Energy-Efficient Emerging Optical Wireless Links
Abstract
:1. Introduction
2. Terrestrial FSO
3. Ultraviolet Communication
4. Transdermal Optical Wireless Communication
5. Discussion
6. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Yücel, M.; Açikgöz, M. Optical Communication Infrastructure in New Generation Mobile Networks. Fiber Integr. Opt. 2023, 42, 53–92. [Google Scholar] [CrossRef]
- Varotsos, G.K.; Nistazakis, H.E.; Petkovic, M.I.; Djordjevic, G.T.; Tombras, G.S. SIMO Optical Wireless Links with Nonzero Boresight Pointing Errors over M modeled Turbulence Channels. Elsevier Opt. Commun. 2017, 403, 391–400. [Google Scholar] [CrossRef]
- Varotsos, G.K.; Nistazakis, H.E.; Aidinis, K.; Jaber, F.; Rahman, K.K. Transdermal Optical Wireless Links with Multiple Receivers in the Presence of Skin-Induced Attenuation and Pointing Errors. Computation 2019, 7, 33. [Google Scholar] [CrossRef]
- Celik, A.; Romdhane, I.; Kaddoum, G.; Eltawil, A.M. A top-down survey on optical wireless communications for the internet of things. IEEE Commun. Surv. Tutor. 2022, 25, 1–45. [Google Scholar] [CrossRef]
- Abualhoul, M.Y.; Svenmarker, P.; Wang, Q.; Andersson, J.Y.; Johansson, A.J. Free space optical link for biomedical applications. In Proceedings of the 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, San Diego, CA, USA, 28 August–1 September 2012. [Google Scholar]
- Khalighi, M.A.; Uysal, M. Survey on free space optical communication: A communication theory perspective. IEEE Commun. Surv. Tutor. 2014, 16, 2231–2258. [Google Scholar] [CrossRef]
- Anandkumar, D.; Sangeetha, R.G. A survey on performance enhancement in free space optical communication system through channel models and modulation techniques. Opt. Quantum Electron. 2021, 53, 5. [Google Scholar] [CrossRef]
- Ghassemlooy, Z.; Arnon, S.; Uysal, M.; Xu, Z.; Cheng, J. Emerging optical wireless communications-advances and challenges. IEEE J. Sel. Areas Commun. 2015, 33, 1738–1749. [Google Scholar] [CrossRef]
- Vavoulas, A.; Sandalidis, H.G.; Chatzidiamantis, N.D.; Xu, Z.; Karagiannidis, G.K. A survey on ultraviolet C-band (UV-C) communications. IEEE Commun. Surv. Tutor. 2019, 21, 2111–2133. [Google Scholar] [CrossRef]
- Ritter, R.; Handwerker, J.; Liu, T.; Ortmanns, M. Telemetry for implantable medical devices: Part 1-media properties and standards. IEEE Solid-State Circuits Mag. 2014, 6, 47–51. [Google Scholar] [CrossRef]
- Varotsos, G.K.; Nistazakis, H.E.; Aidinis, K.; Jaber, F.; Rahman, K.K.M. Transdermal subcarrier L-PSK or DBPSK optical wireless links with time diversity, skin attenuation and spatial jitter. J. Mod. Opt. 2020, 67, 1233–1240. [Google Scholar] [CrossRef]
- Liu, T.; Anders, J.; Ortmanns, M. System level model for transcutaneous optical telemetric link. In Proceedings of the 2013 IEEE International Symposium on Circuits and Systems (ISCAS), Beijing, China, 19–23 May 2013. [Google Scholar]
- Taherkhani, M.; Sadeghzadeh, R.A.; Kashani, Z.G. Attenuation analysis of THz/IR waves under different turbulence conditions using gamma-gamma model. In Proceedings of the Electrical Engineering (ICEE), Iranian Conference on, Sadjad University of Technology, Mashhad, Iran, 8–10 May 2018; IEEE: Piscataway, NJ, USA; pp. 424–428. [Google Scholar]
- Chaudhary, S.; Amphawan, A. The role and challenges of free-space optical systems. J. Opt. Commun. 2014, 35, 327–334. [Google Scholar] [CrossRef]
- Sangeetha, R.G.; Hemanth, C.; Jaiswal, I. Performance of different modulation scheme in free space optical transmission—A review. Optik 2022, 254, 168675. [Google Scholar] [CrossRef]
- Drost, R.J.; Sadler, B.M. Survey of ultraviolet non-line-of-sight communications. Semicond. Sci. Technol. 2014, 29, 084006. [Google Scholar] [CrossRef]
- Kiourti, A.; Psathas, K.A.; Nikita, K.S. Implantable and ingestible medical devices with wireless telemetry functionalities: A review of current status and challenges. Bioelectromagnetics 2014, 35, 1–15. [Google Scholar] [CrossRef]
- Al-Gailani, S.A.; Salleh, M.F.M.; Salem, A.A.; Shaddad, R.Q.; Sheikh, U.U.; Algeelani, N.A.; Almohamad, T.A. A survey of free space optics (FSO) communication systems, links, and networks. IEEE Access 2020, 9, 7353–7373. [Google Scholar] [CrossRef]
- Mansour, A.; Mesleh, R.; Abaza, M. New challenges in wireless and free space optical communications. Opt. Lasers Eng. 2017, 89, 95–108. [Google Scholar] [CrossRef]
- Farooq, E.; Sahu, A.; Gupta, S.K. Survey on FSO communication system—Limitations and enhancement techniques. In Optical and Wireless Technologies: Proceedings of OWT 2017, 1st ed.; Janyani, V., Tiwari, M., Singh, G., Minzioni, P., Eds.; Springer: Singapore, 2018; Volume 472, pp. 255–264. [Google Scholar]
- Burton, A.; Le Minh, H.; Ghassemlooy, Z.; Bentley, E.; Botella, C. Experimental Demonstration of 50-Mb/s Visible Light Communications Using 4 × 4 MIMO. IEEE Photonics Technol. Lett. 2014, 26, 945–948. [Google Scholar] [CrossRef]
- Ghassemlooy, Z.; Popoola, W.O. Terrestrial free-space optical communications. In Mobile and Wireless Communications: Network Layer and Circuit Level Design; InTech: London, UK, 2010; pp. 355–392. [Google Scholar]
