A Comprehensive Review of Key Technologies for Enhancing the Reliability of Lithium-Ion Power Batteries
Abstract
:1. Introduction
2. System Structure and Reliability Assessment
2.1. Power Battery Module
Reliability Assessment of Battery Modules
2.2. Battery Management System (BMS)
2.2.1. Reliability Assessment of BMS
Degradation Model
Reliability Assessment
2.3. Thermal Management System (TMS)
2.3.1. Reliability Assessment of TMS
Reliability of Lithium-Ion Battery Packs
Battery Pack Reliability with Different Redundancy Strategies
2.4. Electrical Energy-Storage System (EESS)
2.4.1. Reliability Assessment of EESS
Define the UGF Expression for the Battery Cell
Defining Combinatorial Operators
The UGF of One Cell String
3. Methods for Battery-State Estimation
3.1. SOC Estimation
3.1.1. Traditional Method
Discharge Test Method
Open-Circuit Voltage Method
Ah Integration Method
3.1.2. Model-Based Approach
Linear Model Method
Kalman Filter (KF)
- (1)
- The state equation:
- (2)
- The observation equation:
- (3)
- Particle filter
Observer Method
3.1.3. Data-Driven Approach
Neural Network
Fuzzy Logic Control
Support Vector Machine (SVM)
3.2. SOH Estimation
- (1)
- Define SOH in terms of capacity:
- (2)
- Define SOH in terms of internal resistance:
- (3)
- Define SOH in terms of energy:
3.2.1. Model-Based Approach
3.2.2. Data-Driven Approach
3.3. SOF Estimation
3.4. SOE Estimation
3.5. SOP Estimation
3.5.1. Interpolation
3.5.2. Multi-Constraint Estimation
3.5.3. Data-Driven Approach
3.6. SOT Estimation
3.7. SOS Estimation
4. Optimization Algorithms for Fault Diagnosis and Lifetime Prediction
4.1. Fault-Diagnosis Methods
4.1.1. Neural Network-Based Application in Fault Diagnosis
Fault-Diagnosis Model of BPNN
Fault-Diagnosis Model of GA-BPNN
4.1.2. SVM-Based Application in Fault Diagnosis
SVM Modeling
Optimization of Kernel Function Parameters
4.2. Lifetime-Prediction Methods
4.2.1. Deep Learning-Based Application in RUL
End-to-End RUL Prediction for Lithium-Ion Batteries
Neural Network Architecture
Uncertainty Estimation of RUL Predictions
4.2.2. Echoing State Network (ESN)-Based Application in RUL
ESN Model
Adaptive Differential Evolution
SADE-MESN Algorithm Implementation Process
5. Bibliometric Analysis of the Literature
5.1. Methods and Data
5.1.1. Methods
5.1.2. Data
5.2. Operational Results
5.2.1. Country and Publisher
5.2.2. Author
- Their research addresses key challenges in the field of LIPBs, which is crucial for enhancing the reliability and safety of these batteries. As LIPBs are increasingly being used in various applications, such research is highly relevant and timely.
- Their work may introduce novel methods, methodologies, or technologies that advance the theoretical and practical application of reliability techniques in LIPBs.
- The relatively high network density suggests that these authors may have collaborated with other influential researchers, thereby increasing their impact in the field.
- The research conducted by these authors covers different aspects of LIPB reliability technology, thereby enhancing the overall impact of their work.
5.2.3. Thematic Trends
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Acronyms and Abbreviations
ENV | New energy vehicle |
LIPB | Lithium-ion power battery |
EV | Electric vehicle |
BMS | Battery management system |
EESS | Electrical energy-storage system |
TMS | Thermal management system |
RGT | Reliability growth test |
RBD | Reliability block diagram |
SOC | State of charge |
SOH | State of health |
SOF | State of function |
SOE | State of energy |
SOP | State of power |
SOT | State of temperature |
SOS | State of safety |
KF | Kalman filter |
EKF | Extended Kalman filter |
SPKF | Sigma point Kalman filter |
UKF | Unscented Kalman filter |
CKF | Cubature Kalman filter |
FNN | Feedforward neural network |
CNN | Convolutional neural network |
RNN | Recurrent neural networks |
SVM | Support vector machine |
SVR | Support vector regression |
GPR | Gaussian process regression |
BPNN | Back-propagation neural network |
BP-ANN | Back-propagation artificial neural network |
GA | Genetic algorithm |
RUL | Remaining useful life |
RBF | Radial basis function |
SVMR | Support vector machine regression |
ESN | Echoing state network |
References
- Pietrosemoli, L.; Rodriguez-Monroy, C. The Venezuelan Energy Crisis: Renewable Energies in the Transition towards Sustainability. Renew. Sust. Energy Rev. 2019, 105, 415–426. [Google Scholar] [CrossRef]
- Wang, G.; Chao, Y.; Cao, Y.; Jiang, T.; Han, W.; Chen, Z. A Comprehensive Review of Research Works Based on Evolutionary Game Theory for Sustainable Energy Development. Energy Rep. 2022, 8, 114–136. [Google Scholar] [CrossRef]
- Lei, B.; Ren, Y.; Luan, H.; Dong, R.; Wang, X.; Liao, J.; Fang, S.; Gao, K. A Review of Optimization for System Reliability of Microgrid. Mathematics 2023, 11, 822. [Google Scholar] [CrossRef]
- Gao, K.; Wang, T.; Han, C.; Xie, J.; Ma, Y.; Peng, R. A Review of Optimization of Microgrid Operation. Energies 2021, 14, 2842. [Google Scholar] [CrossRef]
- Liu, Z.; Hao, H.; Cheng, X.; Zhao, F. Critical Issues of Energy Efficient and New Energy Vehicles Development in China. Energy Policy 2018, 115, 92–97. [Google Scholar] [CrossRef]
- Zeng, X.; Li, M.; Abd El-Hady, D.; Alshitari, W.; Al-Bogami, A.S.; Lu, J.; Amine, K. Commercialization of Lithium Battery Technologies for Electric Vehicles. Adv. Energy Mater. 2019, 9, 1900161. [Google Scholar] [CrossRef]
- Xu, J.; Cai, X.; Cai, S.; Shao, Y.; Hu, C.; Lu, S.; Ding, S. High-Energy Lithium-Ion Batteries: Recent Progress and a Promising Future in Applications. Energy Environ. Mater. 2022, 8, 12450. [Google Scholar] [CrossRef]
