Techno-Economic Analysis of Alternative PV Orientations in Poland by Rescaling Real PV Profiles
Abstract
:1. Introduction
2. Situation
2.1. Real PV Generation
2.2. Grid Code
3. Analysis of the Energy Generation in the Context of Grid Code Requirements
3.1. Grid Code
3.2. Expected Grid Constraint
- φ—the angle between real and apparent power,
- ψ—the angle that describes the impedance of the supply line,
- S″kQ—short circuit power,
- ∆I/∆S—change of consumed or generated current/power.
3.3. Profits
3.4. Concept of Modification of Energy Integration and Accounting Rules
- -
- the maximum loading of transformers or lines,
- -
- the maximum voltage rise,
- -
- the maximum allowable power quality degradation.
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lin, Y.; Seo, G.-S.; Vijayshankar, S.; Johnson, B.; Dhople, S. Impact of Increased Inverter-Based Resources on Power System Small-Signal Stability. In Proceedings of the 2021 IEEE Power & Energy Society General Meeting (PESGM), Washington, DC, USA, 26–29 July 2021; pp. 1–5. [Google Scholar]
- Kim, D.; Cho, H.; Park, B.; Lee, B. Evaluating Influence of Inverter-Based Resources on System Strength Considering Inverter Interaction Level. Sustainability 2020, 12, 3469. [Google Scholar] [CrossRef]
- Aniceto, B.C.; Vilela, W.A.; Neto, J.C.; Rodrigues, B.U.; Cararo, J.A.; Gomes, V.M.; Silva, A.H.; Freitas, J.L.; Silva, D.C.; Gomes, F.A. Calculation and Analysis of Voltage Violation Problem on Electricity Distribution Networks. In Proceedings of the 2017 18th International Scientific Conference on Electric Power Engineering (EPE), Kouty nad Desnou, Czech Republic, 17–19 May 2017; pp. 1–6. [Google Scholar]
- TAURON Dystrybucja, S.A. Informacje Dotyczące Podmiotów Ubiegających się o Przyłączenie źródeł do sieci Elektroenergetycznej o Napięciu Znamionowym Wyższym niż 1 kV. 07.2023. Available online: https://energa-operator.pl/przylaczenie-do-sieci/informacje-o-stanie-przylaczen/podmioty-ubiegajace-sie (accessed on 20 July 2023).
- Skłodowska, M.; Zasuń, R. Projekty OZE Odbijają Się od Sieci. Odmowy Przyłączenia Pobiły Record. Available online: https://wysokienapiecie.pl/86845-projekty-oze-odmowy-przylaczenia/ (accessed on 20 July 2023).
- Ceran, B.; Jurasz, J.; Mielcarek, A.; Campana, P.E. PV Systems Integrated with Commercial Buildings for Local and National Peak Load Shaving in Poland. J. Clean. Prod. 2021, 322, 129076. [Google Scholar] [CrossRef]
- Vodapally, S.N.; Ali, M.H. A Comprehensive Review of Solar Photovoltaic (PV) Technologies, Architecture, and Its Applications to Improved Efficiency. Energies 2023, 16, 319. [Google Scholar] [CrossRef]
- Vosti. Kierunek Ustawienia Paneli Fotowoltaicznych—W Którą Stronę Instalować Moduły. Available online: https://energia.rp.pl/ceny-energii/art38596411-po-raz-pierwszy-ceny-energii-byly-w-polsce-ujemne-czy-wplynie-to-na-rachunki (accessed on 17 July 2023).
- Kurowska, K.; Kryszk, H.; Bielski, S. Location and Technical Requirements for Photovoltaic Power Stations in Poland. Energies 2022, 15, 2701. [Google Scholar] [CrossRef]
- Alternative Technology Association. Oversizing PV Arrays: How Far Should You Go? In ReNew: Technology for a Sustainable Future; Alternative Technology Association: Melbourne, Australia, 2014; pp. 30–33. Available online: https://www.jstor.org/stable/renetechsustfutu.128.30 (accessed on 17 July 2023).
