeneous Porous Wicks Using Lattice Boltzmann Method. Int. J. Therm. Sci. 2022, 171, 107236. [Google Scholar] [CrossRef]
- Kim, B.H.; Peterson, G.P. Analysis of the Critical Weber Number at the Onset of Liquid Entrainment in Capillary-Driven Heat Pipes. Int. J. Heat Mass Transf. 1995, 38, 1427–1442. [Google Scholar] [CrossRef]
- Faghri, A. Heat Pipes: Review, Opportunities and Challenges. Front. Heat Pipes 2014, 5. [Google Scholar] [CrossRef]
- Celsia. Bending Heat Pipes|How It Affects Vapor Chambers & Heat Pipes. Available online: https://celsiainc.com/heat-sink-blog/bending-heat-pipes/ (accessed on 3 September 2023).
- Manimaran, R.; Palaniradja, K.; Alagumurthi, N.; Hussain, J. Factors Affecting the Thermal Performance of Heat Pipe—A Review. Therm. Eng. 2012, 3, 20–24. [Google Scholar]
- Zohuri, B. Heat Pipe Driven Heat Exchangers to Avoid Salt Freezing and Control Tritium. Molten Salt React. Integr. Molten Salt React. 2021, 206, 197–228. [Google Scholar] [CrossRef]
- Launay, S.; Sartre, V.; Bonjour, J. Parametric Analysis of Loop Heat Pipe Operation: A Literature Review. Int. J. Therm. Sci. 2007, 46, 621–636. [Google Scholar] [CrossRef]
- Maydanik, Y.F.; Chernysheva, M.A.; Pastukhov, V.G. Review: Loop Heat Pipes with Flat Evaporators. Appl. Therm. Eng. 2014, 67, 294–307. [Google Scholar] [CrossRef]
- Xu, J.; Zhang, L.; Xu, H.; Zhong, J.; Xuan, J. Experimental Investigation and Visual Observation of Loop Heat Pipes with Two-Layer Composite Wicks. Int. J. Heat Mass Transf. 2014, 72, 378–387. [Google Scholar] [CrossRef]
- Singh, R.; Akbarzadeh, A.; Mochizuki, M. Effect of Wick Characteristics on the Thermal Performance of the Miniature Loop Heat Pipe. J. Heat Transf. 2009, 131, 082601. [Google Scholar] [CrossRef]
- Bai, L.; Lin, G.; Mu, Z.; Wen, D. Theoretical Analysis of Steady-State Performance of a Loop Heat Pipe with a Novel Evaporator. Appl. Therm. Eng. 2014, 64, 233–241. [Google Scholar] [CrossRef]
- Chen, X.; Qi, C.; Wang, W.; Miao, J.; Zhang, H. Heat Transfer Limit Resulting from Heat Leak in a Cryogenic Loop Heat Pipe. Appl. Therm. Eng. 2021, 184, 116280. [Google Scholar] [CrossRef]
- Liu, L.; Yuan, B.; Yang, X.; Cui, C.; Wei, J. Experimental Study of a Novel Loop Heat Pipe with a Vapor-Driven Jet Injector and a Boiling Pool. Int. J. Heat Mass Transf. 2022, 184, 122267. [Google Scholar] [CrossRef]
- Watanabe, N.; Phan, N.; Saito, Y.; Hayashi, S.; Katayama, N.; Nagano, H. Operating Characteristics of an Anti-Gravity Loop Heat Pipe with a Flat Evaporator That Has the Capability of a Loop Thermosyphon. Energy Convers. Manag. 2020, 205, 112431. [Google Scholar] [CrossRef]
- Singh, R.; Lapp, G.; Velardo, J.; Thanh Long, P.; Mochizuki, M.; Akbarzadeh, A.; Date, A.; Mausolf, K.; Busse, K. Battery Cooling Options in Electric Vehicles with Heat Pipes. Front. Heat Mass Transf. 2021, 16, 119495. [Google Scholar] [CrossRef]