- Andre, D.; Kim, S.-J.; Lamp, P.; Lux, S.F.; Maglia, F.; Paschos, O.; Stiaszny, B. Future Generations of Cathode Materials: An Automotive Industry Perspective. J. Mater. Chem. A 2015, 3, 6709–6732. [Google Scholar] [CrossRef]
- Pan, R.; Gao, Z.; Qiao, Q. The development status of China’s power lithium battery industry. Technol. Innov. Appl. 2013, 12, 66–67. [Google Scholar]
- Wen, J.; Zhao, D.; Zhang, C. An Overview of Electricity Powered Vehicles: Lithium-Ion Battery Energy Storage Density and Energy Conversion Efficiency. Renew. Energy 2020, 162, 1629–1648. [Google Scholar] [CrossRef]
- Diouf, B.; Pode, R. Potential of Lithium-Ion Batteries in Renewable Energy. Renew. Energy 2015, 76, 375–380. [Google Scholar] [CrossRef]
- Huang, Q.; Yang, L.; Zhou, C.; Luo, L.; Wang, P. Pricing and Energy Management of EV Charging Station with Distributed Renewable Energy and Storage. Energy Rep. 2023, 9, 289–295. [Google Scholar] [CrossRef]
- Xu, F.; Gao, K.; Xiao, B.; Liu, J.; Wu, Z. Risk Assessment for the Integrated Energy System Using a Hesitant Fuzzy Multi-Criteria Decision-Making Framework. Energy Rep. 2022, 8, 7892–7907. [Google Scholar] [CrossRef]
- Sun, P.; Bisschop, R.; Niu, H.; Huang, X. A Review of Battery Fires in Electric Vehicles. Fire Technol. 2020, 56, 1361–1410. [Google Scholar] [CrossRef]
- Wang, Q.; Mao, B.; Stoliarov, S.I.; Sun, J. A Review of Lithium Ion Battery Failure Mechanisms and Fire Prevention Strategies. Prog. Energy Combust. Sci. 2019, 73, 95–131. [Google Scholar] [CrossRef]
- Meng, X.; Xu, Y.; Cao, H.; Lin, X.; Ning, P.; Zhang, Y.; Garcia, Y.G.; Sun, Z. Internal Failure of Anode Materials for Lithium Batteries—A Critical Review. Green Energy Environ. 2020, 5, 22–36. [Google Scholar] [CrossRef]
- Li, Y.; Yang, J.; Song, J. Nano-Energy System Coupling Model and Failure Characterization of Lithium Ion Battery Electrode in Electric Energy Vehicles. Renew. Sust. Energ. Rev. 2016, 54, 1250–1261. [Google Scholar] [CrossRef]
- Levy, S.C. Safety and Reliability Considerations for Lithium Batteries. J. Power Sources 1997, 68, 75–77. [Google Scholar] [CrossRef]
- Wu, Z.; Jiang, Q.; Zhang, X.; Zhu, M.; Wang, D.; Sha, S. Safety and Reliability Analysis of Power Lithium-ion Batteries. Chin. Battery. Ind. 2019, 23, 190–197+223. [Google Scholar]
- Wu, C.; Zhu, C.; Ge, Y. A New Fault Diagnosis and Prognosis Technology for High-Power Lithium-Ion Battery. IEEE Trans. Plasma Sci. 2017, 45, 1533–1538. [Google Scholar] [CrossRef]
- Wang, Y.; Tian, J.; Sun, Z.; Wang, L.; Xu, R.; Li, M.; Chen, Z. A Comprehensive Review of Battery Modeling and State Estimation Approaches for Advanced Battery Management Systems. Renew. Sustain. Energy Rev. 2020, 131, 110015. [Google Scholar] [CrossRef]
- Xing, Y.; Williard, N.; Tsui, K.-L.; Pecht, M. A Comparative Review of Prognostics-Based Reliability Methods for Lithium Batteries. In Proceedings of the 2011 Prognostics and System Health Management Conference (PHM-Shenzhen), Shenzhen, China, 24–25 May 2011. [Google Scholar]
- Gandoman, F.H.; Jaguemont, J.; Goutam, S.; Gopalakrishnan, R.; Firouz, Y.; Kalogiannis, T.; Omar, N.; Van Mierlo, J. Concept of Reliability and Safety Assessment of Lithium-Ion Batteries in Electric Vehicles: Basics, Progress, and Challenges. Appl. Energy 2019, 251, 113343. [Google Scholar] [CrossRef]
- Jing, C. Lithium-ion Power Battery Key Materials Development Status and Trends. Adv. Mater. Ind. 2017, 8, 29–32. [Google Scholar]
- Wang, Z. Current Status and Prospects of Reliability Systems Engineering in China. Front. Eng. Manag. 2021, 8, 492–502. [Google Scholar] [CrossRef]
- Lu, C.; Pan, Y.; Cai, C. Reliability Guarantee Framework for the Sichuan-Tibet Railway. Front. Eng. Manag. 2021, 8, 480–491. [Google Scholar] [CrossRef]
- Li, Y.-F.; Jia, C. An Overview of the Reliability Metrics for Power Grids and Telecommunication Networks. Front. Eng. 2021, 8, 531–544. [Google Scholar] [CrossRef]
- Ruan, Z. Design and Development of Power Battery Modules for New Energy Vehicles. Intern. Comb. Eng. Part. 2022, 18, 25–27. [Google Scholar]
- Li, J.; Zhang, H. Thermal Characteristics of Power Battery Module with Composite Phase Change Material and External Liquid Cooling. Int. J. Heat Mass Transf. 2020, 156, 119820. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, G.; Yang, X. Optimization of Liquid Cooling Technology for Cylindrical Power Battery Module. Appl. Therm. Eng. 2019, 162, 114200. [Google Scholar] [CrossRef]
- Lv, W.; Li, J.; Chen, M. Experimental Study on the Thermal Management Performance of a Power Battery Module with a Pulsating Heat Pipe under Different Thermal Management Strategies. Appl. Therm. Eng. 2023, 227, 120402. [Google Scholar] [CrossRef]
- Yi, Z.; Wei, P.; Zhang, H.; Sun, H.; Zeng, S.; Yu, H. Wide Range Temperature Thermal Performance of Power Battery Module with Double-Sided Thermoelectric Device System with High Energy Efficiency. Appl. Therm. Eng. 2023, 227, 120375. [Google Scholar] [CrossRef]
- Sun, Y. Research on Equalization Control Based on SOC Estimation for Battery Pack of Electric Vehicle. Bachelor’s Thesis, Geely University of China, Beijing, China, 2017. [Google Scholar]
- Liu, X.; Zou, J.; Zhang, X. Investigations on the Reliability of Storage Battery Array with High Capability. In Proceedings of the 2008 International Conference on Condition Monitoring and Diagnosis, Beijing, China, 21–24 April 2008. [Google Scholar]
- Xie, S.; Ma, Y.; Ga, Y.; Shen, B. The Research of Reliability Test and Assessment for Lithium Battery. Environ. Technol. 2022, 40, 93–97. [Google Scholar]