- Majumdar, A.K. Free-space laser communication performance in the atmospheric channel. J. Opt. Fiber Commun. Rep. 2005, 2, 345–396. [Google Scholar] [CrossRef]
- Varotsos, G.K.; Nistazakis, H.E.; Stassinakis, A.N.; Volos, C.K.; Christofilakis, V.; Tombras, G.S. Mixed Topology of DF Relayed Terrestrial Optical Wireless Links with Generalized Pointing Errors over Turbulence Channels. Technologies 2018, 6, 121. [Google Scholar] [CrossRef]
- Varotsos, G.K.; Nistazakis, H.E.; Tombras, G.S. OFDM RoFSO Links with Relays Over Turbulence Channels and Nonzero Boresight Pointing Errors. J. Commun. 2017, 12, 644. [Google Scholar] [CrossRef]
- Esmail, M.A.; Fathallah, H.; Alouini, M.S. Outdoor FSO communications under fog: Attenuation modeling and performance evaluation. IEEE Photonics J. 2016, 8, 1–22. [Google Scholar] [CrossRef]
- Majumdar, A.K.; Ricklin, J.C.; Leitgeb, E.; Gebhart, M.; Birnbacher, U. Optical networks, last mile access and applications. In Free-Space Laser Communications: Principles and Advances; Springer: New York, NY, USA, 2008; Volume 2, pp. 273–302. [Google Scholar]
- Leitgeb, E.; Awan, M.S.; Brandl, P.; Plank, T.; Capsoni, C.; Nebuloni, R.; Nebuloni, R.; Javornik, T.; Kandus, G.; Sheikh Muhammad, S.; et al. Current optical technologies for wireless access. In Proceedings of the 2009 10th International Conference on Telecommunications, Zagreb, Croatia, 8–10 June 2009. [Google Scholar]
- Awan, M.S.; Capsoni, C.; Leitgeb, E.; Nebuloni, R.; Nadeem, F.; Khan, M.S. FSO-relevant new measurement results under moderate continental fog conditions at Graz and Milan. In Proceedings of the 2008 4th Advanced Satellite Mobile Systems, Bologna, Italy, 26–28 August 2008. [Google Scholar]
- Alkholidi, A.; Altowij, K. Effect of clear atmospheric turbulence on quality of free space optical communications in Western Asia. In Optical Communications Systems, 1st ed.; Narottam, D., Ed.; InTech: Rijeka, Croatia, 2012; Volume 1, pp. 41–75. [Google Scholar]
- Kim, I.I.; Korevaar, E.J. Availability of free-space optics (FSO) and hybrid FSO/RF systems. In Optical Wireless Communications IV; SPIE: Bellingham, WA, USA, 2001; Volume 4530, pp. 84–95. [Google Scholar]
- Zhu, X.; Kahn, J.M. Free-space optical communication through atmospheric turbulence channels. IEEE Trans. Commun. 2002, 50, 1293–1300. [Google Scholar]
- Varotsos, G.K.; Nistazakis, H.E.; Stassinakis, A.N.; Tombras, G.S.; Christofilakis, V.; Volos, C.K. Outage performance of mixed, parallel and serial DF relayed FSO links over weak turbulence channels with nonzero boresight pointing errors. In Proceedings of the 2018 7th International Conference on Modern Circuits and Systems Technologies (MOCAST), Thessaloniki, Greece, 7–9 May 2018. [Google Scholar]
- Killinger, D. Free space optics for laser communication through the air. Opt. Photonics News 2002, 13, 36–42. [Google Scholar] [CrossRef]
- Al-Habash, M.A.; Andrews, L.C.; Phillips, R.L. Mathematical model for the irradiance probability density function of a laser beam propagating through turbulent media. Opt. Eng. 2001, 40, 1554–1562. [Google Scholar] [CrossRef]
- Stassinakis, A.N.; Nistazakis, H.E.; Varotsos, G.K.; Tombras, G.S.; Tsigopoulos, A.D.; Christofilakis, V. Outage capacity estimation of FSO links with pointing errors over gamma turbulence channels. In Proceedings of the 2016 5th International Conference on Modern Circuits and Systems Technologies (MOCAST), Thessaloniki, Greece, 12–14 May 2016. [Google Scholar]
- Jurado-Navas, A.; Garrido-Balsells, J.M.; Paris, J.F.; Puerta-Notario, A. A unifying statistical model for atmospheric optical scintillation. Numer. Simul. Phys. Eng. Process. 2011, 181, 181–205. [Google Scholar]
- Barrios, R.; Dios, F. Exponentiated Weibull distribution family under aperture averaging for Gaussian beam waves. Opt. Express 2012, 20, 13055–13064. [Google Scholar] [CrossRef]
- Sandalidis, H.G.; Chatzidiamantis, N.D.; Karagiannidis, G.K. A tractable model for turbulence-and misalignment-induced fading in optical wireless systems. IEEE Commun. Lett. 2016, 20, 1904–1907. [Google Scholar] [CrossRef]
- Nistazakis, H.E.; Tsigopoulos, A.D.; Hanias, M.P.; Psychogios, C.; Marinos, D.; Aidinis, C.; Tombras, G.S. Estimation of Outage Capacity for Free Space Optical Links over IK and K Turbulent Channels. Radioengineering 2011, 20, 493–498. [Google Scholar]
- Nistazakis, H.E.; Assimakopoulos, V.D.; Tombras, G.S. Performance estimation of free space optical links over negative exponential atmospheric turbulence channels. OPTIK-Int. J. Light Electron Opt. 2011, 122, 2191–2194. [Google Scholar] [CrossRef]
- Chatzidiamantis, N.D.; Sandalidis, H.G.; Karagiannidis, G.K.; Matthaiou, M. Inverse Gaussian modeling of turbulence-induced fading in free-space optical systems. J. Light. Technol. 2011, 29, 1590–1596. [Google Scholar] [CrossRef]
- Kedar, D.; Arnon, S. Urban optical wireless communication networks: The main challenges and possible solutions. IEEE Commun. Mag. 2004, 42, S2–S7. [Google Scholar] [CrossRef]
- Farid, A.A.; Hranilovic, S. Outage capacity optimization for free space optical links with pointing errors. IEEE/OSA J. Light. Technol. 2007, 25, 1702–1710. [Google Scholar] [CrossRef]