- Khandekar, S.; Panigrahi, P.K.; Lefèvre, F.; Bonjour, J. Local Hydrodynamics of Flow in A Pulsating Heat Pipe: A Review. Front. Heat Pipes 2010, 1. [Google Scholar] [CrossRef]
- Rao, Z.; Huo, Y.; Liu, X. Experimental Study of an OHP-Cooled Thermal Management System for Electric Vehicle Power Battery. Exp. Therm. Fluid Sci. 2014, 57, 20–26. [Google Scholar] [CrossRef]
- Wilcoxon, R.; Boswell, J.; Drolen, B. Oscillating Heat Pipe Thermal Performance and Stability Limits. In Proceedings of the 2022 38th Semiconductor Thermal Measurement, Modeling & Management Symposium (SEMI-THERM), San Jose, CA, USA, 21–25 March 2022; pp. 82–89. [Google Scholar]
- Yin, D.; Wang, H.; Ma, H.B.; Ji, Y.L. Operation Limitation of an Oscillating Heat Pipe. Int. J. Heat Mass Transf. 2016, 94, 366–372. [Google Scholar] [CrossRef]
- Natsume, K.; Mito, T.; Yanagi, N.; Tamura, H.; Tamada, T.; Shikimachi, K.; Hirano, N.; Nagaya, S. Heat Transfer Performance of Cryogenic Oscillating Heat Pipes for Effective Cooling of Superconducting Magnets. Cryogenics 2011, 51, 309–314. [Google Scholar] [CrossRef]
- Jiao, A.J.; Ma, H.B.; Critser, J.K. Experimental Investigation of Cryogenic Oscillating Heat Pipes. Int. J. Heat Mass Transf. 2009, 52, 3504–3509. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Kim, S.J. Effect of Channel Geometry on the Operating Limit of Micro Pulsating Heat Pipes. Int. J. Heat Mass Transf. 2017, 107, 204–212. [Google Scholar] [CrossRef]
- Drolen, B.L.; Smoot, C.D. Performance Limits of Oscillating Heat Pipes: Theory and Validation. J. Thermophys. Heat Trans. 2017, 31, 920–936. [Google Scholar] [CrossRef]
- Yang, H.; Khandekar, S.; Groll, M. Operational Limit of Closed Loop Pulsating Heat Pipes. Appl. Therm. Eng. 2008, 28, 49–59. [Google Scholar] [CrossRef]
- Qu, J.; Wang, Q.; Sun, Q. Lower Limit of Internal Diameter for Oscillating Heat Pipes: A Theoretical Model. Int. J. Therm. Sci. 2016, 110, 174–185. [Google Scholar] [CrossRef]
- Mito, T.; Natsume, K.; Yanagi, N.; Tamura, H.; Tamada, T.; Shikimachi, K.; Hirano, N.; Nagaya, S. Development of Highly Effective Cooling Technology for a Superconducting Magnet Using Cryogenic OHP. IEEE Trans. Appl. Supercond. 2010, 20, 2023–2026. [Google Scholar] [CrossRef]
- Go, J.S. Quantitative Thermal Performance Evaluation of a Cost-Effective Vapor Chamber Heat Sink Containing a Metal-Etched Microwick Structure for Advanced Microprocessor Cooling. Sens. Actuators A Phys. 2005, 121, 549–556. [Google Scholar] [CrossRef]
- Peng, Y.; Liu, W.; Wang, N.; Tian, Y.; Chen, X. A Novel Wick Structure of Vapor Chamber Based on the Fractal Architecture of Leaf Vein. Int. J. Heat Mass Transf. 2013, 63, 120–133. [Google Scholar] [CrossRef]
- Zhou, G.; Zhou, J.; Huai, X.; Zhou, F.; Jiang, Y. A Two-Phase Liquid Immersion Cooling Strategy Utilizing Vapor Chamber Heat Spreader for Data Center Servers. Appl. Therm. Eng. 2022, 210, 118289. [Google Scholar] [CrossRef]