- Wang, L.; Sun, Y.; Wang, X.; Wang, Z.; Zhao, X. Reliability Modeling Method for Lithium-Ion Battery Packs Considering the Dependency of Cell Degradations Based on a Regression Model and Copulas. Materials 2019, 12, 1054. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Sun, J.; Chen, K.; Mu, S. Research Status and Development Trend of Battery Management System for Pure Electric Vehicle Home and Abroad. Mod. Veh. Power. 2022, 1, 1–6. [Google Scholar]
- Li, Z.; Yu, F.; Guo, L. Lithium-ion Batteries Equalization Algorithm of Electric Vehicle. Power Electron. 2011, 45, 54–56. [Google Scholar]
- Xu, S.; Sun, Z. Research on Balance Control Strategy of Lithium-Ion Battery Energy Storage System. Int. J. Low-Carbon Technol. 2022, 17, 1145–1150. [Google Scholar] [CrossRef]
- Wang, T.; Liu, Q.; Li, Z. Design and implementation of intelligent charging and discharging management system for power lithium-ion battery pack. Chin. J. Power Sources 2011, 35, 1069–1071. [Google Scholar]
- Xu, G.; Du, X.; Li, Z.; Zhang, X.; Zheng, M.; Miao, Y.; Gao, Y.; Liu, Q. Reliability Design of Battery Management System for Power Battery. Microelectron. Reliab. 2018, 88–90, 1286–1292. [Google Scholar] [CrossRef]
- Chang, Y.; Wang, G.; Xu, S.; Li, X.; Yu, W. Research and Development of Muti-Redundancy Marine Lithium Battery Management System with High Reliability. Ship. Eng. 2016, 38, 31–34. [Google Scholar]
- Cui, Y.; Lin, K.; Zhu, J.; Chen, Y. Quantum-Inspired Degradation Modeling and Reliability Evaluation of Battery Management System for Electric Vehicles. J. Energy Storage 2022, 52, 104840. [Google Scholar] [CrossRef]
- Shi, C.; Zhang, X.; Liu, Y.; Yu, D. Research on the Development Status of the Reliability Technology of Lithium-ion Batteries. Electron. Prod. Reliab. Environ. Test. 2021, 39, 28–30. [Google Scholar]
- Gu, Q.; Li, G.; Wu, Z. The Analysis on the Battery Thermal Management System with Composite Phase Change Materials Coupled Air Cooling and Fins. J. Energy Storage 2022, 56, 105977. [Google Scholar] [CrossRef]
- Sirikasemsuk, S.; Wiriyasart, S.; Naphon, P. Experimental Investigation of the Thermal Management System of a Battery Pack Using a Thermoelectric Air-cooling Module. Heat Trans. 2022, 51, 6384–6402. [Google Scholar] [CrossRef]
- Anisha, A.; Kumar, A. Identification and Mitigation of Shortcomings in Direct and Indirect Liquid Cooling-Based Battery Thermal Management System. Energies 2023, 16, 3857. [Google Scholar] [CrossRef]
- Wang, J.; Lu, S.; Wang, Y.; Ni, Y.; Zhang, S. Novel Investigation Strategy for Mini-Channel Liquid-Cooled Battery Thermal Management System. Int. J. Energy Res. 2020, 44, 1971–1985. [Google Scholar] [CrossRef]
- Zheng, W.; Yang, J.; Zhu, L.; Xiong, F. Simulation and Experimental Study on Thermal Management System of Vehicle Fuel Cell. Automot. Eng. 2021, 43, 381–386. [Google Scholar]
- Xu, X.; Fu, J.; Ding, R.; Jin, H.; Xiao, Y. Heat Dissipation Performance of Electric Vehicle Battery Liquid Cooling System with Double-Inlet and Double-Outlet Channels. J. Renew. Sustain. Energy 2018, 10, 055701. [Google Scholar] [CrossRef]
- Liu, C.; Xu, D.; Weng, J.; Zhou, S.; Li, W.; Wan, Y.; Jiang, S.; Zhou, D.; Wang, J.; Huang, Q. Phase Change Materials Application in Battery Thermal Management System: A Review. Materials 2020, 13, 4622. [Google Scholar] [CrossRef]
- Qian, Z.; Li, Y.; Rao, Z. Thermal Performance of Lithium-Ion Battery Thermal Management System by Using Mini-Channel Cooling. Energy Conv. Manag. 2016, 126, 622–631. [Google Scholar] [CrossRef]
- Huang, Y.; Mei, P.; Lu, Y.; Huang, R.; Yu, X.; Chen, Z.; Roskilly, A.P. A Novel Approach for Lithium-Ion Battery Thermal Management with Streamline Shape Mini Channel Cooling Plates. Appl. Therm. Eng. 2019, 157, 113623. [Google Scholar] [CrossRef]
- Yang, Z. Method to investigate power battery thermal test system using thermal simulation and control. Agric. Equip. Veh. Eng. 2023, 61, 65–69. [Google Scholar]
- Min, X.; Tang, Z.; Gao, Q.; Song, A.; Wang, S. Heat dissipation characteristic of liquid cooling cylindrical battery module based on mini-channel wavy tube. J. Zhejiang Univ. 2019, 53, 463–469. [Google Scholar]
- Liu, C.; Guo, M. Reliability analysis of battery thermal management system based on DTBN and T-S fault tree. J. Automot. Saf. Energy 2023, 14, 173–181. [Google Scholar]
- Zeng, F.; Yu, W.; Zuo, Z. Analytical Modeling and Simulation of Liquid Cooling Thermal Management of a Lithium-Ion Battery Module. Energy Sources Part A-Recovery Util. Environ. Eff. 2022, 1–16. [Google Scholar] [CrossRef]
- Xia, Q.; Wang, Z.; Ren, Y.; Sun, B.; Yang, D.; Feng, Q. A Reliability Design Method for a Lithium-Ion Battery Pack Considering the Thermal Disequilibrium in Electric Vehicles. J. Power Sources 2018, 386, 10–20. [Google Scholar] [CrossRef]
- Hu, L.; Tian, Q.; Huang, J.; Ye, Y.; Wu, X. Review on Energy Distribution and Parameter Matching of Lithium-ion Battery-super Capacitor Hybrid Energy Storage System for Electric Vehicles. J. Mech. Eng. 2022, 58, 224–237. [Google Scholar]
- Xiu, X.Q.; Li, J.L.; Hui, D. Sizing and Economic Analysis of Lithium-Ion Battery Energy Storage System. Appl. Mech. Mater. 2013, 291, 627–631. [Google Scholar] [CrossRef]
- Wu, G.; Li, Z.S. Cyber–Physical Power System (CPPS): A Review on Measures and Optimization Methods of System Resilience. Front. Eng. 2021, 8, 503–518. [Google Scholar] [CrossRef]
- Bai, G.; Wang, H.; Zheng, X.; Dui, H.; Xie, M. Improved Resilience Measure for Component Recovery Priority in Power Grids. Front. Eng. 2021, 8, 545–556. [Google Scholar] [CrossRef]
- Hu, J.; Sun, Q.; Ye, Z.-S.; Ling, X. Sequential Degradation-Based Burn-in Test with Multiple Periodic Inspections. Front. Eng. Manag. 2021, 8, 519–530. [Google Scholar] [CrossRef]