- Sandalidis, H.G.; Tsiftsis, T.A.; Karagiannidis, G.K.; Uysal, M. BER performance of FSO links over strong atmospheric turbulence channels with pointing errors. IEEE Commun. Lett. 2008, 12, 44–46. [Google Scholar] [CrossRef]
- Al Quwaiee, H.; Yang, H.C.; Alouini, M.S. On the asymptotic capacity of dual-aperture FSO systems with generalized pointing error model. IEEE Trans. Wirel. Commun. 2016, 15, 6502–6512. [Google Scholar] [CrossRef]
- Boluda-Ruiz, R.; García-Zambrana, A.; Castillo-Vázquez, C.; Castillo-Vázquez, B. Novel approximation of misalignment fading modeled by Beckmann distribution on free-space optical links. Opt. Express 2016, 24, 22635–22649. [Google Scholar] [CrossRef]
- Jurado-Navas, A.; Garrido-Balsells, J.M.; Paris, J.F.; Castillo-Vázquez, M.; Puerta-Notario, A. Impact of pointing errors on the performance of generalized atmospheric optical channels. Opt. Express 2012, 20, 12550–12562. [Google Scholar] [CrossRef]
- Varotsos, G.K.; Nistazakis, H.E.; Volos, C.K.; Tombras, G.S. FSO links with diversity pointing errors and temporal broadening of the pulses over weak to strong atmospheric turbulence channels. Optik 2016, 127, 3402–3409. [Google Scholar] [CrossRef]
- Djordjevic, G.T.; Petkovic, M.I.; Spasic, M.; Antic, D.S. Outage capacity of FSO link with pointing errors and link blockage. Opt. Express 2016, 24, 219–230. [Google Scholar] [CrossRef]
- Elganimi, T.Y. Performance comparison between OOK, PPM and pam modulation schemes for free space optical (FSO) communication systems: Analytical study. Int. J. Comput. Appl. 2013, 79, 22–27. [Google Scholar]
- Muhammad, S.S.; Javornik, T.; Jelovčan, I.; Ghassemlooy, Z.; Leitgeb, E. Comparison of hard-decision and soft-decision channel coded M-ary PPM performance over free space optical links. Eur. Trans. Telecommun. 2009, 20, 746–757. [Google Scholar] [CrossRef]
- Gappmair, W.; Hranilovic, S.; Leitgeb, E. Performance of PPM on terrestrial FSO links with turbulence and pointing errors. IEEE Commun. Lett. 2010, 14, 468–470. [Google Scholar] [CrossRef]
- Song, X.; Yang, F.; Cheng, J.; Al-Dhahir, N.; Xu, Z. Subcarrier phase-shift keying systems with phase errors in lognormal turbulence channels. J. Light. Technol. 2015, 33, 1896–1904. [Google Scholar] [CrossRef]
- Varotsos, G.K.; Nistazakis, H.E.; Gappmair, W.; Sandalidis, H.G.; Tombras, G.S. SIMO subcarrier PSK FSO links with phase noise and non-zero boresight pointing errors over turbulence channels. IET Commun. 2019, 13, 831–836. [Google Scholar] [CrossRef]
- Navidpour, S.M.; Uysal, M.; Kavehrad, M. BER performance of free-space optical transmission with spatial diversity. IEEE Trans. Wirel. Commun. 2007, 6, 2813–2819. [Google Scholar] [CrossRef]
- Tsiftsis, T.A.; Sandalidis, H.G.; Karagiannidis, G.K.; Uysal, M. Optical wireless links with spatial diversity over strong atmospheric turbulence channels. IEEE Trans. Wirel. Commun. 2009, 8, 951–957. [Google Scholar] [CrossRef]
- Nistazakis, H.E.; Tombras, G.S. On the use of wavelength and time diversity in optical wireless communication systems over gamma–gamma turbulence channels. Opt. Laser Technol. 2012, 44, 2088–2094. [Google Scholar] [CrossRef]
- Nistazakis, H.E. A time-diversity scheme for wireless optical links over exponentially modeled turbulence channels. Opt.-Int. J. Light Electron Opt. 2013, 124, 1386–1391. [Google Scholar] [CrossRef]
- Shah, D.; Kothari, D.; Ghosh, A. Performance of free-space optical link with wavelength diversity over exponentiated Weibull channel. Opt. Eng. 2016, 55, 999–1002. [Google Scholar] [CrossRef]
- Prabu, K.; Cheepalli, S.; Kumar, D.S. Analysis of PolSK based FSO system using wavelength and time diversity over strong atmospheric turbulence with pointing errors. Opt. Commun. 2014, 324, 318–323. [Google Scholar] [CrossRef]
- Prabu, K.; Kumar, D.S. BER analysis of DPSK–SIM over MIMO free space optical links with misalignment. Opt. Int. J. Light Electron Opt. 2014, 125, 5176–5180. [Google Scholar] [CrossRef]
- Garcia-Zambrana, A.; Boluda-Ruiz, R.; Castillo-Vazquez, C.; Castillo-Vazquez, B. Transmit alternate laser selection with time diversity for FSO communications. Opt. Express 2014, 22, 23861–23874. [Google Scholar] [CrossRef]
- Varotsos, G.K.; Nistazakis, H.E.; Gappmair, W.; Sandalidis, H.G.; Tombras, G.S. DF relayed subcarrier FSO links over Malaga turbulence channels with phase noise and non-zero boresight pointing errors. Appl. Sci. 2018, 8, 664. [Google Scholar] [CrossRef]
- Varotsos, G.K.; Stassinakis, A.N.; Nistazakis, H.E.; Tsigopoulos, A.D.; Peppas, K.P.; Aidinis, C.J.; Tombras, G.S. Probability of fade estimation for FSO links with time dispersion and turbulence modeled with the gamma–gamma or the IK distribution. Optik 2014, 125, 7191–7197. [Google Scholar] [CrossRef]
- Lu, H.; Zhao, W.; Xie, X. Analysis of temporal broadening of optical pulses by atmospheric dispersion in laser communication system. Opt. Commun. 2012, 285, 3169–3173. [Google Scholar] [CrossRef]
- Stassinakis, A.N.; Nistazakis, H.E.; Peppas, K.P.; Tombras, G.S. Improving the availability of terrestrial FSO links over log normal atmospheric turbulence channels using dispersive chirped Gaussian pulses. Opt. Laser Technol. 2013, 54, 329–334. [Google Scholar] [CrossRef]