- Cossu, S.; Baccoli, R.; Ghiani, E. Utility Scale Ground Mounted Photovoltaic Plants with Gable Structure and Inverter Oversizing for Land-Use Optimization. Energies 2021, 14, 3084. [Google Scholar] [CrossRef]
- PSE Ograniczyło w Niedzielę Moc z Fotowoltaiki o ok. 2,2 GW. Available online: https://www.wnp.pl/energetyka/pse-ograniczylo-w-niedziele-moc-z-fotowoltaiki-o-ok-2-2-gw.702501.html (accessed on 29 June 2023).
- Darwish, Z.A.; Sopian, K.; Fudholi, A. Reduced Output of Photovoltaic Modules Due to Different Types of Dust Particles. J. Clean. Prod. 2021, 280, 124317. [Google Scholar] [CrossRef]
- Valentin, G. PV*SOL® Pro Version 5.5 Design and Simulation of Photovoltaic System. Manual; Valentin Software: Berlin, Germany, 2012. [Google Scholar]
- Ghasempour, A.; Lou, J. Advanced Metering Infrastructure in Smart Grid: Requirements Challenges Architectures Technologies and Optimizations. Smart Grids Emerg. Technol. Chall. Future Dir. 2017, 1, 77–127. [Google Scholar]
- DigSilent GmbH, PowerFactory 2023—User Manual; DIgSILENT GmbH: Gomaringen, Germany, 2023.
- DigSilent GmbH, Power Factory 2021 Technical Reference DIgSILENT Photovoltaic System Templates, 1st ed.; DIgSILENT GmbH: Gomaringen, Germany, 2021; Available online: https://www.digsilent.de/en/downloads.html (accessed on 20 June 2023).
- Monthly Generation of Solar PV in Germany—Charts—Data & Statistics. Available online: https://www.iea.org/data-and-statistics/charts/monthly-generation-of-solar-pv-in-germany (accessed on 29 June 2023).
- Duffie, J.A.; Beckman, W.A. Solar Engineering of Thermal Processes; John Wiley & Sons: Hoboken, NJ, USA, 2013. [Google Scholar]
- Woszczyński, M.; Stankiewicz, K. Analiza Efektywności Energetycznej i Założenia Techniczne Rozbudowy Instalacji Fotowoltaicznych Na Dachach Obiektów Przemysłowych. In Innowacyjne i Przyjazne dla Środowiska Techniki i Technologie Przeróbki Surowców Mineralnych. Bezpieczeństwo–Jakość–Efektywność; Instytut Techniki Górniczej KOMAG: Gliwice, Poland, 2021; pp. 67–82. [Google Scholar] [CrossRef]
- Virtanen, S. Self-Cleaning Technologies on Solar Modules and Their Effect on Performance; JAMK University of Applied Sciences: Jyvaskyla, Finland, 2017. [Google Scholar]
- Vieira, R.G.; de Araújo, F.M.; Dhimish, M.; Guerra, M.I. A Comprehensive Review on Bypass Diode Application on Photovoltaic Modules. Energies 2020, 13, 2472. [Google Scholar] [CrossRef]
- Abdullah, G.; Nishimura, H.; Fujita, T. An Experimental Investigation on Photovoltaic Array Power Output Affected by the Different Partial Shading Conditions. Energies 2021, 14, 2344. [Google Scholar] [CrossRef]
- Ul-Haq, A.; Fahad, S.; Gul, S.; Bo, R. Intelligent Control Schemes for Maximum Power Extraction from Photovoltaic Arrays under Faults. Energies 2023, 16, 974. [Google Scholar] [CrossRef]
- Reker, S.; Schneider, J.; Gerhards, C. Integration of Vertical Solar Power Plants into a Future German Energy System. Smart Energy 2022, 7, 100083. [Google Scholar] [CrossRef]
- Commission Regulation (EU) 2016/631 of 14 April 2016 Establishing a Network Code on Requirements for Grid Connection of Generators. 2016. Available online: http://data.europa.eu/eli/reg/2016/631/oj (accessed on 29 June 2023).