- Velardo, J.; Singh, R.; Long, P.T.; Kajtaz, M.; Date, A. A Model Based on Analytical Spreading Relations for Predicting the Thermal Performance of Vapour Chambers in Thermal Management Solutions. Int. J. Therm. Sci. 2023, 185, 108077. [Google Scholar] [CrossRef]
- Reay, D.A.; Kew, P.A.; McGlen, R.J. Heat Pipes, 6th ed.; Elsevier: Amsterdam, The Netherlands, 2014; ISBN 9780080982663. [Google Scholar]
- Bulut, M.; Kandlikar, S.G.; Sozbir, N. A Review of Vapor Chambers. Heat Transf. Eng. 2019, 40, 1551–1573. [Google Scholar] [CrossRef]
- Wiriyasart, S.; Naphon, P. Transient Thermal Performance of Constant Fill Ratio Vapor Chamber with Different Coolants. J. Therm. Sci. Technol. 2021, 16, JTST0028. [Google Scholar] [CrossRef]
- Lu, M.; Mok, L.; Bezama, R.J. A Graphite Foams Based Vapor Chamber for Chip Heat Spreading. J. Electron. Packag. 2006, 128, 427–431. [Google Scholar] [CrossRef]
- Tang, Y.; Yuan, D.; Lu, L.; Wang, Z. A Multi-Artery Vapor Chamber and Its Performance. Appl. Therm. Eng. 2013, 60, 15–23. [Google Scholar] [CrossRef]
- Luo, Y.; Liu, W.; Huang, G. Fabrication and Experimental Investigation of the Bionic Vapor Chamber. Appl. Therm. Eng. 2020, 168, 114889. [Google Scholar] [CrossRef]
- Deng, D.; Huang, Q.; Xie, Y.; Huang, X.; Chu, X. Thermal Performance of Composite Porous Vapor Chambers with Uniform Radial Grooves. Appl. Therm. Eng. 2017, 125, 1334–1344. [Google Scholar] [CrossRef]
- Wang, C.; Liu, Z.; Zhang, G.; Zhang, M. Experimental Investigations of Flat Plate Heat Pipes with Interlaced Narrow Grooves or Channels as Capillary Structure. Exp. Therm. Fluid Sci. 2013, 48, 222–229. [Google Scholar] [CrossRef]
- Tsai, M.C.; Kang, S.W.; Vieira De Paiva, K. Experimental Studies of Thermal Resistance in a Vapor Chamber Heat Spreader. Appl. Therm. Eng. 2013, 56, 38–44. [Google Scholar] [CrossRef]
- Wang, J.-C.; Wang, R.-T. A Novel Formula for Effective Thermal Conductivity of Vapor Chamber. Exp. Tech. 2011, 35, 35–40. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eslami Majd, A.; Tchuenbou-Magaia, F.; Meless, A.M.; Adebayo, D.S.; Ekere, N.N. A Review on Cooling Systems for Portable Energy Storage Units. Energies 2023, 16, 6525. https://doi.org/10.3390/en16186525
Eslami Majd A, Tchuenbou-Magaia F, Meless AM, Adebayo DS, Ekere NN. A Review on Cooling Systems for Portable Energy Storage Units. Energies. 2023; 16(18):6525. https://doi.org/10.3390/en16186525
Chicago/Turabian StyleEslami Majd, Alireza, Fideline Tchuenbou-Magaia, Agnero M. Meless, David S. Adebayo, and Nduka Nnamdi Ekere. 2023. "A Review on Cooling Systems for Portable Energy Storage Units" Energies 16, no. 18: 6525. https://doi.org/10.3390/en16186525
APA StyleEslami Majd, A., Tchuenbou-Magaia, F., Meless, A. M., Adebayo, D. S., & Ekere, N. N. (2023). A Review on Cooling Systems for Portable Energy Storage Units. Energies, 16(18), 6525. https://doi.org/10.3390/en16186525