- Sova, R.M.; Sluz, J.E.; Young, D.W.; Juarez, J.C.; Dwivedi, A.; Demidovich, N.M., III; Graves, J.E.; Northcott, M.; Douglas, J.; Phillips, J.; et al. 80 Gb/s free-space optical communication demonstration between an aerostat and a ground terminal. In Free-Space Laser Communications VI; SPIE: Bellingham, WA, USA, 2006; Volume 6304, pp. 267–276. [Google Scholar]
- Ciaramella, E.; Arimoto, Y.; Contestabile, G.; Presi, M.; D’Errico, A.; Guarino, V.; Matsumoto, M. 1.28 Terabit/s (32 × 40 Gbit/s) WDM transmission system for free space optical communications. IEEE J. Sel. Areas Commun. 2009, 27, 1639–1645. [Google Scholar] [CrossRef]
- Awan, M.S.; Csurgai-Horváth, L.; Muhammad, S.S.; Leitgeb, E.; Nadeem, F.; Khan, M.S. Characterization of Fog and Snow Attenuations for Free-Space Optical Propagation. J. Commun. 2009, 4, 533–545. [Google Scholar] [CrossRef]
- Esmail, M.A.; Ragheb, A.; Fathallah, H.; Alouini, M.S. Experimental demonstration of outdoor 2.2 Tbps super-channel FSO transmission system. In Proceedings of the 2016 IEEE International Conference on Communications Workshops (ICC), Kuala Lumpur, Malaysia, 23–27 May 2016. [Google Scholar]
- Alheadary, W.G.; Park, K.H.; Alfaraj, N.; Guo, Y.; Stegenburgs, E.; Ng, T.K.; Ooi, B.S.; Alouini, M.S. Free-space optical channel characterization and experimental validation in a coastal environment. Opt. Express 2018, 26, 6614–6628. [Google Scholar] [CrossRef]
- Lionis, A.; Peppas, K.; Nistazakis, H.E.; Tsigopoulos, A.; Cohn, K. Statistical modeling of received signal strength for an FSO link over maritime environment. Opt. Commun. 2021, 489, 126858. [Google Scholar] [CrossRef]
- Arya, S.; Chung, Y.H. Amplify-and-forward multihop non-line-of-sight ultraviolet communication in the gamma–gamma fading channel. J. Opt. Commun. Netw. 2019, 11, 422–436. [Google Scholar] [CrossRef]
- Xu, Z.; Sadler, B.M. Ultraviolet communications: Potential and state-of-the-art. IEEE Commun. Mag. 2008, 46, 67–73. [Google Scholar]
- Yuan, R.; Ma, J. Review of ultraviolet non-line-of-sight communication. China Commun. 2016, 13, 63–75. [Google Scholar] [CrossRef]
- Shaw, G.A.; Siegel, A.M.; Model, J. Extending the range and performance of non-line-of-sight ultraviolet communication links. In Unattended Ground, Sea, and Air Sensor Technologies and Applications VIII; SPIE: Orlando, FL, USA, 2006; Volume 6231, pp. 93–104. [Google Scholar]
- Xu, Z.; Chen, G.; Abou-Galala, F.; Lonardi, M. Experimental Performance Evaluation of Non-Line-of-Sight Ultraviolet Communication Systems. In Free Space Laser Communications VII; SPIE: San Diego, CA, USA, 2007; Volume 6709, pp. 287–298. [Google Scholar]
- Shaw, G.A.; Siegel, A.M.; Model, J.; Geboff, A. Deep UV photon counting detectors and applications. In Advanced Photon Counting Techniques III; SPIE: Orlando, FL, USA, 2009; Volume 7320, pp. 88–102. [Google Scholar]
- Ding, H.; Sadler, B.M.; Chen, G.; Xu, Z. Modeling and characterization of ultraviolet scattering communication channels. In Advanced Optical Wireless Communication Systems, 1st ed.; Arnon, S., Barry, J., Karagiannidis, G.K., Schober, R., Uysal, M., Eds.; Cambridge University Press: Cambridge, UK, 2012; pp. 177–200. [Google Scholar]
- Chen, G.; Xu, Z.; Ding, H.; Sadler, B.M. Path loss modeling and performance trade-off study for short-range non-line-of-sight ultraviolet communications. Opt. Express 2009, 17, 3929–3940. [Google Scholar] [CrossRef]
- He, Q.; Sadler, B.M.; Xu, Z. Modulation and coding tradeoffs for non-line-of-sight ultraviolet communications. In Free-Space Laser Communications IX; SPIE: San Diego, CA, USA, 2009; Volume 7464, pp. 151–162. [Google Scholar]
- He, Q.; Sadler, B.M.; Xu, Z. On the achievable performance of non-line-of-sight ultraviolet communications. In Applications of Lasers for Sensing and Free Space Communications; Optica Publishing Group: San Diego, CA, USA, 2010; p. LSMB2. [Google Scholar]
- He, Q.; Xu, Z.; Sadler, B.M. Performance of short-range non-line-of-sight LED-based ultraviolet communication receivers. Opt. Express 2010, 18, 12226–12238. [Google Scholar] [CrossRef]
- Wang, L.; Li, Y.; Xu, Z.; Sadler, B.M. Wireless ultraviolet network models and performance in noncoplanar geometry. In Proceedings of the 2010 IEEE Globecom Workshops, Miami, FL, USA, 6–10 December 2010. [Google Scholar]
- Wang, P.; Xu, Z. Characteristics of ultraviolet scattering and turbulent channels. Opt. Lett. 2013, 38, 2773–2775. [Google Scholar] [CrossRef]
- Kedar, D.; Arnon, S. Evaluation of coherence interference in optical wireless communication through multi-scattering channels. Appl. Opt. 2006, 45, 3263–3269. [Google Scholar] [CrossRef]
- Kedar, S.; Arnon, S. Non-line-of-sight optical wireless sensor network operating in multi scattering channel. Appl. Opt. 2006, 45, 8454–8461. [Google Scholar] [CrossRef]
- Gupta, A.; Brandt-Pearce, M. Receiver design for shot noise limited MIMO FSO/UV communication systems. In Proceedings of the IEEE Globecom Workshop on Optical Wireless Communications, Anaheim, CA, USA, 3–7 December 2012. [Google Scholar]
