Survey of Novel Architectures for Energy Efficient High-Performance Mobile Computing Platforms
Abstract
:1. Introduction
2. Existing Solutions
3. Literature Survey
3.1. Analog Computing
3.2. In-Memory Computing
3.3. Adiabatic Computing
3.4. Alternate Technologies
4. Discussion and Future Directions
Technique | Conventional | Analog | IMC | Adiabatic | Alternative Technologies |
---|---|---|---|---|---|
Optimization Method | N/A | Computational modal | Bottleneck mitigation | Energy recovery | Hardware implementation |
Operational Frequency | 50 MHz [74]–
1.3 GHz [1] | 10 kHz [29]– 690 MHz [75] | 10 MHz [40]– 2.2 GHz [76] | 20 kHz [53]– 1 GHz [77] | 2.5 kHz [25]– 3.3 GHz [78] |
Computational Efficiency | 560 MOPS/W [14]– 5.4 TOPS/W [16] | 21 GOPS/W [31]– 410 POPS/W [29] | 46 GOPS/W [79]– 1.6 POPS/W [40] | 150 TOPS/W [62]– 110 POPS/W [53] | 25 TOPS/W [80]– 710 TOPS/W [81] |
Typical Use Cases | General purpose | Matrix operations and PDEs | Matrix operations | General purpose | General purpose |
Primary Limitations | Power consumption, limited efficiency | Reduced precision, manufacturing inconsistencies | Increased memory size, requires SIMD friendly problems | Increased design complexity, extraneous signals, additional design constraints | Immature technologies, reliability |
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Karumbunathan, L.S. NVIDIA Jetson AGX Orin Series; Technical Report 10749-001; Nvidia: Santa Clara, CA, USA, 2022. [Google Scholar]
- ORNL’s Frontier First to Break the Exaflop Ceiling. 2021. Available online: https://www.top500.org/news/ornls-frontier-first-to-break-the-exaflop-ceiling/ (accessed on 25 June 2023).
- Fortuna, L.; Buscarino, A. Sustainable Energy Systems. Energies 2022, 15, 9227. [Google Scholar] [CrossRef]
- Yang, H.; Lee, H.; Zo, H. User acceptance of smart home services: An extension of the theory of planned behavior. Ind. Manag. Data Syst. 2017, 117, 68–89. [Google Scholar] [CrossRef]
- Vilar, B.M.J.C.; Luiz, S.O.D.; Perkusich, A.; Santos, D.R. Dynamic power management for network interfaces. In Proceedings of the 2015 IEEE 5th International Conference on Consumer Electronics—Berlin (ICCE-Berlin), Berlin, Germany, 6–9 September 2015; pp. 383–387. [Google Scholar] [CrossRef]
- Shi, W.; Dustdar, S. The Promise of Edge Computing. Computer 2016, 49, 78–81. [Google Scholar] [CrossRef]
- Qin, M.; Chen, L.; Zhao, N.; Chen, Y.; Yu, F.R.; Wei, G. Power-Constrained Edge Computing with Maximum Processing Capacity for IoT Networks. IEEE Internet Things J. 2019, 6, 4330–4343. [Google Scholar] [CrossRef]
- Hua, H.; Li, Y.; Wang, T.; Dong, N.; Li, W.; Cao, J. Edge Computing with Artificial Intelligence: A Machine Learning Perspective. ACM Comput. Surv. 2023, 55, 1–35. [Google Scholar] [CrossRef]
- Wang, X.; Han, Y.; Leung, V.C.M.; Niyato, D.; Yan, X.; Chen, X. Convergence of Edge Computing and Deep Learning: A Comprehensive Survey. IEEE Commun. Surv. Tutorials 2020, 22, 869–904. [Google Scholar] [CrossRef]
- Campolo, C.; Iera, A.; Molinaro, A. Network for Distributed Intelligence: A Survey and Future Perspectives. IEEE Access 2023, 11, 52840–52861. [Google Scholar] [CrossRef]
- Zhou, F.; Chai, Y. Near-sensor and in-sensor computing. Nat. Electron. 2020, 3, 664–671. [Google Scholar] [CrossRef]
- ARM. Cortex-M4 Devices Generic User Guide; Technical Report dui0553; ARM: Cambridge, UK, 2011. [Google Scholar]
- ARM. Arm Cortex-M7 Devices Generic User Guide; Technical Report dui0646; ARM: Cambridge, UK, 2018. [Google Scholar]
- STMicroelectronics. STM32F427xx STM32F429xx Datasheet—Production Data; Technical Report 024030; STMicroelectronics: Geneva, Switzerland, 2019. [Google Scholar]
- Karumbunathan, L.S. Solving Entry-Level Edge AI Challenges with NVIDIA Jetson Orin Nano. 2022. Available online: https://developer.nvidia.com/blog/solving-entry-level-edge-ai-challenges-with-nvidia-jetson-orin-nano/ (accessed on 25 June 2023).