- PSE. Wymogi Ogólnego Stosowania Wynikające z Rozporządzenia Komisji (UE) 2016/631 z Dnia 14 Kwietnia 2016 r. Ustanawiającego Kodeks Sieci Dotyczący Wymogów w Zakresie Przyłączenia Jednostek Wytwórczych Do Sieci (NC RfG); PSE S.A.: Konstancin-Jeziorna, Poland, 2018. [Google Scholar]
- Enea Operator. Instrukcja Ruchu i Eksploatacji Sieci Dystrybucyjnej. 2014. Available online: https://www.operator.enea.pl/uploads-ev2/Operator/us%C5%82ugidystrybucyjne/iriesd/iriesd_enea-operator_wer.2.3.pdf (accessed on 29 June 2023).
- Gorgan, B.; Busoi, S.; Tanasescu, G.; Notingher, P.V. PV Plant Modeling for Power System Integration Using PSCAD Software. In Proceedings of the 2015 9th International Symposium on Advanced Topics in Electrical Engineering (ATEE), Bucharest, Romania, 7–9 May 2015; pp. 753–758. [Google Scholar]
- Santiago, I.; García-Quintero, J.; Mengibar-Ariza, G.; Trillo-Montero, D.; Real-Calvo, R.J.; Gonzalez-Redondo, M. Analysis of Some Power Quality Parameters at the Points of Common Coupling of Photovoltaic Plants Based on Data Measured by Inverters. Appl. Sci. 2022, 12, 1138. [Google Scholar] [CrossRef]
- Flota-Bañuelos, M.; Espinosa-Trujillo, M.; Cruz-Chan, J.; Kamal, T. Experimental Study of an Inverter Control for Reactive Power Compensation in a Grid-Connected Solar Photovoltaic System Using Sliding Mode Control. Energies 2023, 16, 853. [Google Scholar] [CrossRef]
- Dharmasakya, A.H.; Putranto, L.M.; Irnawan, R. A Review of Reactive Power Management in Distribution Network with PV System. In Proceedings of the 2021 13th IEEE PES Asia Pacific Power & Energy Engineering Conference (APPEEC), Thiruvananthapuram, India, 21–23 November 2021; pp. 1–6. [Google Scholar]
- Almeida, D.; Pasupuleti, J.; Ekanayake, J. Comparison of Reactive Power Control Techniques for Solar PV Inverters to Mitigate Voltage Rise in Low-Voltage Grids. Electronics 2021, 10, 1569. [Google Scholar] [CrossRef]
- Fronius, Sizing the Maximum DC Voltage of PV Systems. Available online: https://www.fronius.com/~/downloads/Solar%20Energy/Whitepaper/SE_WP_Sizing_the_maximum_DC_Voltage_for_PV_systems_EN_AU.pdf (accessed on 20 July 2023).
- Keller, J.; Kroposki, B. Understanding Fault Characteristics of Inverter-Based Distributed Energy Resources, NREL, Cole Boulevard, Golden, Colorado. 2010. Available online: https://www.nrel.gov/docs/fy10osti/46698.pdf (accessed on 20 July 2023).
- Berg, H.-P.; Fritze, N. Reliability and vulnerability of transformers for electricity transmission and distribution. J. Pol. Saf. Reliab. Assoc. 2015, 6, 15–24. Available online: https://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-d398ded7-e488-4207-9618-59bb309421b9 (accessed on 20 July 2023).