- Noshad, M.; Brandt-Pearce, M.; Wilson, S.G. NLOS UV communications using M-ary spectral amplitude coding. IEEE Trans. Commun. 2013, 61, 1544–1553. [Google Scholar] [CrossRef]
- Xiao, H.; Zuo, Y.; Wu, J.; Li, Y.; Lin, J. Bit-error-rate performance of non-line-of-sight UV transmission with spatial diversity reception. Opt. Lett. 2012, 37, 4143–4145. [Google Scholar] [CrossRef]
- Hutt, D.L.; Tofsted, D.H. Effect of atmospheric turbulence on propagation of ultraviolet radiation. Opt. Laser Technol. 2000, 32, 39–48. [Google Scholar] [CrossRef]
- Ding, H.; Chen, G.; Majumdar, A.K.; Sadler, B.M.; Xu, Z. Turbulence modeling for non-line-of-sight ultraviolet scattering channels. In Atmospheric Propagation VIII; SPIE: Orlando, FL, USA, 2011; Volume 8038, pp. 195–202. [Google Scholar]
- Zuo, Y.; Xiao, H.; Wu, J.; Hong, X.; Lin, J. Effect of atmospheric turbulence on non-line-of-sight ultraviolet communications. In Proceedings of the 2012 IEEE 23rd International Symposium on Personal, Indoor and Mobile Radio Communications—(PIMRC), Sydney, NSW, Australia, 9–12 September 2012. [Google Scholar]
- Xiao, H.; Zuo, Y.; Fan, C.; Wu, C.; Wu, J. Non-line-of-sight ultraviolet channel parameters estimation in turbulence atmosphere. In Proceedings of the 2012 Asia Communications and Photonics Conference (ACP), Guangzhou, China, 7–10 November 2012. [Google Scholar]
- Liu, W.; Xu, Z. Characteristics of optical scattering and turbulence communication channels. In Proceedings of the 2014 48th Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, USA, 2–5 November 2014. [Google Scholar]
- Liao, L.; Li, Z.; Lang, T.; Sadler, B.M.; Chen, G. Turbulence channel test and analysis for NLOS UV communication. In Laser Communication and Propagation through the Atmosphere and Oceans III; SPIE: San Diego, CA, USA, 2014; Volume 9224, pp. 411–416. [Google Scholar]
- Liao, L.; Li, Z.; Lang, T.; Chen, G. UV LED array based NLOS UV turbulence channel modeling and experimental verification. Opt. Express 2015, 23, 21825–21835. [Google Scholar] [CrossRef]
- Li, B.; Wang, H.; Wu, X.; Song, B.; Hu, H. Modification of atmospheric extinction coefficient of non-line-of-sight ultraviolet communication under weak turbulence. Opt. Laser Technol. 2015, 66, 45–51. [Google Scholar] [CrossRef]
- Wang, K.; Gong, C.; Zou, D.; Xu, Z. Turbulence channel modeling and non-parametric estimation for optical wireless scattering communication. J. Light. Technol. 2017, 35, 2746–2756. [Google Scholar] [CrossRef]
- Chen, G.; Liao, L.; Li, Z.; Drost, R.J.; Sadler, M.B. Experimental and simulated evaluation of long distance NLOS UV communication. In Proceedings of the 9th International Symposium on Communication Systems, Networks Digital Signal Processing (CSNDSP), Manchester, UK, 23–25 July 2014. [Google Scholar]
- Raptis, N.; Pikasis, E.; Syvridis, D. Performance evaluation of modulation and multiple access schemes in ultraviolet optical wireless connections for two atmosphere thickness cases. JOSA A 2016, 33, 1628–1640. [Google Scholar] [CrossRef]
- Arya, S.; Chung, Y.H. A unified statistical model for Málaga distributed optical scattering communications. Opt. Commun. 2020, 463, 125402. [Google Scholar] [CrossRef]
- Arya, S.; Chung, Y.H. Non-line-of-sight ultraviolet communication with receiver diversity in atmospheric turbulence. IEEE Photonics Technol. Lett. 2018, 30, 895–898. [Google Scholar] [CrossRef]
- Arya, S.; Chung, Y.H. Maximal Selective Transmit Diversity for Petahertz Wireless Communications With Continuous Waveform Detector. IEEE Access 2021, 9, 118005–118018. [Google Scholar] [CrossRef]
- Varotsos, G.K.; Nistazakis, H.E.; Kapotis, E.; Chatzikontis, E.V.; Aidinis, K.; Volos, C.K. ABER Estimation of NLOS UV Links with Time Diversity over K-Turbulent Channels and Path Loss. In Proceedings of the 2023 12th International Conference on Modern Circuits and Systems Technologies (MOCAST), Athens, Greece, 28–30 June 2023. [Google Scholar]
- Gong, C.; Xu, Z. Linear receivers for optical wireless scattering communication with multiple photon detectors. In Proceedings of the 2014 IEEE Globecom Workshops (GC Wkshps), Austin, TX, USA, 8–12 December 2014. [Google Scholar]
- Huang, B.; Gong, C.; Xu, Z. Correlation study for single-input multiple-output optical wireless scattering channels. In Proceedings of the 2014 48th Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, USA, 2–5 November 2014. [Google Scholar]
- Guo, L.; Liu, K.; Meng, D.; Mu, X.; Han, D. Simulation and experimental research on the Alamouti code for ultraviolet communication. Opt. Eng. 2016, 55, 015101. [Google Scholar] [CrossRef]
- Meng, X.; Zhang, M.; Han, D.; Song, L.; Luo, P. Experimental study on 1 × 4 real-time SIMO diversity reception scheme for a ultraviolet communication system. In Proceedings of the 2015 20th European Conference on Networks and Optical Communications-(NOC), London, UK, 30 June–2 July 2015. [Google Scholar]
- Cong, R.; Zuo, Y.; Li, F.; Meng, L.; Qin, H.; Zhang, J.; Wu, J. Experimental performance of 2 × 2 Alamouti space-time coding non-line-of-sight ultraviolet communication system. In Proceedings of the Asia Communications and Photonics Conference, Guangzhou, China, 10–13 November 2017. [Google Scholar]