- Xilinx. ACAP at the Edge with the Versal AI Edge Series; Technical Report WP518; Xilinx: San Jose, CA, USA, 2021. [Google Scholar]
- Fuchs, A.; Wentzlaff, D. The Accelerator Wall: Limits of Chip Specialization. In Proceedings of the 2019 IEEE International Symposium on High Performance Computer Architecture (HPCA), Washington, DC, USA, 16–20 February 2019; pp. 1–14. [Google Scholar] [CrossRef]
- Le, S.T.; Drenski, T.; Hills, A.; King, M.; Kim, K.; Matsui, Y.; Sizer, T. 100 Gbps DMT ASIC for Hybrid LTE-5G Mobile Fronthaul Networks. J. Light. Technol. 2021, 39, 801–812. [Google Scholar] [CrossRef]
- Corrěa, M.; Neto, L.; Palomino, D.; Corrěa, G.; Agostini, L. ASIC Solution for the Directional Intra Prediction of the AV1 Encoder Targeting UHD 4K Videos. In Proceedings of the 2020 IEEE International Symposium on Circuits and Systems (ISCAS), Seville, Spain, 12–14 October 2020; pp. 1–5. [Google Scholar] [CrossRef]
- Landauer, R. Irreversibility and Heat Generation in the Computing Process. IBM J. Res. Dev. 1961, 5, 183–191. [Google Scholar] [CrossRef]
- Jeon, W.; Park, J.H.; Kim, Y.; Koo, G.; Ro, W.W. Hi-End: Hierarchical, Endurance-Aware STT-MRAM-Based Register File for Energy-Efficient GPUs. IEEE Access 2020, 8, 127768–127780. [Google Scholar] [CrossRef]
- Huang, Y.; Guo, N.; Seok, M.; Tsividis, Y.; Sethumadhavan, S. Analog Computing in a Modern Context: A Linear Algebra Accelerator Case Study. IEEE Micro 2017, 37, 30–38. [Google Scholar] [CrossRef]
- Kogge, P.M. Function-based computing and parallelism: A review. Parallel Comput. 1985, 2, 243–253. [Google Scholar] [CrossRef]
- Weste, N.; Harris, D. CMOS VLSI Design: A Circuits and Systems Perspective, 4th ed.; Addison Wesley: Boston, MA, USA, 2011. [Google Scholar]
- Perrin, Y.; Galisultanov, A.; Hutin, L.; Basset, P.; Fanet, H.; Pillonnet, G. Contact-Free MEMS Devices for Reliable and Low-Power Logic Operations. IEEE Trans. Electron Devices 2021, 68, 2938–2943. [Google Scholar] [CrossRef]
- Horowitz, M. 1.1 Computing’s energy problem (and what we can do about it). In Proceedings of the 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), San Francisco, CA, USA, 9–13 February 2014; pp. 10–14. [Google Scholar] [CrossRef]
- Simevski, A.; Schrape, O.; Benito, C. Comparative Analyses of Low-Power IC Design Techniques based on Chip Measurements. In Proceedings of the 2018 16th Biennial Baltic Electronics Conference (BEC), Tallinn, Estonia, 8–10 October 2018; pp. 1–6. [Google Scholar] [CrossRef]
- Bartík, M. External Power Gating Technique—An Inappropriate Solution for Low Power Devices. In Proceedings of the 2020 11th IEEE Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON), Vancouver, BC, Canada, 4–7 November 2020; pp. 0241–0245. [Google Scholar] [CrossRef]
- Seok, M.; Yang, M.; Jiang, Z.; Lazar, A.A.; Seo, J.S. Cases for Analog Mixed Signal Computing Integrated Circuits for Deep Neural Networks. In Proceedings of the 2019 International Symposium on VLSI Design, Automation and Test (VLSI-DAT), Hsinchu, Taiwan, 22–25 April 2019; pp. 1–2. [Google Scholar] [CrossRef]
- Rodriguez-Perez, A.; Ruiz-Amaya, J.; Delgado-Restituto, M.; Rodrigeuz-Vazquez, A. A Low-Power Programmable Neural Spike Detection Channel with Embedded Calibration and Data Compression. IEEE Trans. Biomed. Circuits Syst. 2012, 6, 87–100. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Botimer, J.; Chou, T.; Zhang, Z. A 1.87-mm2 56.9-GOPS Accelerator for Solving Partial Differential Equations. IEEE J. Solid-State Circuits 2020, 55, 1709–1718. [Google Scholar] [CrossRef]