- Stroe, D.-I.; Knap, V.; Swierczynski, M.; Stroe, A.-I.; Teodorescu, R. Operation of a Grid-Connected Lithium-Ion Battery Energy Storage System for Primary Frequency Regulation: A Battery Lifetime Perspective. IEEE Trans. Ind. Appl. 2017, 53, 430–438. [Google Scholar] [CrossRef]
- Cheng, Z.; Wang, L.; Liu, J.; Lv, J. Estimation of State of Charge of Lithium-Ion Battery Based on Photovoltaic Generation Energy Storage System. Teh. Vjesn. 2016, 23, 695–700. [Google Scholar]
- Zhu, Y.; Liu, M.; Wang, L.; Wang, J. Potential Failure Prediction of Lithium-Ion Battery Energy Storage System by Isolation Density Method. Sustainability 2022, 14, 7048. [Google Scholar] [CrossRef]
- Li, J.; Huang, X.; Tang, X.; Guo, J.; Shen, Q.; Chai, Y.; Lu, W.; Wang, T.; Liu, Y. The State-of-Charge Predication of Lithium-Ion Battery Energy Storage System Using Data-Driven Machine Learning. Sustain. Energy Grids Netw. 2023, 34, 101020. [Google Scholar] [CrossRef]
- Huang, X.R.; Hui Wei, J.; Huang, J.M.; Ke Liu, G.; Zhong, R.F.; Jing Lai, R. Evaluation Index of Battery Pack of Energy Storage Station Based on RB Recession Mechanism. In Proceedings of the 2023 5th Asia Energy and Electrical Engineering Symposium (AEEES), Chengdu, China, 23–26 March 2023. [Google Scholar]
- Cheng, L.; Wan, Y.; Zhou, Y.; Gao, D.W. Operational Reliability Modeling and Assessment of Battery Energy Storage Based on Lithium-Ion Battery Lifetime Degradation. J. Mod. Power Syst. Clean Energy 2022, 10, 1738–1749. [Google Scholar] [CrossRef]
- Gao, K.; Peng, R.; Qu, L.; Xing, L.; Wang, S.; Wu, D. Linear System Design with Application in Wireless Sensor Networks. J. Ind. Inf. Integr. 2022, 27, 100279. [Google Scholar] [CrossRef]
- Bai, G.; Chi, Y.; Gao, K.; Peng, R. Reliability Evaluation of Multi-State Systems With Common Bus Performance Sharing Considering Performance Excess. IEEE Access 2022, 10, 19174–19185. [Google Scholar] [CrossRef]
- Peng, R.; Wu, D.; Gao, K. Reliability of a dual linear consecutive system with three failure modes. In Proceedings of the International Conference of Celebrating Professor Jinhua Cao’s 80th Birthday, Singapore, 16 October 2019. [Google Scholar]
- Huang, S.; Lei, B.; Gao, K.; Wu, Z.; Wang, Z. Multi-State System Reliability Evaluation and Component Allocation Optimization Under Multi-Level Performance Sharing. IEEE Access 2021, 9, 88820–88834. [Google Scholar] [CrossRef]
- Lei, B.; Ren, Y.; Wang, Z.; Ge, X.; Li, X.; Gao, K. The Optimization of Working Time for a Consecutively Connected Production Line. Mathematics 2023, 11, 309. [Google Scholar] [CrossRef]
- Gao, K.; Yan, X.; Peng, R.; Xing, L. Economic Design of a Linear Consecutively Connected System Considering Cost and Signal Loss. IEEE Trans. Syst. Man Cybern.-Syst. 2021, 51, 5116–5128. [Google Scholar] [CrossRef]
- Liu, M.; Li, W.; Wang, C.; Polis, M.P.; Wang, L.Y.; Li, J. Reliability Evaluation of Large Scale Battery Energy Storage Systems. IEEE Trans. Smart Grid 2017, 8, 2733–2743. [Google Scholar] [CrossRef]
- Shen, J.; He, Y.; Ma, Z. Progress of model based SOC and SOH estimation methods for lithium-ion battery. CIESC J. 2018, 69, 309–316. [Google Scholar]
- Zhao, X.; Li, M.; Yu, Q.; Ma, J.; Wang, S. State Estimation of Power Lithium Batteries for Electric Vehicles: A Review. China J. Highw. Transp. 2023, 36, 254–283. [Google Scholar]
- He, W.; Geng, L.; Yao, F. A Review of Key Technologies for Electric Vehicle Power Lithium-ion Battery Reliability. J. Power Supply 2023, 1–21. Available online: http://kns.cnki.net/kcms/detail/12.1420.tm.20220216.1529.002.html (accessed on 21 August 2023).
- Lin, C.; Wang, J.; Chen, Q. Methods for state of charge estimation of EV batteries and their application. Battery 2004, 5, 376–378. [Google Scholar]
- Zhang, Y.; Song, W.; Lin, S.; Feng, Z. A Novel Model of the Initial State of Charge Estimation for LiFePO4 Batteries. J. Power Sources 2014, 248, 1028–1033. [Google Scholar] [CrossRef]
- Lee, D.-T.; Shiah, S.-J.; Lee, C.-M.; Wang, Y.-C. State-of-Charge Estimation for Electric Scooters by Using Learning Mechanisms. IEEE Trans. Veh. Technol. 2007, 56, 544–556. [Google Scholar] [CrossRef]
- Plett, G.L. Extended Kalman Filtering for Battery Management Systems of LiPB-Based HEV Battery Packs: Part 3. State and Parameter Estimation. J. Power Sources 2004, 134, 277–292. [Google Scholar] [CrossRef]
- Plett, G.L. Extended Kalman Filtering for Battery Management Systems of LiPB-Based HEV Battery Packs: Part 1. Background. J. Power Sources 2004, 134, 252–261. [Google Scholar] [CrossRef]
- Plett, G.L. Extended Kalman Filtering for Battery Management Systems of LiPB-Based HEV Battery Packs: Part 2. Modeling and Identification. J. Power Sources 2004, 134, 262–276. [Google Scholar] [CrossRef]
- Jiang, C.; Taylor, A.; Duan, C.; Bai, K. Extended kalman filter based battery state of charge (soc) estimation for electric vehicles. In Proceedings of the Transportation Electrification Conference and Expo (ITEC), Detroit, MI, USA, 16–19 June 2013. [Google Scholar]
- Zhao, Y.; Xu, J.; Wang, X.; Mei, X. The Adaptive Fading Extended Kalman Filter SOC Estimation Method for Lithium-ion Batteries. Energy Procedia 2018, 145, 357–362. [Google Scholar] [CrossRef]
- Wang, L.; Wang, L.; Liao, C.; Liu, J. Sigma-Point Kalman Filter Application on Estimating Battery SOC. In Proceedings of the 2009 5th IEEE Vehicle Power and Propulsion Conference, VPPC’09, Dearborn, MI, USA, 7–10 September 2009; pp. 1592–1595. [Google Scholar]
- Wang, C.; Huang, Q.; Ling, R. Battery SOC Estimating Using a Fractional Order Unscented Kalman Filter. In Proceedings of the 2015 CHINESE AUTOMATION CONGRESS (CAC), Wuhan, China, 18 January 2016. [Google Scholar]