- Gielniak, J.; Czerniak, M. Investigation of Distribution Transformers Vibrations in Terms of Core and Winding Condition Assessment. Energies 2021, 15, 13. [Google Scholar] [CrossRef]
- Dombek, G.; Nadolny, Z.; Przybyłek, P.; Lopatkiewicz, R.; Marcinkowska, A.; Drużynski, L.; Boczar, T.; Tomczewski, A. Effect of Moisture on the Thermal Conductivity of Cellulose and Aramid Paper Impregnated with Various Dielectric Liquids. Energies 2020, 13, 4433. [Google Scholar] [CrossRef]
- Andruszkiewicz, J.; Lorenc, J.; Weychan, A. Price-Based Demand Side Response Programs and Their Effectiveness on the Example of TOU Electricity Tariff for Residential Consumers. Energies 2021, 14, 287. [Google Scholar] [CrossRef]
- Dudek, G.; Gawlak, A.; Kornatka, M.; Szkutnik, J. Analysis of Smart Meter Data for Electricity Consumers. In Proceedings of the 2018 15th International Conference on the European Energy Market (EEM), Lodz, Poland; 2018; pp. 1–5. [Google Scholar] [CrossRef]
- PTPiREE. Stanowisko Zespołu PTPiREE ds. AMI Opis Wymagań Funkcjonalnych—Liczniki 1-Fazowe i 3-Fazowe. Available online: https://docplayer.pl/25305617-Stanowisko-zespolu-ptpiree-ds-ami.html (accessed on 29 June 2023).
- Musiał, E. Ocena Jakości Energii Elektrycznej w Sieciach Przemysłowych. Autom. Elektr. Zakłócenia 2010, 30–45. Available online: https://www.infona.pl/resource/bwmeta1.element.baztech-article-BWAD-0028-0003 (accessed on 29 June 2023).
- Łowczowski, K.; Nadolny, Z. Voltage Fluctuations and Flicker in Prosumer PV Installation. Energies 2022, 15, 2075. [Google Scholar] [CrossRef]
- Łowczowski, K.; Piotr Miller, P.; Udzik, M.; Złotecka, D. Switching operations in 110 kV networks in the context of synchro-check and mitigation of switching stress by utilizing proper control of renewables and energy storages. Energies 2023. under review. [Google Scholar]
- SMA Solar Technology AG. Q at Night—Reactive Power Outside Feed-in Operation with SUNNY CENTRAL Series CP XT, CP-JP and CP-US. Available online: https://files.sma.de/downloads/Q-at-Night-TI-en-12.pdf (accessed on 29 June 2023).
- PSE, Rynkowa Cena Energii Elektrycznej. Available online: https://www.pse.pl/dane-systemowe/funkcjonowanie-rb/raporty-dobowe-z-funkcjonowania-rb/podstawowe-wskazniki-cenowe-i-kosztowe/rynkowa-cena-energii-elektrycznej-rce (accessed on 15 July 2023).
- Enea Operator. Kryteria Techniczne Oceny Możliwości Przyłączania Jednostek Wytwórczych do sieci Dystrybucyjnej Średniego napięcia Operatora, Poznań 2014. Available online: https://www.operator.enea.pl/uploads-ev2/Operator/ospolce/raporty/kryteria_techniczne_dla_sieci_sn.pdf (accessed on 15 July 2023).
- PTPiREE. Przewodnika Prosumenta w Gospodarstwie Domowym. Available online: https://www.ure.gov.pl/pl/konsumenci/warto-wiedziec-poradnik/9087,Przewodnik-prosumenta-w-gospodarstwie-domowym.html (accessed on 15 July 2023).
- Landis Gyr, Landis+Gyr S650 Smart Grid Terminal A smart grid Innovation. Available online: https://www.landisgyr.eu/webfoo/wp-content/uploads/2013/08/S650-Product-Brochure-Final-online-07.08.2013.pdf (accessed on 15 July 2023).
- Lowczowski, K. Wplyw Odksztalcenia Napiecia na Przepiecia Ziemnozwarciowe, Przeglad Elektrotechniczny, R. 94 NR 10/2018. Available online: https://sigma-not.pl/publikacja-116293-2018-10.html (accessed on 15 July 2023).