- Malavipathirana, H.; Hariharan, S.I.; Udayanga, N.; Mandal, S.; Madanayake, A. A Fast and Fully Parallel Analog CMOS Solver for Nonlinear PDEs. IEEE Trans. Circuits Syst. I Regul. Pap. 2021, 68, 3363–3376. [Google Scholar] [CrossRef]
- Hasler, J. Large-Scale Field-Programmable Analog Arrays. Proc. IEEE 2020, 108, 1283–1302. [Google Scholar] [CrossRef]
- Kim, S.; Shah, S.; Hasler, J. Calibration of Floating-Gate SoC FPAA System. IEEE Trans. Very Large Scale Integr. Syst. 2017, 25, 2649–2657. [Google Scholar] [CrossRef]
- Schlottmann, C.R.; Shapero, S.; Nease, S.; Hasler, P. A Digitally Enhanced Dynamically Reconfigurable Analog Platform for Low-Power Signal Processing. IEEE J. Solid-State Circuits 2012, 47, 2174–2184. [Google Scholar] [CrossRef]
- Johnson, A.; Davies, R. Speculative Execution Attack Methodologies (SEAM): An overview and component modelling of Spectre, Meltdown and Foreshadow attack methods. In Proceedings of the 2019 7th International Symposium on Digital Forensics and Security (ISDFS), Barcelos, Portugal, 10–12 June 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Jeon, D.I.; Park, K.B.; Chung, K.S. HMC-MAC: Processing-in Memory Architecture for Multiply-Accumulate Operations with Hybrid Memory Cube. IEEE Comput. Archit. Lett. 2018, 17, 5–8. [Google Scholar] [CrossRef]
- Garland, J.; Gregg, D. Low Complexity Multiply Accumulate Unit for Weight-Sharing Convolutional Neural Networks. IEEE Comput. Archit. Lett. 2017, 16, 132–135. [Google Scholar] [CrossRef]
- Shanbhag, N.R.; Abdallah, R.A.; Kumar, R.; Jones, D.L. Stochastic computation. In Proceedings of the Design Automation Conference, Anaheim, CA, USA, 13–18 June 2010; pp. 859–864. [Google Scholar]
- Zhang, X.; Wang, Y.; Zhang, Y.; Song, J.; Zhang, Z.; Cheng, K.; Wang, R.; Huang, R. Memory System Designed for Multiply-Accumulate (MAC) Engine Based on Stochastic Computing. In Proceedings of the 2019 International Conference on IC Design and Technology (ICICDT), Suzhou, China, 17–19 June 2019; pp. 1–4. [Google Scholar] [CrossRef]
- Chung, S.; Wang, J. Tightly Coupled Machine Learning Coprocessor Architecture with Analog In-Memory Computing for Instruction-Level Acceleration. IEEE J. Emerg. Sel. Top. Circuits Syst. 2019, 9, 544–561. [Google Scholar] [CrossRef]
- Sarma, T.; Parikh, C.D. Effect of Leakage Currents in Adiabatic Logic Circuits at Lower Technology Nodes. In Proceedings of the 2019 IEEE Conference on Modeling of Systems Circuits and Devices (MOS-AK India), Hyderabad, India, 25–27 February 2019; pp. 79–81. [Google Scholar] [CrossRef]
- Srilakshmi, K.; Tilak, A.V.N.; Rao, K.S. Performance of FinFET based adiabatic logic circuits. In Proceedings of the 2016 IEEE Region 10 Conference (TENCON), Singapore, 22–25 November 2016; pp. 2377–2382. [Google Scholar] [CrossRef]
- Samson, M.; Mandavalli, S. Adiabatic 5T SRAM. In Proceedings of the 2011 International Symposium on Electronic System Design, Kochi, India, 19–21 December 2011; pp. 267–272. [Google Scholar] [CrossRef]
- Samanta, S. Sequential adiabatic logic for ultra low power applications. In Proceedings of the 2017 Devices for Integrated Circuit (DevIC), Kalyani, India, 23–24 March 2017; pp. 821–824. [Google Scholar] [CrossRef]
- Filippini, L.; Taskin, B. The Adiabatically Driven StrongARM Comparator. IEEE Trans. Circuits Syst. II Express Briefs 2019, 66, 1957–1961. [Google Scholar] [CrossRef]
- Filippini, L.; Taskin, B. A 900 MHz Charge Recovery Comparator with 40 fJ per Conversion. In Proceedings of the 2018 IEEE International Symposium on Circuits and Systems (ISCAS), Florence, Italy, 27–30 May 2018; pp. 1–5. [Google Scholar] [CrossRef]