- Li, H.; Sun, H.; Chen, B.; Shen, H.; Yang, T.; Wang, Y.; Jiang, H.; Chen, L. A Cubature Kalman Filter for Online State-of-Charge Estimation of Lithium-Ion Battery Using a Gas-Liquid Dynamic Model. J. Energy Storage 2022, 53, 105141. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, Z. A Framework for State-of-Charge and Remaining Discharge Time Prediction Using Unscented Particle Filter. Appl. Energy 2020, 260, 114324. [Google Scholar] [CrossRef]
- Ye, M.; Guo, H.; Xiong, R.; Yang, R. Model-based state-of-charge estimation approach of the Lithium-ion battery using an improved adaptive particle filter. Energy Procedia 2016, 103, 394–399. [Google Scholar] [CrossRef]
- Duan, B.; Zhang, Q.; Geng, F.; Zhang, C. Remaining Useful Life Prediction of Lithium-Ion Battery Based on Extended Kalman Particle Filter. Int. J. Energy Res. 2020, 44, 1724–1734. [Google Scholar] [CrossRef]
- Luenberger, D. An introduction to observers. IEEE Trans. Autom. Control 1971, 16, 596–602. [Google Scholar] [CrossRef]
- Tang, X.; Wang, Y.; Chen, Z. A Method for State-of-Charge Estimation of LiFePO4 Batteries Based on a Dual-Circuit State Observer. J. Power Sources 2015, 296, 23–29. [Google Scholar] [CrossRef]
- Xu, J.; Mi, C.C.; Cao, B.; Deng, J.; Chen, Z.; Li, S. The State of Charge Estimation of Lithium-Ion Batteries Based on a Proportional-Integral Observer. IEEE Trans. Veh. Technol. 2014, 63, 1614–1621. [Google Scholar]
- Amir, U.; Tao, L.; Zhang, X.; Saeed, M.; Hussain, M. A Novel SOC Estimation Method for Lithium Ion Battery Based On Improved Adaptive PI Observer. In Proceedings of the 2018 IEEE International Conference on Electrical Systems for Aircraft, Railway, Ship Propulsion and Road Vehicles & International Transportation Electrification Conference (ESARS-ITEC), Nottingham, UK, 7–9 November 2018; pp. 1–5. [Google Scholar]
- Chemali, E.; Kollmeyer, P.J.; Preindl, M.; Emadi, A. State-of-Charge Estimation of Li-Ion Batteries Using Deep Neural Networks: A Machine Learning Approach. J. Power Sources 2018, 400, 242–255. [Google Scholar] [CrossRef]
- Fan, X.; Zhang, W.; Zhang, C.; Chen, A.; An, F. SOC Estimation of Li-Ion Battery Using Convolutional Neural Network with U-Net Architecture. Energy 2022, 256, 124612. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, Y.; Li, W.; Cheng, W.; Zhu, Q. State of Charge Estimation for Lithium-Ion Batteries Using Gated Recurrent Unit Recurrent Neural Network and Adaptive Kalman Filter. J. Energy Storage 2022, 55, 105396. [Google Scholar] [CrossRef]
- Ma, K.; Wang, Z.; Liu, H.; Yu, H.; Wei, C. Numerical investigation on fuzzy logic control energy management strategy of parallel hybrid electric vehicle. Energy Procedia 2019, 158, 2643–2648. [Google Scholar] [CrossRef]
- Zheng, W.; Xia, B.; Wang, W.; Lai, Y.; Wang, M.; Wang, H. State of Charge Estimation for Power Lithium-Ion Battery Using a Fuzzy Logic Sliding Mode Observer. Energies 2019, 12, 2491. [Google Scholar] [CrossRef]
- Chen, Y.; Long, B.; Lei, X. The battery state of charge estimation based weighted least squares support vector machine. In Proceedings of the 2011 Asia-Pacific Power and Energy Engineering Conference (APPEEC), Wuhan, China, 25–28 March 2011. [Google Scholar]
- Xuan, L.; Qian, L.; Chen, J.; Bai, X.; Wu, B. State-of-Charge Prediction of Battery Management System Based on Principal Component Analysis and Improved Support Vector Machine for Regression. IEEE Access 2020, 8, 164693–164704. [Google Scholar] [CrossRef]
- Fang, L.; Li, J.; Peng, B. Online Estimation and Error Analysis of both SOC and SOH of Lithium-ion Battery based on DEKF Method. Energy Procedia 2019, 158, 3008–3013. [Google Scholar] [CrossRef]
- Liu, S.; Dong, X.; Yu, X.; Ren, X.; Zhang, J.; Zhu, R. A Method for State of Charge and State of Health Estimation of Lithium-Ion Battery Based on Adaptive Unscented Kalman Filter. Energy Rep. 2022, 8, 426–436. [Google Scholar] [CrossRef]
- Xu, Y.; Shu, H.; Qin, H.; Wu, X.; Peng, J.; Jiang, C.; Xia, Z.; Wang, Y.; Li, X. Real-Time State of Health Estimation for Solid Oxide Fuel Cells Based on Unscented Kalman Filter. Energies 2022, 15, 2534. [Google Scholar] [CrossRef]
- Chen, Y.; Ma, Y.; Chen, H. State of Charge and State of Health Estimation for Lithium-Ion Battery through Dual Sliding Mode Observer Based on AMESim-Simulink Co-Simulation. J. Renew. Sustain. Energy 2018, 10, 034103. [Google Scholar] [CrossRef]
- Du, J.; Liu, Z.; Wang, Y.; Wen, C. An Adaptive Sliding Mode Observer for Lithium-Ion Battery State of Charge and State of Health Estimation in Electric Vehicles. Control Eng. Pract. 2016, 54, 81–90. [Google Scholar] [CrossRef]
- Xiao, F.; Li, C.; Fan, Y.; Yang, G.; Tang, X. State of Charge Estimation for Lithium-Ion Battery Based on Gaussian Process Regression with Deep Recurrent Kernel. Int. J. Electr. Power Energy Syst. 2021, 124, 106369. [Google Scholar] [CrossRef]
- Li, X.; Wang, Z.; Yan, J. Prognostic Health Condition for Lithium Battery Using the Partial Incremental Capacity and Gaussian Process Regression. J. Power Sources 2019, 421, 56–67. [Google Scholar] [CrossRef]
- Yang, Y.; Chen, S.; Chen, T.; Huang, L. State of Health Assessment of Lithium-Ion Batteries Based on Deep Gaussian Process Regression Considering Heterogeneous Features. J. Energy Storage 2023, 61, 106797. [Google Scholar] [CrossRef]
- Zhao, J. A Method of Power Supply Health State Estimation Based on Grey Clustering and Fuzzy Comprehensive Evaluation. IEEE Access 2023, 11, 12226–12236. [Google Scholar] [CrossRef]
- Lu, L.; Han, X.; Li, J.; Hua, J.; Ouyang, M. Lithium-Ion Battery State of Function Estimation Based on Fuzzy Logic Algorithm with Associated Variables. J. Power Sources 2013, 226, 272–288. [Google Scholar] [CrossRef]