- Chmielowiec, K.; Topolski, Ł.; Piszczek, A.; Rodziewicz, T.; Hanzelka, Z. Study on Energy Efficiency and Harmonic Emission of Photovoltaic Inverters. Energies 2022, 15, 2857. [Google Scholar] [CrossRef]
- PN-EN 50160:2010; Parametry Napięcia Zasilającego w Publicznych Sieciach Rozdzielczych. PKN: Warszawa, Poland, 2014.
- Ceran, B. The Concept of Use of PV/WT/FC Hybrid Power Generation System for Smoothing the Energy Profile of the Consumer. Energy 2019, 167, 853–865. [Google Scholar] [CrossRef]
- Andruszkiewicz, J.; Lorenc, J.; Weychan, A. Seasonal Variability of Price Elasticity of Demand of Households Using Zonal Tariffs and Its Impact on Hourly Load of the Power System. Energy 2020, 196, 117175. [Google Scholar] [CrossRef]
- Sobolewski, K.; Sobieska, E. Lightning Protection of Floating Photovoltaic Power Plants—Simulation Analysis of Sample Solutions. Energies 2023, 16, 4222. [Google Scholar] [CrossRef]
Orientation | Distance/Height of PV Panels | Rrzeszow | Suwalki | Swinoujscie | Wroclaw | ||||
---|---|---|---|---|---|---|---|---|---|
Shadow in 1st Row [%/Year] | Shadow in 2nd Row [%/Year] | Shadow in 1st Row [%/Year] | Shadow in 2nd Row [%/Year] | Shadow in 1st Row [%/Year] | Shadow in 2nd Row [%/Year] | Shadow in 1st Row [%/Year] | Shadow in 2nd Row [%/Year] | ||
S | 1 | 8.3 | 0.3 | 10.2 | 0.5 | 10.1 | 0.5 | 8.9 | 0.3 |
1.5 | 3.4 | 0.2 | 5.3 | 0.3 | 5.2 | 0.3 | 3.9 | 0.2 | |
2 | 1.3 | 0.1 | 2.8 | 0.2 | 2.7 | 0.2 | 1.6 | 0.2 | |
2.5 | 0.7 | 0.1 | 1.4 | 0.2 | 1.3 | 0.2 | 0.9 | 0.1 | |
4 | 0.3 | 0.1 | 0.5 | 0.1 | 0.5 | 0.1 | 0.4 | 0.1 | |
E | 1 | 9.9 | 0.9 | 11.3 | 1.1 | 11.7 | 1.8 | 9.9 | 0.9 |
1.5 | 5.3 | 0.5 | 6.1 | 0.6 | 6 | 0.6 | 5.4 | 0.5 | |
2 | 3.2 | 0.3 | 3.8 | 0.4 | 3.7 | 0.4 | 3.4 | 0.3 | |
2.5 | 2.2 | 0.2 | 2.6 | 0.3 | 3.6 | 1 | 2.3 | 0.2 | |
3 | 1.6 | 0.1 | 1.9 | 0.2 | 2 | 0.2 | 1.8 | 0.1 | |
4 | 1 | 0 | 1.3 | 0 | 1.3 | 0 | 1.1 | 0 | |
W | 1 | 10.4 | 1.6 | 11.8 | 1.8 | 11.2 | 1.1 | 10.8 | 1.6 |
1.5 | 6.1 | 1.2 | 6.9 | 1.4 | 6.9 | 1.4 | 6.3 | 1.3 | |
2 | 4.1 | 1 | 4.7 | 1.1 | 4.7 | 1.1 | 4.3 | 1 | |
2.5 | 3.1 | 0.9 | 3.6 | 1 | 3.6 | 1 | 3.2 | 0.9 | |
3 | 2.5 | 0.8 | 2.9 | 0.9 | 2.9 | 0.9 | 2.6 | 0.8 | |
4 | 1.9 | 0.6 | 2.2 | 0.7 | 2.2 | 0.7 | 2 | 0.6 | |
E/W | 1 | 3.2/4.1 | 0.3/1 | 3.8/4.7 | 0.4/1.1 | 3.8/4.7 | 0.4/1.1 | 3.4/4.2 | 0.3/1.0 |
1.5 | 2.2/3.1 | 0.2/0.9 | 2.7/3.6 | 0.3/1 | 2.6/3.6 | 0.3/1 | 2.4/3.2 | 0.2/0.9 | |