- Van Elzakker, M.; van Tuijl, E.; Geraedts, P.; Schinkel, D.; Klumperink, E.A.M.; Nauta, B. A 10-bit Charge-Redistribution ADC Consuming 1.9 μW at 1 MS/s. IEEE J. Solid-State Circuits 2010, 45, 1007–1015. [Google Scholar] [CrossRef]
- Moyal, V.; Tripathi, N. Adiabatic Threshold Inverter Quantizer for a 3-bit Flash ADC. In Proceedings of the 2016 International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET), Chennai, India, 23–25 March 2016; pp. 1543–1546. [Google Scholar] [CrossRef]
- Vieri, C.J. Pendulum: A Reversible Computer Architecture. Master’s Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 1995. [Google Scholar]
- Degada, A.; Thapliyal, H. Single-Rail Adiabatic Logic for Energy-Efficient and CPA-Resistant Cryptographic Circuit in Low-Frequency Medical Devices. IEEE Open J. Nanotechnol. 2022, 3, 1–14. [Google Scholar] [CrossRef]
- Dhananjay, K.; Salman, E. SEAL-RF: SEcure Adiabatic Logic for Wirelessly-Powered IoT Devices. IEEE Internet Things J. 2022, 10, 1112–1123. [Google Scholar] [CrossRef]
- Karakiewicz, R.; Genov, R.; Cauwenberghs, G. 1.1 TMACS/mW Fine-Grained Stochastic Resonant Charge-Recycling Array Processor. IEEE Sens. J. 2012, 12, 785–792. [Google Scholar] [CrossRef]
- Milo, V.; Glukhov, A.; Pérez, E.; Zambelli, C.; Lepri, N.; Mahadevaiah, M.K.; Quesada, E.P.B.; Olivo, P.; Wenger, C.; Ielmini, D. Accurate Program/Verify Schemes of Resistive Switching Memory (RRAM) for In-Memory Neural Network Circuits. IEEE Trans. Electron Devices 2021, 68, 3832–3837. [Google Scholar] [CrossRef]
- Bavandpour, M.; Mahmoodi, M.R.; Strukov, D.B. aCortex: An Energy-Efficient Multipurpose Mixed-Signal Inference Accelerator. IEEE J. Explor. Solid-State Comput. Devices Circuits 2020, 6, 98–106. [Google Scholar] [CrossRef]
- Zanotti, T.; Puglisi, F.M.; Pavan, P. Smart Logic-in-Memory Architecture for Low-Power Non-Von Neumann Computing. IEEE J. Electron Devices Soc. 2020, 8, 757–764. [Google Scholar] [CrossRef]
- Julliere, M. Tunneling between ferromagnetic films. Phys. Lett. A 1975, 54, 225–226. [Google Scholar] [CrossRef]
- Jain, S.; Ranjan, A.; Roy, K.; Raghunathan, A. Computing in Memory with Spin-Transfer Torque Magnetic RAM. IEEE Trans. Very Large Scale Integr. Syst. 2018, 26, 470–483. [Google Scholar] [CrossRef]
- Cai, H.; Guo, Y.; Liu, B.; Zhou, M.; Chen, J.; Liu, X.; Yang, J. Proposal of Analog In-Memory Computing with Magnified Tunnel Magnetoresistance Ratio and Universal STT-MRAM Cell. IEEE Trans. Circuits Syst. I Regul. Pap. 2022, 69, 1519–1531. [Google Scholar] [CrossRef]
- Fan, D.; Shim, Y.; Raghunathan, A.; Roy, K. STT-SNN: A Spin-Transfer-Torque Based Soft-Limiting Non-Linear Neuron for Low-Power Artificial Neural Networks. IEEE Trans. Nanotechnol. 2015, 14, 1013–1023. [Google Scholar] [CrossRef]
- Snelgrove, M.; Beachler, R. speedAI240: A 2-Petaflop, 30-Teraflops/W At-Memory Inference Acceleration Device with 1456 RISC-V Cores. IEEE Micro 2023, 43, 58–63. [Google Scholar] [CrossRef]
- Sanni, K.; Andreou, A. A Mixed-Signal Successive Approximation Architecture for Energy-Efficient Fixed-Point Arithmetic in 16 nm FinFET. In Proceedings of the 2019 IEEE International Symposium on Circuits and Systems (ISCAS), Sapporo, Japan, 26–29 May 2019; pp. 1–5. [Google Scholar] [CrossRef]
- Everspin Technologies, Inc. Everspin Announces Commercial Availability of Its EMxxLX STT-MRAM Devices. 2022. Available online: https://www.everspin.com/news/everspin-announces-commercial-availability-its-emxxlx-stt-mram-devices (accessed on 25 June 2023).