- Shen, P.; Ouyang, M.; Lu, L.; Li, J.; Feng, X. The Co-Estimation of State of Charge, State of Health, and State of Function for Lithium-Ion Batteries in Electric Vehicles. IEEE Trans. Veh. Technol. 2018, 67, 92–103. [Google Scholar] [CrossRef]
- Mamadou, K.; Lemaire, E.; Delaille, A.; Riu, D.; Hing, S.E.; Bultel, Y. Definition of a State-of-Energy Indicator (SoE) for Electrochemical Storage Devices: Application for Energetic Availability Forecasting. J. Electrochem. Soc. 2012, 159, A1298. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, C.; Chen, Z. A Method for Joint Estimation of State-of-Charge and Available Energy of LiFePO4 Batteries. Appl. Energy 2014, 135, 81–87. [Google Scholar] [CrossRef]
- He, H.; Zhang, Y.; Xiong, R.; Wang, C. A Novel Gaussian Model Based Battery State Estimation Approach: State-of-Energy. Appl. Energy 2015, 151, 41–48. [Google Scholar] [CrossRef]
- Liu, X.; Wu, J.; Zhang, C.; Chen, Z. A Method for State of Energy Estimation of Lithium-Ion Batteries at Dynamic Currents and Temperatures. J. Power Sources 2014, 270, 151–157. [Google Scholar] [CrossRef]
- Sharma, S.; Achlerkar, P.D.; Shrivastava, P.; Garg, A.; Panigrahi, B.K. Combined SoC and SoE Estimation of Lithium-Ion Battery Using Multi-Layer Feedforward Neural Network. In Proceedings of the 2022 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES), Jaipur, India, 14–17 December 2022. [Google Scholar]
- Hunt, G.; Motloch, C. FreedomCAR Battery Test Manual For Power-Assist Hybrid Electric Vehicles; INEEL: Idaho Falls, ID, USA, 2003. [Google Scholar]
- Zou, C.; Klintberg, A.; Wei, Z.; Fridholm, B.; Wik, T.; Egardt, B. Power Capability Prediction for Lithium-Ion Batteries Using Economic Nonlinear Model Predictive Control. J. Power Sources 2018, 396, 580–589. [Google Scholar] [CrossRef]
- Qin, P.; Che, Y.; Li, H.; Cai, Y.; Jiang, M. Joint SOC-SOP Estimation Method for Lithium-Ion Batteries Based on Electro-Thermal Model and Multi-Parameter Constraints. J. Power Electron. 2022, 22, 490–502. [Google Scholar] [CrossRef]
- Guo, R.; Shen, W. An Enhanced Multi-Constraint State of Power Estimation Algorithm for Lithium-Ion Batteries in Electric Vehicles. J. Energy Storage 2022, 50, 104628. [Google Scholar] [CrossRef]
- Sun, B.; Gao, K.; Jiang, J.; Luo, M.; He, T.; Zheng, F.; Guo, H. Research on Discharge Peak Power Prediction of Battery Based on ANFIS and Subtraction Clustering. Trans. China Electrotechnical. Soc. 2015, 30, 272–280. [Google Scholar]
- Smith, K.; Wang, C.-Y. Power and Thermal Characterization of a Lithium-Ion Battery Pack for Hybrid-Electric Vehicles. J. Power Sources 2006, 160, 662–673. [Google Scholar] [CrossRef]
- Raijmakers, L.H.J.; Danilov, D.L.; Eichel, R.-A.; Notten, P.H.L. A Review on Various Temperature-Indication Methods for Li-Ion Batteries. Appl. Energy 2019, 240, 918–945. [Google Scholar] [CrossRef]
- Kim, Y.; Mohan, S.; Siegel, J.B.; Stefanopoulou, A.G.; Ding, Y. The Estimation of Temperature Distribution in Cylindrical Battery Cells Under Unknown Cooling Conditions. IEEE Trans. Control Syst. Technol. 2014, 22, 2277–2286. [Google Scholar]
- Pang, H.; Guo, L.; Wu, L.; Jin, J.; Zhang, F.; Liu, K. A Novel Extended Kalman Filter-Based Battery Internal and Surface Temperature Estimation Based on an Improved Electro-Thermal Model. J. Energy Storage 2021, 41, 102854. [Google Scholar] [CrossRef]
- Li, Y.; Wang, W.; Lin, C.; Zuo, F. Safety Modeling and Protection for Lithium-Ion Batteries Based on Artificial Neural Networks Method under Mechanical Abuse. Sci. China-Technol. Sci. 2021, 64, 2373–2388. [Google Scholar] [CrossRef]
- Wang, S.; Fernandez, C.; Chen, M.; Wang, L.; Su, J. A Novel Safety Anticipation Estimation Method for the Aerial Lithium-Ion Battery Pack Based on the Real-Time Detection and Filtering. J. Clean Prod. 2018, 185, 187–197. [Google Scholar] [CrossRef]
- Qu, L.; Liao, J.; Gao, K.; Yang, L. Joint Optimization of Production Lot Sizing and Preventive Maintenance Threshold Based on Nonlinear Degradation. Appl. Sci. 2022, 12, 8638. [Google Scholar] [CrossRef]
- Zhao, X.; Chai, X.; Sun, J.; Qiu, Q. Joint Optimization of Mission Abort and Protective Device Selection Policies for Multistate Systems. Risk Anal. 2022, 42, 2823–2834. [Google Scholar] [CrossRef]
- Gao, K.; Peng, R.; Qu, L.; Wu, S. Jointly Optimizing Lot Sizing and Maintenance Policy for a Production System with Two Failure Modes. Reliab. Eng. Syst. Saf. 2020, 202, 106996. [Google Scholar] [CrossRef]
- Yang, L.; Chen, Y.; Qiu, Q.; Wang, J. Risk Control of Mission-Critical Systems: Abort Decision-Makings Integrating Health and Age Conditions. IEEE Trans. Ind. Inform. 2022, 18, 6887–6894. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, S.; Hu, X. A Fault Diagnosis Method for Lithium-Ion Battery Packs Using Improved RBF Neural Network. Front. Energy Res. 2021, 9, 702139. [Google Scholar] [CrossRef]
- Zhang, D.; Li, W.; Wu, X.; Lv, X. Application of Simulated Annealing Genetic Algorithm-Optimized Back Propagation (BP) Neural Network in Fault Diagnosis. Int. J. Model. Simul. Sci. Comput. 2019, 10, 1950024. [Google Scholar] [CrossRef]
- Ojo, O.; Lang, H.; Kim, Y.; Hu, X.; Mu, B.; Lin, X. A Neural Network Based Method for Thermal Fault Detection in Lithium-Ion Batteries. IEEE Trans. Ind. Electron. 2021, 68, 4068–4078. [Google Scholar] [CrossRef]
- Gao, Z.; Cheng, S.C.; Woo, W.L.; Jia, J.; Wei, D.T. Genetic algorithm based back-propagation neural network approach for fault diagnosis in lithium-ion battery system. In Proceedings of the International Conference on Power Electronics Systems and Applications, Hong Kong, China, 15–17 December 2015. [Google Scholar]