- Ardakani, M.H.; Heidarpour, A.R.; Uysal, M. Performance analysis of MIMO NLOS UV communications over atmospheric turbulence channels. In Proceedings of the Workshop on Optical Wireless Communications (OWC 2016), Doha, Qatar, 3 April 2016. [Google Scholar]
- Han, D.; Zhang, M.; Li, Q. Experimental measurement of link gain and correlation in a single-input multiple-output ultraviolet communication system with diversity reception. Opt. Eng. 2017, 56, 084108. [Google Scholar] [CrossRef]
- Zou, D.; Gong, C.; Xu, Z. Secrecy rate of MISO optical wireless scattering communications. IEEE Trans. Commun. 2017, 66, 225–238. [Google Scholar] [CrossRef]
- Mou, W.; Pu, T.; Yang, W.; Zheng, J.; Tang, X. Secrecy performance of noncoplanar SIMOME NLOS ultraviolet communications over turbulence channels. Opt. Commun. 2019, 433, 262–267. [Google Scholar] [CrossRef]
- Qin, H.; Zuo, Y.; Li, F.; Cong, R.; Meng, L.; Wu, J. Noncoplanar geometry for mobile NLOS MIMO ultraviolet communication with linear complexity signal detection. IEEE Photonics J. 2017, 9, 1–12. [Google Scholar] [CrossRef]
- Gu, Y.; Zhang, M.; Han, D.; Chen, Q.; Ghassemlooy, Z. Experimental research on SOPP-OSTBC scheme in UV communication with concise 2-PPM. In Proceedings of the 2017 Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR), Singapore, 31 July–4 August 2017. [Google Scholar]
- Alkhazragi, O.; Hu, F.; Zou, P.; Ha, Y.; Kang, C.H.; Mao, Y.; Ng, T.K.; Chi, N.; Ooi, B.S. Gbit/s ultraviolet-C diffuse-line-of-sight communication based on probabilistically shaped DMT and diversity reception. Opt. Express 2020, 28, 9111–9122. [Google Scholar] [CrossRef] [PubMed]
- Bhatia, V.; Jain, S.; Garg, K.; Mitra, R. Performance analysis of RKHS based detectors for nonlinear NLOS ultraviolet communications. IEEE Trans. Veh. Technol. 2021, 70, 3625–3639. [Google Scholar] [CrossRef]
- Han, D.; Liu, Y.; Zhang, K.; Luo, P.; Zhang, M. Theoretical and experimental research on diversity reception technology in NLOS UV communication system. Opt. Express 2012, 20, 15833–15842. [Google Scholar] [CrossRef]
- Geller, M.; Keenan, T.E.; Altman, D.E.; Patterson, R.H. Optical Non-Line-of-Sight Covert, Secure High Data Communication System; Patent Department of the Navy: San Diego, CA, USA, 1985. [Google Scholar]
- Puschell, J.J.; Bayse, R. High data rate ultraviolet communication systems for the tactical battlefield. In Proceedings of the Conference Proceedings on Tactical Communications, Fort Wayne, IN, USA, 24–26 April 1990. [Google Scholar]
- Sun, X.; Zhang, Z.; Chaaban, A.; Ng, T.K.; Shen, C.; Chen, R.; Yan, J.; Sun, H.; Li, X.; Wang, J.; et al. 71-Mbit/s ultraviolet-B LED communication link based on 8-QAM-OFDM modulation. Opt. Express 2017, 25, 23267–23274. [Google Scholar] [CrossRef]
- He, X.; Xie, E.; Islim, M.S.; Purwita, A.A.; McKendry, J.J.; Gu, E.; Haas, H.; Dawson, M.D. 1 Gbps free-space deep-ultraviolet communications based on III-nitride micro-LEDs emitting at 262 nm. Photonics Res. 2019, 7, B41–B47. [Google Scholar] [CrossRef]
- He, Q.; Xu, Z.; Brian, M.S. Non-line-of-sight serial relayed link for optical wireless communications. In Proceedings of the 2010-Milcom 2010 Military Communications Conference, San Jose, CA, USA, 31 October–3 November 2010. [Google Scholar]
- Ardakani, M.H.; Heidarpour, A.R.; Uysal, M. Performance analysis of relay-assisted NLOS ultraviolet communications over turbulence channels. J. Opt. Commun. Netw. 2017, 9, 109–118. [Google Scholar] [CrossRef]
- Ardakani, M.H.; Uysal, M. Relay-assisted OFDM for ultraviolet communications: Performance analysis and optimization. IEEE Trans. Wirel. Commun. 2016, 16, 607–618. [Google Scholar] [CrossRef]
- Varotsos, G.K.; Nistazakis, H.E.; Aidinis, K.; Jaber, F.; Rahman, K.K.M. Signal intensity estimation in transdermal optical wireless links with stochastic pointing errorseEffect. Technologies 2020, 8, 60. [Google Scholar] [CrossRef]
- Liu, T.; Bihr, U.; Anis, S.M.; Ortmanns, M. Optical transcutaneous link for low power, high data rate telemetry. In Proceedings of the 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), San Diego, CA, USA, 28 August–1 September 2012. [Google Scholar]
- Gil, Y.; Rotter, N.; Arnon, S. Feasibility of retroreflective transdermal optical wireless communication. Appl. Opt. 2012, 51, 4232–4239. [Google Scholar] [CrossRef] [PubMed]
- Abita, J.L.; Schneider, W. Transdermal Optical Communications. John Hopkins APL Tech. Dig. 2004, 25, 261–268. [Google Scholar]
- Liu, T.; Bihr, U.; Becker, J.; Anders, J.; Ortmanns, M. In vivo verification of a 100 Mbps transcutaneous optical telemetric link. In Proceedings of the Biomedical Circuits and Systems Conference (BioCAS), Lausanne, Switzerland, 22–24 October 2014. [Google Scholar]
- Ackermann, D.M.; Smith, B.; Wang, X.F.; Kilgore, K.L.; Peckham, P.H. Designing the optical interface of a transcutaneous optical telemetry link. IEEE Trans. Biomed. Eng. 2008, 55, 1365–1373. [Google Scholar] [CrossRef] [PubMed]
- Parmentier, S.; Fontaine, R.; Roy, Y. Laser diode used in 16 Mb/s, 10 mW optical transcutaneous telemetry system. In Proceedings of the 2008 IEEE Biomedical Circuits and Systems Conference, Baltimore, MD, USA, 20–22 November 2008. [Google Scholar]