- Choe, J. Recent Technology Insights on STT-MRAM: Structure, Materials, and Process Integration. In Proceedings of the 2023 IEEE International Memory Workshop (IMW), Monterey, CA, USA, 21–24 May 2023; pp. 1–4. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, J.; Bai, J.; Li, S.; Luo, L.; Wei, S.; Wu, J.; Kang, W. HD-CIM: Hybrid-Device Computing-In-Memory Structure Based on MRAM and SRAM to Reduce Weight Loading Energy of Neural Networks. IEEE Trans. Circuits Syst. I Regul. Pap. 2022, 69, 4465–4474. [Google Scholar] [CrossRef]
- Filippini, L.; Khuon, L.; Taskin, B. Charge recovery implementation of an analog comparator: Initial results. In Proceedings of the 2017 IEEE 60th International Midwest Symposium on Circuits and Systems (MWSCAS), Boston, MA, USA, 6–9 August 2017; pp. 1505–1508. [Google Scholar] [CrossRef]
- Jiang, H.; Santiago, F.J.H.; Mo, H.; Liu, L.; Han, J. Approximate Arithmetic Circuits: A Survey, Characterization, and Recent Applications. Proc. IEEE 2020, 108, 2108–2135. [Google Scholar] [CrossRef]
- Kuppusamy, P.; Yaswanth Kumar, N.; Dontireddy, J.; Iwendi, C. Quantum Computing and Quantum Machine Learning Classification—A Survey. In Proceedings of the 2022 IEEE 4th International Conference on Cybernetics, Cognition and Machine Learning Applications (ICCCMLA), Goa, India, 8–9 October 2022; pp. 200–204. [Google Scholar] [CrossRef]
- Yang, Z.; Zolanvari, M.; Jain, R. A Survey of Important Issues in Quantum Computing and Communications. IEEE Commun. Surv. Tutorials 2023, 25, 1059–1094. [Google Scholar] [CrossRef]
- Upama, P.B.; Faruk, M.J.H.; Nazim, M.; Masum, M.; Shahriar, H.; Uddin, G.; Barzanjeh, S.; Ahamed, S.I.; Rahman, A. Evolution of Quantum Computing: A Systematic Survey on the Use of Quantum Computing Tools. In Proceedings of the 2022 IEEE 46th Annual Computers, Software, and Applications Conference (COMPSAC), Los Alamitos, CA, USA, 27 June–1 July 2022; pp. 520–529. [Google Scholar] [CrossRef]
- Ayala, C.L.; Tanaka, T.; Saito, R.; Nozoe, M.; Takeuchi, N.; Yoshikawa, N. MANA: A Monolithic Adiabatic iNtegration Architecture Microprocessor Using 1.4-zJ/op Unshunted Superconductor Josephson Junction Devices. IEEE J. Solid-State Circuits 2021, 56, 1152–1165. [Google Scholar] [CrossRef]
- Yamauchi, T.; San, H.; Yoshikawa, N.; Chen, O. A Study on the Efficient Design of Adders Using Adiabatic Quantum-Flux-Parametron Circuits. In Proceedings of the 2022 IEEE 11th Global Conference on Consumer Electronics (GCCE), Osaka, Japan, 18–21 October 2022; pp. 114–116. [Google Scholar] [CrossRef]
- Takahashi, D.; Takeuchi, N.; Yamanashi, Y.; Yoshikawa, N. Design and Demonstration of a Superconducting Field-Programmable Gate Array Using Adiabatic Quantum-Flux-Parametron Logic and Memory. IEEE Trans. Appl. Supercond. 2022, 32, 1–7. [Google Scholar] [CrossRef]
- Chou, C.C.; Chen, T.Y.; Fang, W.C. FPGA implementation of EEG system-on-chip with automatic artifacts removal based on BSS-CCA method. In Proceedings of the 2016 IEEE Biomedical Circuits and Systems Conference (BioCAS), Shanghai, China, 17–19 October 2016; pp. 224–227. [Google Scholar]