- Duan, D.; Wu, X.; Si, S. Novel Interpretable Mechanism of Neural Networks Based on Network Decoupling Method. Front. Eng 2021, 8, 572–581. [Google Scholar] [CrossRef]
- Yao, L.; Xiao, Y.; Gong, X.; Hou, J.; Chen, X. A Novel Intelligent Method for Fault Diagnosis of Electric Vehicle Battery System Based on Wavelet Neural Network. J. Power Sources 2020, 453, 227870. [Google Scholar] [CrossRef]
- Yao, L.; Fang, Z.; Xiao, Y.; Hou, J.; Fu, Z. An Intelligent Fault Diagnosis Method for Lithium Battery Systems Based on Grid Search Support Vector Machine. Energy 2021, 214, 118866. [Google Scholar] [CrossRef]
- Sibo, L.; Yongqin, Z.; Ran, L.; Xu, Z. Online Lithium Battery Fault Diagnosis Based on Least Square Support Vector Machine Optimized by Ant Lion Algorithm. Int. J. Perform. Eng. 2020, 16, 1637. [Google Scholar] [CrossRef]
- Deng, F.; Bian, Y.; Zheng, H. Fault Diagnosis for Electric Vehicle Lithium Batteries Using a Multi-Classification Support Vector Machine. Electr. Eng. 2022, 104, 1831–1837. [Google Scholar] [CrossRef]
- Huo, W.; Li, W.; Sun, C.; Ren, Q.; Gong, G. Research on Fuel Cell Fault Diagnosis Based on Genetic Algorithm Optimization of Support Vector Machine. Energies 2022, 15, 2294. [Google Scholar] [CrossRef]
- Gao, D.; Huang, M. Prediction of Remaining Useful Life of Lithium-Ion Battery Based on Multi-Kernel Support Vector Machine with Particle Swarm Optimization. J. Power Electron. 2017, 17, 1288–1297. [Google Scholar]
- Yang, J.; Cheng, F.; Duodu, M.; Li, M.; Han, C. High-Precision Fault Detection for Electric Vehicle Battery System Based on Bayesian Optimization SVDD. Energies 2022, 15, 8331. [Google Scholar] [CrossRef]
- Samanta, A.; Chowdhuri, S.; Williamson, S.S. Machine Learning-Based Data-Driven Fault Detection/Diagnosis of Lithium-Ion Battery: A Critical Review. Electronics 2021, 10, 1309. [Google Scholar] [CrossRef]
- Wang, Z.; Luo, W.; Xu, S.; Yan, Y.; Huang, L.; Wang, J.; Hao, W.; Yang, Z. Electric Vehicle Lithium-Ion Battery Fault Diagnosis Based on Multi-Method Fusion of Big Data. Sustainability 2023, 15, 1120. [Google Scholar] [CrossRef]
- Zhang, L. Recognition and Diagnosis Method of Accelerated Aging of Lithium-Ion Battery Based on Logistic Regression. World Electr. Veh. J. 2021, 12, 143. [Google Scholar]
- Qiu, Y.; Dong, T.; Lin, D.; Zhao, B.; Cao, W.; Jiang, F. Fault Diagnosis for Lithium-Ion Battery Energy Storage Systems Based on Local Outlier Factor. J. Energy Storage 2022, 55, 105470. [Google Scholar] [CrossRef]
- Wu, Z.; Zhang, N.; Gao, K.; Peng, R. Flight Trip Fuel Volume Prediction Based on Random Forest with Adjustment to Risk Preference. Acta Aeronaut. ET Astronaut. Sin. 2022, 43, 292–301. [Google Scholar]
- Feng, X.; Pan, Y.; He, X.; Wang, L.; Ouyang, M. Detecting the Internal Short Circuit in Large-Format Lithium-Ion Battery Using Model-Based Fault-Diagnosis Algorithm. J. Energy Storage 2018, 18, 26–39. [Google Scholar] [CrossRef]
- Wang, S.; Jin, S.; Bai, D.; Fan, Y.; Shi, H.; Fernandez, C. A Critical Review of Improved Deep Learning Methods for the Remaining Useful Life Prediction of Lithium-Ion Batteries. Energy Rep. 2021, 7, 5562–5574. [Google Scholar] [CrossRef]
- Khumprom, P.; Yodo, N. A Data-Driven Predictive Prognostic Model for Lithium-Ion Batteries Based on a Deep Learning Algorithm. Energies 2019, 12, 660. [Google Scholar] [CrossRef]
- Hong, J.; Lee, D.; Jeong, E.-R.; Yi, Y. Towards the Swift Prediction of the Remaining Useful Life of Lithium-Ion Batteries with End-to-End Deep Learning. Appl. Energy 2020, 278, 115646. [Google Scholar] [CrossRef]
- Ren, L.; Zhao, L.; Hong, S.; Zhao, S.; Wang, H.; Zhang, L. Remaining Useful Life Prediction for Lithium-Ion Battery: A Deep Learning Approach. IEEE Access 2018, 6, 50587–50598. [Google Scholar] [CrossRef]
- Zhang, Q.; Yang, L.; Guo, W.; Qiang, J.; Peng, C.; Li, Q.; Deng, Z. A Deep Learning Method for Lithium-Ion Battery Remaining Useful Life Prediction Based on Sparse Segment Data via Cloud Computing System. Energy 2022, 241, 122716. [Google Scholar] [CrossRef]
- Chen, Z.; Shi, N.; Ji, Y.; Niu, M.; Wang, Y. Lithium-Ion Batteries Remaining Useful Life Prediction Based on BLS-RVM. Energy 2021, 234, 121269. [Google Scholar] [CrossRef]
- Wang, H.; Song, W.; Zio, E.; Kudreyko, A.; Zhang, Y. Remaining Useful Life Prediction for Lithium-Ion Batteries Using Fractional Brownian Motion and Fruit-Fly Optimization Algorithm. Measurement 2020, 161, 107904. [Google Scholar] [CrossRef]
- Li, X.; Yuan, C.; Li, X.; Wang, Z. State of Health Estimation for Li-Ion Battery Using Incremental Capacity Analysis and Gaussian Process Regression. Energy 2020, 190, 116467. [Google Scholar] [CrossRef]
- Ji, Y.; Chen, Z.; Shen, Y.; Yang, K.; Wang, Y.; Cui, J. An RUL Prediction Approach for Lithium-Ion Battery Based on SADE-MESN. Appl. Soft. Comput. 2021, 104, 107195. [Google Scholar] [CrossRef]
- Ma, B.; Yang, S.; Zhang, L.; Wang, W.; Chen, S.; Yang, X.; Xie, H.; Yu, H.; Wang, H.; Liu, X. Remaining Useful Life and State of Health Prediction for Lithium Batteries Based on Differential Thermal Voltammetry and a Deep-Learning Model. J. Power Sources 2022, 548, 232030. [Google Scholar] [CrossRef]
- Jafari, S.; Byun, Y.-C. XGBoost-Based Remaining Useful Life Estimation Model with Extended Kalman Particle Filter for Lithium-Ion Batteries. Sensors 2022, 22, 9522. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Li, J.; Ren, J.; Zhang, K. Prediction of Residual Service Life of Lithium-Ion Battery Using WOA-XGBoost. Energy Storage Sci. Technol. 2022, 11, 3354. [Google Scholar]