2 | 1.6/2.5 | 0.1/0.8 | 2.0/2.9 | 0.2/0.9 | 2.0/2.9 | 0.2/0.9 | 1.8/2.6 | 0.1/0.8 | |
2.5 | 1.3/2.2 | 0/0.7 | 1.5/2.5 | 0.1/0.8 | 1.5/2.5 | 0.1/0.8 | 1.4/2.3 | 0.1/0.7 | |
3 | 1.0/1.9 | 0/0.6 | 1.3/2.2 | 0/0.7 | 1.3/2.2 | 0/0.7 | 1.1/2 | 0/0.6 | |
4 | 0.6/1.5 | 0/0.6 | 0.8/1.7 | 0/0.6 | 0.8/1.7 | 0/0.6 | 0.7/1.6 | 0/0.6 |
Maximum Power Threshold Limit from Which a Power-Generating Module Qualifies as: | ||
---|---|---|
Type B | Type C | Type D |
0.2 MW | 10 MW | 75 MW |
Yearly Production (% of Nominal) as a Function of Reduction of Pnom (%) | ||||
---|---|---|---|---|
5 | 10 | 15 | 20 | |
Sun potential S | 98.54% | 97.02% | 95.05% | 92.65% |
Sun potential W | 75.25% | 74.69% | 73.72% | 72.37% |
Sun potential E | 75.25% | 74.69% | 73.72% | 72.37% |
Sun potential E/W | 75.37% | 75.37% | 75.36% | 75.01% |
Sun potential 120% W | 86.53% | 84.77% | 82.71% | 80.35% |
Sun potential 120% E | 86.53% | 84.77% | 82.71% | 80.35% |
Sun potential 120% E/W | 89.89% | 89.05% | 87.85% | 86.30% |
Yearly Production (% of Nominal) as a Function of Reduction of Pnom (%) | ||||
---|---|---|---|---|
5 | 10 | 15 | 20 | |
S | 98.99 | 98.15 | 97 | 95.51 |
W | 79.26 | 79.05 | 78.6 | 77.9 |
E | 79.13 | 78.88 | 78.42 | 77.72 |
E/W | 79.31 | 79.31 | 79.27 | 79.11 |
120% W | 90.04 | 89.23 | 88.16 | 86.83 |
120% E | 89.83 | 89.04 | 88.01 | 86.72 |
120% E/W | 91.10 | 90.86 | 90.39 | 89.67 |
PV Panels Power | S | W | E | W/E |
---|---|---|---|---|
100% | 100.00% | 79.00% | 78.20% | 78.60% |
120% | 94.79% | 93.84% | 94.32% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Łowczowski, K.; Roman, J. Techno-Economic Analysis of Alternative PV Orientations in Poland by Rescaling Real PV Profiles. Energies 2023, 16, 6277. https://doi.org/10.3390/en16176277
Łowczowski K, Roman J. Techno-Economic Analysis of Alternative PV Orientations in Poland by Rescaling Real PV Profiles. Energies. 2023; 16(17):6277. https://doi.org/10.3390/en16176277
Chicago/Turabian StyleŁowczowski, Krzysztof, and Jacek Roman. 2023. "Techno-Economic Analysis of Alternative PV Orientations in Poland by Rescaling Real PV Profiles" Energies 16, no. 17: 6277. https://doi.org/10.3390/en16176277
APA StyleŁowczowski, K., & Roman, J. (2023). Techno-Economic Analysis of Alternative PV Orientations in Poland by Rescaling Real PV Profiles. Energies, 16(17), 6277. https://doi.org/10.3390/en16176277