- Zhang, B.; Saikia, J.; Meng, J.; Wang, D.; Kwon, S.; Myung, S.; Kim, H.; Kim, S.J.; Seo, J.s.; Seok, M. A 177 TOPS/W, Capacitor-based In-Memory Computing SRAM Macro with Stepwise-Charging/Discharging DACs and Sparsity-Optimized Bitcells for 4-Bit Deep Convolutional Neural Networks. In Proceedings of the 2022 IEEE Custom Integrated Circuits Conference (CICC), Newport Beach, CA, USA, 24–27 April 2022; pp. 1–2. [Google Scholar] [CrossRef]
- Simon, W.A.; Qureshi, Y.M.; Rios, M.; Levisse, A.; Zapater, M.; Atienza, D. BLADE: An in-Cache Computing Architecture for Edge Devices. IEEE Trans. Comput. 2020, 69, 1349–1363. [Google Scholar] [CrossRef]
- Sathe, V.S.; Chueh, J.Y.; Papaefthymiou, M.C. Energy-Efficient GHz-Class Charge-Recovery Logic. IEEE J. Solid-State Circuits 2007, 42, 38–47. [Google Scholar] [CrossRef]
- Wu, B.; Zhu, H.; Reis, D.; Wang, Z.; Wang, Y.; Chen, K.; Liu, W.; Lombardi, F.; Hu, X.S. An Energy-Efficient Computing-in-Memory (CiM) Scheme Using Field-Free Spin-Orbit Torque (SOT) Magnetic RAMs. IEEE Trans. Emerg. Top. Comput. 2023, 11, 331–342. [Google Scholar] [CrossRef]
- Villemur, M.; Tognetti, G.; Julian, P. Memory based computation core for nonlinear neural operations. In Proceedings of the 2019 Argentine Conference on Electronics (CAE), Mar del Plata, Argentina, 14–15 March 2019; pp. 98–102. [Google Scholar] [CrossRef]
- Lu, L.; Mani, A.; Do, A.T. A 129.83 TOPS/W Area Efficient Digital SOT/STT MRAM-Based Computing-In-Memory for Advanced Edge AI Chips. In Proceedings of the 2023 IEEE International Symposium on Circuits and Systems (ISCAS), Monterey, CA, USA, 21–25 May 2023; pp. 1–5. [Google Scholar] [CrossRef]
- Xie, W.; Sang, H.; Kwon, B.; Im, D.; Kim, S.; Kim, S.; Yoo, H.J. A 709.3 TOPS/W Event-Driven Smart Vision SoC with High-Linearity and Reconfigurable MRAM PIM. In Proceedings of the 2023 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits), Kyoto, Japan, 11–16 June 2023; pp. 1–2. [Google Scholar] [CrossRef]
- Cavalcante, M.; Schuiki, F.; Zaruba, F.; Schaffner, M.; Benini, L. Ara: A 1-GHz+ Scalable and Energy-Efficient RISC-V Vector Processor with Multiprecision Floating-Point Support in 22-nm FD-SOI. IEEE Trans. Very Large Scale Integr. Syst. 2020, 28, 530–543. [Google Scholar] [CrossRef]
- Han, L.; Huang, P.; Wang, Y.; Zhou, Z.; Zhang, Y.; Liu, X.; Kang, J. Efficient Discrete Temporal Coding Spike-Driven In-Memory Computing Macro for Deep Neural Network Based on Nonvolatile Memory. IEEE Trans. Circuits Syst. I Regul. Pap. 2022, 69, 4487–4498. [Google Scholar] [CrossRef]
- Chiu, Y.C.; Khwa, W.S.; Li, C.Y.; Hsieh, F.L.; Chien, Y.A.; Lin, G.Y.; Chen, P.J.; Pan, T.H.; You, D.Q.; Chen, F.Y.; et al. A 22 nm 8 Mb STT-MRAM Near-Memory-Computing Macro with 8b-Precision and 46.4-160.1TOPS/W for Edge-AI Devices. In Proceedings of the 2023 IEEE International Solid- State Circuits Conference (ISSCC), San Francisco, CA, USA, 19–23 February 2023; pp. 496–498. [Google Scholar] [CrossRef]