- Wei, J.; Dong, G.; Chen, Z. Remaining Useful Life Prediction and State of Health Diagnosis for Lithium-Ion Batteries Using Particle Filter and Support Vector Regression. IEEE Trans. Ind. Electron. 2018, 65, 5634–5643. [Google Scholar] [CrossRef]
- Wang, F.-K.; Mamo, T. A Hybrid Model Based on Support Vector Regression and Differential Evolution for Remaining Useful Lifetime Prediction of Lithium-Ion Batteries. J. Power Sources 2018, 401, 49–54. [Google Scholar] [CrossRef]
- Li, F.; Zhu, Z.; Liao, H.; Liu, Y.; Yan, L.; Wu, Y.; Huang, Z. An AdaBoost-Support Vector Regression Method for Remaining Useful Life Prediction of Lithium-Ion Batteries. In Proceedings of the International Conference on Applied Energy 2020, Changsha, China, 1–10 December 2020. [Google Scholar]
- Sun, S.; Zhang, Q.; Sun, J.; Cai, W.; Zhou, Z.; Yang, Z.; Wang, Z. Lead-Acid Battery SOC Prediction Using Improved AdaBoost Algorithm. Energies 2022, 15, 5842. [Google Scholar] [CrossRef]
- Li, H.; Wang, S.; Islam, M.; Bobobee, E.D.; Zou, C.; Fernandez, C. A Novel State of Charge Estimation Method of Lithium-Ion Batteries Based on the IWOA-AdaBoost-Elman Algorithm. Int. J. Energy Res. 2022, 46, 5134–5151. [Google Scholar] [CrossRef]
- Gao, K.; Wang, W.; Liu, X. Residual Life Prediction of The Elderly Based on Stochastic Filtering Model. System. Eng. Theor. Prac. 2016, 36, 2924–2932. [Google Scholar]
- Gao, K.; Yan, X.; Liu, X.; Peng, R. Object Defence of a Single Object with Preventive Strike of Random Effect. Reliab. Eng. Syst. Saf. 2019, 186, 209–219. [Google Scholar] [CrossRef]
- Zhang, Z.; Yang, L. State-Based Opportunistic Maintenance With Multifunctional Maintenance Windows. IEEE Trans. Reliab. 2021, 70, 1481–1494. [Google Scholar] [CrossRef]
- Qiu, Q.; Maillart, L.M.; Prokopyev, O.A.; Cui, L. Optimal Condition-Based Mission Abort Decisions. IEEE Trans. Reliab. 2023, 72, 408–425. [Google Scholar] [CrossRef]
- Zeng, G.; Sun, Z.; Liu, S.; Chen, X.; Li, D.; Wu, J.; Gao, Z. Percolation-Based Health Management of Complex Traffic Systems. Front. Eng. 2021, 8, 557–571. [Google Scholar] [CrossRef]
- Jaeger, H.; Haas, H. Harnessing Nonlinearity: Predicting Chaotic Systems and Saving Energy in Wireless Communication. Science 2004, 304, 78–80. [Google Scholar] [CrossRef] [PubMed]
- Chen, C. CiteSpace II: Detecting and Visualizing Emerging Trends and Transient Patterns in Scientific Literature. J. Am Soc. Inf Sci. 2006, 57, 359–377. [Google Scholar] [CrossRef]
Method Types | Typical Methods | Advantages | Disadvantages |
---|---|---|---|
Traditional method | Discharge test method |
|
|
Open-circuit voltage method |
|
| |
Ah integration method |
|
| |
Model-based approach | Linear model method |
|
|
Kalman filter |
|
| |
Particle filter |
|
| |
Observer method |
|
| |
Data-driven approach | Neural network |
|
|
Fuzzy logic control |
|
| |
Support vector machine |
|
|
Method Types | Typical Methods | Advantages | Disadvantages |
---|---|---|---|
Model-based approach | Kalman filter |
|
|
Synovial observer |
|
| |
Data-driven approach | GPR model |
|
|
Gray theory method |
|
|
Method Types | Common Methods | Features | Related Studies |
---|---|---|---|
Fault diagnosis | Neural network |
| Wang et al. [136]; Zhang et al. [137]; Ojo et al. [138]; Gao et al. [139]; Duan et al. [140]; Yao et al. [141] |
SVM |
| Yao et al. [142]; Li et al. [143]; Deng et al. [144]; Huo et al. [145]; Gao et al. [146] | |
Other methods (random forest classifiers, GPR, logistic regression, etc.) | Yang et al. [147]; Samanta et al. [148]; Wang et al. [149]; Zou et al. [150]; Qiu et al. [151]; Wu et al. [152]; Feng et al. [153] | ||
Lifetime prediction | Deep learning |
| Wang et al. [154]; Khumprom et al. [155]; Hong et al. [156]; Ren et al. [157]; Zhang et al. [158] |
Combinatorial optimization method |
| Chen et al. [159]; Wang et al. [160]; Li et al. [161]; Ji et al. [162]; Ma et al. [163] | |
Other methods (XGBoost, SVM Regression, AdaBoost, etc.) | Jafari et al. [164]; Shi et al. [165]; Wei et al. [166]; Wang et al. [167]; Li et al. [168]; Sun et al. [169]; Li et al. [170] |
Keywords | Strength | Begin | End | 2017–2023 |
---|---|---|---|---|
lifepo4 battery | 5.52 | 2017 | 2020 | ▃▃▃▃▂▂▂ |
lead acid battery | 3.99 | 2017 | 2018 | ▃▃▂▂▂▂▂ |
polymer battery | 2.49 | 2017 | 2018 | ▃▃▂▂▂▂▂ |
power capability | 2.49 | 2017 | 2018 | ▃▃▂▂▂▂▂ |
available power | 2.49 | 2017 | 2018 | ▃▃▂▂▂▂▂ |
filter | 2.32 | 2017 | 2018 | ▃▃▂▂▂▂▂ |
battery pack | 2.2 | 2017 | 2020 | ▃▃▃▃▂▂▂ |
frequency regulation | 2.74 | 2019 | 2020 | ▂▂▃▃▂▂▂ |
power management | 2.09 | 2020 | 2022 | ▂▂▂▃▃▃▂ |
support vector machine | 2.08 | 2020 | 2022 | ▂▂▂▃▃▃▂ |
dc-dc converter | 2.08 | 2020 | 2022 | ▂▂▂▃▃▃▂ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, Y.; Jin, C.; Fang, S.; Yang, L.; Wu, Z.; Wang, Z.; Peng, R.; Gao, K. A Comprehensive Review of Key Technologies for Enhancing the Reliability of Lithium-Ion Power Batteries. Energies 2023, 16, 6144. https://doi.org/10.3390/en16176144
Ren Y, Jin C, Fang S, Yang L, Wu Z, Wang Z, Peng R, Gao K. A Comprehensive Review of Key Technologies for Enhancing the Reliability of Lithium-Ion Power Batteries. Energies. 2023; 16(17):6144. https://doi.org/10.3390/en16176144
Chicago/Turabian StyleRen, Yue, Chunhua Jin, Shu Fang, Li Yang, Zixuan Wu, Ziyang Wang, Rui Peng, and Kaiye Gao. 2023. "A Comprehensive Review of Key Technologies for Enhancing the Reliability of Lithium-Ion Power Batteries" Energies 16, no. 17: 6144. https://doi.org/10.3390/en16176144
APA StyleRen, Y., Jin, C., Fang, S., Yang, L., Wu, Z., Wang, Z., Peng, R., & Gao, K. (2023). A Comprehensive Review of Key Technologies for Enhancing the Reliability of Lithium-Ion Power Batteries. Energies, 16(17), 6144. https://doi.org/10.3390/en16176144