- Miranda, H.; Gilja, V.; Chestek, C.A.; Shenoy, K.V.; Meng, T.H.; Hermes, D. A high-rate long-range wireless transmission system for simultaneous multichannel neural recording applications. IEEE Trans. Biomed. Circuits Syst. 2010, 4, 181–191. [Google Scholar] [CrossRef]
- Liu, T.; Anders, J.; Ortmanns, M. Bidirectional optical transcutaneous telemetric link for brain machine interface. Electron. Lett. 2015, 51, 1969–1971. [Google Scholar] [CrossRef]
- Trevlakis, S.E.; Boulogeorgos, A.A.A.; Sofotasios, P.C.; Muhaidat, S.; Karagiannidis, G.K. Optical wireless cochlear implants. Biomed. Opt. Express 2019, 10, 707–730. [Google Scholar] [CrossRef]
- Trevlakis, S.E.; Boulogeorgos, A.A.A.; Chatzidiamantis, N.D.; Karagiannidis, G.K. All-optical cochlear implants. IEEE Trans. Mol. Biol. Multi-Scale Commun. 2020, 6, 13–24. [Google Scholar] [CrossRef]
- Trevlakis, S.E.; Boulogeorgos, A.A.A.; Karagiannidis, G.K. On the impact of misalignment fading in transdermal optical wireless communications. In Proceedings of the 7th International Conference on Modern Circuits and Systems Technologies (MOCAST), Thessaloniki, Greece, 7–9 May 2018. [Google Scholar]
- Trevlakis, S.E.; Boulogeorgos, A.A.A.; Karagiannidis, G. Signal quality assessment for transdermal optical wireless communications under pointing errors. Technologies 2018, 6, 109. [Google Scholar] [CrossRef]
- Trevlakis, S.E.; Boulogeorgos, A.A.A.; Karagiannidis, G.K. Outage performance of transdermal optical wireless links in the presence of pointing errors. In Proceedings of the 2018 IEEE 19th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), Kalamata, Greece, 25–28 June 2018. [Google Scholar]
- Boulogeorgos, A.A.A.; Trevlakis, S.E.; Chatzidiamantis, N.D. Optical wireless communications for in-body and transdermal biomedical applications. IEEE Commun. Mag. 2021, 59, 119–125. [Google Scholar] [CrossRef]
- Varotsos, G.K.; Nistazakis, H.E.; Tombras, G.S.; Aidinis, K.; Jaber, F.; Rahman, M. On the use of diversity in transdermal optical wireless links with nonzero boresight pointing errors for outage performance estimation. In Proceedings of the 2019 8th International Conference on Modern Circuits and Systems Technologies (MOCAST), Thessaloniki, Greece, 13–15 May 2019. [Google Scholar]
- Varotsos, G.K.; Nistazakis, H.E.; Aidinis, K.; Roumelas, G.D.; Jaber, F.; Rahman, K.K.M. Modulated retro-reflector transdermal optical wireless communication systems with wavelength diversity over skin-induced attenuation and pointing errors. In Proceedings of the 2020 IEE International Symposium on Signal Processing and Information Technology (ISSPIT), Ajman, United Arab Emirates, 10–12 December 2019. [Google Scholar]
- Varotsos, G.K.; Nistazakis, H.E.; Aidinis, K.; Jaber, F.; Nasor, M.; Rahman, K.K.M. Error performance estimation of modulated retroreflective transdermal optical wireless links with diversity under generalized pointing errors. Telecom 2021, 2, 167–180. [Google Scholar] [CrossRef]
- Diamantoulakis, P.D.; Karagiannidis, G.K.; Ding, Z. Simultaneous lightwave information and power transfer (SLIPT). IEEE Trans. Green Commun. Netw. 2018, 2, 764–773. [Google Scholar] [CrossRef]
- Pan, G.; Diamantoulakis, P.D.; Ma, Z.; Ding, Z.; Karagiannidis, G.K. Simultaneous lightwave information and power transfer: Policies, techniques, and future directions. IEEE Access 2019, 7, 28250–28257. [Google Scholar] [CrossRef]
- Guillory, K.S.; Misener, A.K.; Pungor, A. Hybrid RF/IR transcutaneous telemetry for power and high-bandwidth data. In Proceedings of the 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, San Francisco, CA, USA, 1–4 September 2005. [Google Scholar]
- Zeng, F.G.; Rebscher, S.; Harrison, W.; Sun, X.; Feng, H. Cochlear implants: System design, integration, and evaluation. IEEE Rev. Biomed. Eng. 2008, 1, 115–142. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Bihr, U.; Anders, J.; Ortmanns, M. Performance evaluation of a low power optical wireless link for biomedical data transfer. In Proceedings of the 2014 IEEE International Symposium on Circuits and Systems (ISCAS), Melbourne, Australia, 1–5 June 2014. [Google Scholar]
- Lange, S.; Xu, H.; Lang, C.; Pless, H.; Becker, J.; Tiedkte, H.J.; Hennig, E.; Ortmanns, M. An AC-powered optical receiver consuming 270μW for transcutaneous 2Mb/s data transfer. In Proceedings of the 2011 IEEE International Solid-State Circuits Conference, San Francisco, CA, USA, 20–24 February 2011. [Google Scholar]
Ref. | Turbulence Model | Pointing ERRORS | Modulation Technique | FSO System Configuration | Diversity Method | Transmitted Power | Data Rate | Link Length | BER | ASEP/ Pf |
---|---|---|---|---|---|---|---|---|---|---|
[68] | - | - | OOK | SISO | - | 199.53 mW | 80 Mbps | 1.4 km | 10−6 | - |
[69] | - | - | OOK | SISO | - | 1.778 μW | 40 Gbps | 212 m | 10−9 | - |
- | - | OOK | WDM | - | 1.778 μW | 1.28 Tbps | 212 m | 10−9 | - | |
[70] | OOK | SISO | - | 4 mW | 2.5 Gbps | 2.7 km | <10−9 | - | ||
[71] | - | - | 16-QAM | SISO | - | 10 mW | 320 Gbps | 11.5 m | 10−3 | - |