- Cowan, G.; Melville, R.; Tsividis, Y. A VLSI analog computer/digital computer accelerator. IEEE J. Solid-State Circuits 2006, 41, 42–53. [Google Scholar] [CrossRef]
- Dong, Q.; Sinangil, M.E.; Erbagci, B.; Sun, D.; Khwa, W.S.; Liao, H.J.; Wang, Y.; Chang, J. 15.3 a 351 TOPS/W and 372.4 GOPS compute-in-memory SRAM macro in 7 nm FINFET CMOS for machine-learning applications. In Proceedings of the 2020 IEEE International Solid- State Circuits Conference—(ISSCC), San Francisco, CA, USA, 16–20 February 2020. [Google Scholar] [CrossRef]
- Kneip, A.; Lefebvre, M.; Verecken, J.; Bol, D. IMPACT: A 1-to-4b 813-TOPS/W 22-nm FD-SOI Compute-in-Memory CNN Accelerator Featuring a 4.2-POPS/W 146-TOPS/mm2 CIM-SRAM with Multi-Bit Analog Batch-Normalization. IEEE J. Solid-State Circuits 2023, 58, 1871–1884. [Google Scholar] [CrossRef]
- Kneip, A.; Lefebvre, M.; Verecken, J.; Bol, D. A 1-to-4b 16.8-POPS/W 473-TOPS/mm2 6T-based In-Memory Computing SRAM in 22 nm FD-SOI with Multi-Bit Analog Batch-Normalization. In Proceedings of the ESSCIRC 2022—IEEE 48th European Solid State Circuits Conference (ESSCIRC), Milan, Italy, 19–22 September 2022; pp. 157–160. [Google Scholar] [CrossRef]
- Kim, S.; Kim, S.; Um, S.; Kim, S.; Kim, K.; Yoo, H.J. Neuro-CIM: A 310.4 TOPS/W Neuromorphic Computing-in-Memory Processor with Low WL/BL activity and Digital-Analog Mixed-mode Neuron Firing. In Proceedings of the 2022 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits), Honolulu, HI, USA, 12–17 June 2022; pp. 38–39. [Google Scholar] [CrossRef]
- Kim, H.; Yoo, T.; Kim, T.T.H.; Kim, B. Colonnade: A Reconfigurable SRAM-Based Digital Bit-Serial Compute-In-Memory Macro for Processing Neural Networks. IEEE J. Solid-State Circuits 2021, 56, 2221–2233. [Google Scholar] [CrossRef]
- Zang, Q.; Goh, W.L.; Lu, L.; Yu, C.; Mu, J.; Kim, T.T.H.; Kim, B.; Lit, D.; Dot, A.T. 282-to-607 TOPS/W, 7T-SRAM Based CiM with Reconfigurable Column SAR ADC for Neural Network Processing. In Proceedings of the 2023 IEEE International Symposium on Circuits and Systems (ISCAS), Monterey, CA, USA, 21–25 May 2023; pp. 1–5. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
O’Connor, O.; Elfouly, T.; Alouani, A. Survey of Novel Architectures for Energy Efficient High-Performance Mobile Computing Platforms. Energies 2023, 16, 6043. https://doi.org/10.3390/en16166043
O’Connor O, Elfouly T, Alouani A. Survey of Novel Architectures for Energy Efficient High-Performance Mobile Computing Platforms. Energies. 2023; 16(16):6043. https://doi.org/10.3390/en16166043
Chicago/Turabian StyleO’Connor, Owen, Tarek Elfouly, and Ali Alouani. 2023. "Survey of Novel Architectures for Energy Efficient High-Performance Mobile Computing Platforms" Energies 16, no. 16: 6043. https://doi.org/10.3390/en16166043
APA StyleO’Connor, O., Elfouly, T., & Alouani, A. (2023). Survey of Novel Architectures for Energy Efficient High-Performance Mobile Computing Platforms. Energies, 16(16), 6043. https://doi.org/10.3390/en16166043