- | - | 16-QAM | WDM | - | 10 mW | 2.2 Tbps | 11.5 m | 10−6 | - | |
[26] | - | - | OOK | SISO (clear) | - | 158.49 mW | 30 b/s/Hz | 500 m | 10−7 | - |
- | - | OOK | SISO (fog) | - | 158.49 mW | 18 b/s/Hz | 500 m | 10−3 | - | |
[72] | - | - | OOK | SISO (coast) | - | 1 mW | 1 Gbps | 70 m | - | - |
[73] | NAVSLaM | - | OOK | SISO (coast) | - | 150 mW | 155 Mbps | 2958 m | - | - |
[2] | Malaga | ZB (weak) | 4-PPM | SISO | - | 14.125 mW | - | 1 km | 2.2 × 10−3 | - |
(strong) | NZB (weak) | 4-PPM | SIMO | Spatial | 14.125 mW | - | 1 km | 3 × 10−5 | - | |
[2] | Malaga | ZB (weak) | 4-PPM | SISO | - | 14.125 mW | - | 1 km | 1.8 × 10−4 | - |
(weak) | NZB (weak) | 4-PPM | SIMO | Spatial | 14.125 mW | - | 1 km | 7 × 10−7 | - | |
[2] | Malaga | NZB (strong) | OOK | SIMO | Spatial | 14.125 mW | - | 1 km | 10−3 | - |
(moderate) | NZB (strong) | 8-PPM | SIMO | Spatial | 14.125 mW | - | 1 km | 10−4 | - | |
[2] | Malaga | NZB (weak) | OOK | SIMO | Spatial | 14.125 mW | - | 1 km | 4 × 10−5 | - |
(moderate) | NZB (weak) | 8-PPM | SIMO | Spatial | 14.125 mW | - | 1 km | 2 × 10−7 | - | |
[64] | Malaga | NZB (weak) | 4-PSK | Single-hop | - | 14.125 mW | - | 1 km | - | 1.5 × 10−3 |
(weak) | NZB (weak) | 4-PSK | Dual-hop | - | 28.25 mW | - | 2 km | - | 2.9 × 10−3 | |
[65] | G–G | - | OOK | SISO (C > 0) | - | 20 mW | - | 10 km | - | 3 × 10−3 |
(weak) | - | OOK | SISO (C < 0) | - | 20 mW | - | 10 km | - | 2 × 10−3 |
Reference | Light Emitter | Turbulence Model | Modulation Technique | UV System Configuration | Diversity Method | Transmitted Power | Data Rate | Link Length | BER |
---|---|---|---|---|---|---|---|---|---|
[122] | Hg(Xe) lamp 265 nm | - | PPM | SISO | - | 25 W | 1.2 Mbps | 1.6 km | - |
[121] | Hg(Ar) lamp 253 nm | - | PPM | SISO | - | 5 W | 10 kbps | 0.5 km | 10−5 |
[120] | UV LED arrays 265 nm | - | OOK/PPM | SISO | - | 43 mW | 5 kbps | 10 m | 8 × 10−3 |
- | OOK/PPM | MIMO | Spatial | 43 mW | 5 kbps | 10 m | 4 × 10−5 | ||
[123] | UV LED 294 nm | - | OFDM | SISO | - | 190 W | 71 Mbps | 0.08 m | 3.8 × 10−3 |
[124] | UV-C μLED 262 nm | - | OFDM | SISO | - | 196 μW | 1.1 Gbps | 0.3 m | 3.8 × 10−3 |
[82] | UV LED 250 nm | - | OOK | SISO | - | 50 mW | 10 kbps | 105 m | 10−3 |
- | PPM | SISO | - | 50 mW | 10 kbps | 155 m | 10−3 | ||
[110] | UV LED 265 nm | - | OOK | SISO | - | 10 mW | 64 kbps | 35 m | 10−2 |
- | OOK | SIMO | Spatial | 10 mW | 64 kbps | 35 m | 10−6 | ||
[102] | UV LED 265 nm | LN (weak) | OOK | SISO | - | 21.38 mW | - | 50 m | 10−5 |
LN (weak) | 4-PPM | SISO | - | 12.59 mW | - | 50 m | 10−5 | ||
[105] | UV LED 280 nm | G–G (weak) | OOK | SISO | - | 100 mW | - | 200 m | 3 × 10−12 |
G–G (strong) | OOK | SISO | - | 100 mW | - | 200 m | 5 × 10−11 | ||
[106] | UV LED 260 nm | K (strong) | OOK | SISO | - | 63.1 mW | - | 200 m | 2 × 10−10 |
K (strong) | OOK | SIMO | Time | 63.1 mW | - | 200 m | 10−13 | ||
[125] | UV Laser 250 nm | - | OOK | Multi-hop | - | 10 mW | 64 kbps | 300 m | 10−5 |
Reference | Type | Transmitted Power | Data Rate | Skin Thickness | Deterministic Misalignment | BER |
---|---|---|---|---|---|---|
[135] | RF | 30 mW | 24 Mbps | - | - | - |
[148] | RF-IR | 90 mW | 80 Mbps | 3 mm | 2 mm | 10−14 |
[149] | RF (cochlear) | 20–40 mW | 1 Mbps | 4–10 mm | - | - |
[134] | TOW | 16 mW | 16 Mbps | 4 mm | 2 mm | 10−9 |
[129] | TOW | 4.1 mW | 50 Mbps | 4 mm | 2 mm | 10−5 |
[150] | TOW | 2.8 mW | 75 Mbps | 6 mm | 4 mm | 10−5 |
[151] | TOW (retinal) | 190–270 μW | 2–3 Mbps | 300 μm | - | - |
[132] | TOW (in vivo) | 2.1 mW | 100 Mbps | 2.5 mm | - | 2 × 10−7 |
[137] | TOW (cochlear) | 2–10 μW | 150–160 Mbps | 4–10 mm | - | - |
[137] | TOW | PSD = 0.1 μW/MHz | 128.77 Mbps | 5 mm | - | - |
cochlear | 10 MHz, θ = 15° | 119.43 Mbps | 10 mm | |||
[137] | TOW | PSD = 1 μW/MHz | 207 Mbps- | 4 mm | - | - |
cochlear | 13–20 MHz | 325 Mbps | ||||
[136] | TOW | 290 μW | 1 Mbps (down) | 2 mm | - | - |
bi-directional | 3.2 mW | 100 Mbps (up) |
Reference | TOW System Configuration | Transmitted Power | Skin Thickness | Pointing Errors | BER | Outage Probability |
---|---|---|---|---|---|---|
[130] | SISO/direct | 0.4 μW | 1 mm | - | ≅10−6 | - |
SISO/R-R | 4 mW | 1 mm | - | ≅10−6 | - | |
[5] | SISO/R-R | 2.9 mW | 1 mm | - | - | - |
[145] | SISO/R-R | 1 μW/MHz | 8 mm | ZB | ≅3 × 10−4 | - |
SIMO/R-R | 1 μW/MHz | 8 mm | NZB | ≅8 × 10−7 | - | |
[144] | SISO/R-R | 1 μW/MHz | 7 mm | ZB | - | ≅2.3 × 10−2 |
SIMO/R-R | 1 μW/MHz | 7 mm | NZB | - | ≅10−5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Varotsos, G.K.; Aidinis, K.; Nistazakis, H.E.; Gajic, Z. Energy-Efficient Emerging Optical Wireless Links. Energies 2023, 16, 6485. https://doi.org/10.3390/en16186485
Varotsos GK, Aidinis K, Nistazakis HE, Gajic Z. Energy-Efficient Emerging Optical Wireless Links. Energies. 2023; 16(18):6485. https://doi.org/10.3390/en16186485
Chicago/Turabian StyleVarotsos, George K., Konstantinos Aidinis, Hector E. Nistazakis, and Zoran Gajic. 2023. "Energy-Efficient Emerging Optical Wireless Links" Energies 16, no. 18: 6485. https://doi.org/10.3390/en16186485
APA StyleVarotsos, G. K., Aidinis, K., Nistazakis, H. E., & Gajic, Z. (2023). Energy-Efficient Emerging Optical Wireless Links. Energies, 16(18), 6485. https://doi.org/10.3390/en16186485