Review of Surface Charge Accumulation on Insulators in DC Gas-Insulated Power Transmission Lines: Measurement and Suppression Measures
Abstract
:1. Introduction
2. Surface Potential Measurement
2.1. Dust Map
2.2. Pockels Effect
2.3. Electrostatic Probe
3. Surface Charge Inverse Algorithm
3.1. Linear Algorithm
3.2. λ Function Method
3.3. Improved λ Function Method
3.4. Analytical Method
3.5. φ Function Method
4. Surface Charge Accumulation Mechanism
4.1. Applied Voltage
4.2. Insulation Gas
4.3. Insulator Shape
4.4. Temperature
5. Surface Charge Suppression Strategy
5.1. Fluoridation
5.2. Plasma Surface Treatment
5.3. Coating
6. Conclusions and Suggestions for Future Work
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lin, C.J.; Li, C.Y.; Zhang, G.X.; Hu, J.; He, J.L. Review and prospect of surface charge inversion algorithm of Cone-Type spacer based on surface potential measurements. Proc. CSEE 2016, 36, 6654–6663. (In Chinese) [Google Scholar]
- Wang, Q.; Xie, G.; Tian, H.; Peng, Z.; Yang, X. Impact of temperature on the transient DC field distribution of ±1100 Kv UHVDC wall bushing. IEEE Trans. Power Deliv. 2021, 36, 1449–1457. [Google Scholar] [CrossRef]
- Ma, G.; Zhou, H.; Liu, S.; Wang, Y.; Zhao, S.; Lu, S.J.; Li, C.; Tu, Y. Measurement and simulation of charge accumulation on a disc spacer with electro-thermal stress in SF6 gas. IEEE Trans. Dielectr. Electr. Insul. 2018, 25, 1221–1229. [Google Scholar]
- Wang, J. Research on the Moving Mechanisms of Charged Metal Particles in DC GIL and Suppressing Methods. Ph.D. Dissertation, North China Electric Power University (Beijing), Beijing, China, 2017. (In Chinese). [Google Scholar]
- Ma, G.; Zhou, H.; Lu, S.; Wang, Y.; Liu, S.; Li, C.; Tu, Y. Effect of material volume conductivity on surface charges accumulation on spacers under DC electro-thermal coupling stress. IEEE Trans. Dielectr. Electr. Insul. 2018, 25, 1211–1220. [Google Scholar] [CrossRef]
- Liu, Q.; Yan, J.D.; Hao, L.; Zhang, B.; Liu, S. Charge transport and accumulation around a spacer insulator for application in HVDC wall bushing. IEEE Trans. Dielectr. Electr. Insul. 2018, 25, 281–293. [Google Scholar] [CrossRef]
- Li, C.; Lin, C.; Jun, H.; Liu, W.; Li, Q.; Zhang, B.; He, S.; Yang, Y.; Liu, F.; He, J.L. Novel HVDC spacers by adaptively controlling surface charges-Part I: Charge transport and control strategy. IEEE Trans. Dielectr. Electr. Insul. 2018, 25, 1238–1247. [Google Scholar]
- Du, B.X.; Li, J. Effects of ambient temperature on surface charge and flashover of heat-shrinkable polymer under polarity reversal voltage. IEEE Trans. Dielectr. Electr. Insul. 2016, 23, 1190–1197. [Google Scholar] [CrossRef]
- Zhang, Y.L. Observation of Surface Charge for Composite Insulator and Reasearch of Its Influence Factor. Master’s Thesis, Hunan University, Changsha, China, 2014. (In Chinese). [Google Scholar]
- Zhang, Y.; Lu, L.C.; Yang, X.; Qi, B.; Yang, Z.D.; Dang, Z.P.; Yan, F.Q.; Li, C.R. Exploration on the characteristics of new ceramic materials for insulators used in SF6 gas insulated HVDC equipment. Proc. CSEE 2021, 41, 174–182. (In Chinese) [Google Scholar]
- Wang, J.; Li, Q.M.; Li, B.T.; Chen, C. Motion analysis of spherical conducting particle in DC GIL considering the influence of inelastic random collisions and SF6/N2 gaseous mixture. Proc. CSEE 2015, 35, 3971–3978. (In Chinese) [Google Scholar]
- Zhang, B.Y.; Zhang, G.X. Review of charge accumulation characteristics at gas-solid interface in DC GIL, Part I: Measurement and mechanisms. Trans. China Electrotech. Soc. 2018, 33, 4649–4662. (In Chinese) [Google Scholar]
- Du, B.X.; Du, Q.; Li, J.; Li, A.; Fu, M.L.; Xiao, W. Surface charge dynamic behaviors of Epoxy/BN composite with high thermal conductivity for gas insulated transmission pipeline. High Volt. Eng. 2018, 044, 2646–2653. (In Chinese) [Google Scholar]
- Xue, J.; Li, Y.; Dong, J.; Chen, J.; Li, W.; Deng, J.; Zhang, G. Surface charge transport behavior and flashover mechanism on alumina/epoxy spacers coated by SiC/epoxy composites with varied SiC particle size. J. Phys. D Appl. Phys. 2020, 53, 155503. [Google Scholar] [CrossRef]
- Pan, C.; Tang, J.; Wang, D.; Luo, Y.; Zhuo, R.; Fu, M. Decay characters of charges on an insulator surface after different types of discharge. Plasma Sci. Technol. 2017, 19, 075503. [Google Scholar] [CrossRef]
- Koch, H.; Goll, F.; Magier, T.; Juhre, K. Technical aspects of gas insulated transmission lines and application of new insulating gases. IEEE Trans. Dielectr. Electr. Insul. 2018, 25, 1448–1453. [Google Scholar] [CrossRef]
- Wang, J.; Li, B.T.; Li, Q.M.; Liu, S.H.; Ma, G.M. Impact of linear metal particle on surface charge accumulation of post insulator within DC GIL. Trans. China Electrotech. Soc. 2016, 31, 213–222. (In Chinese) [Google Scholar]
- Xue, J.; Wang, H.; Liu, Y.; Li, K.; Liu, X.; Fan, X.; Deng, J.; Zhang, G.; Guo, B. Surface charge distribution patterns of a truncated cone-type spacer for high-voltage direct current gas-insulated metal-enclosed transmission line/gas-insulated metal-enclosed switchgear. IET Sci. Meas. Technol. 2018, 12, 436–442. [Google Scholar] [CrossRef]
- Gao, Y.; Wang, H.; Yuan, X.; Zhao, H.; Li, Z. Surface charge accumulation on a real size epoxy insulator with bouncing metal particle under DC voltage. IEEE Trans. Plasma Sci. 2021, 49, 2166–2175. [Google Scholar] [CrossRef]
- Gao, Y.; Wang, H.; Li, Z.; Yuan, X.; Zhao, H. Gaseous ionization dependence of surface charge pattern on epoxy insulator with complex surface profile under DC voltage. IEEE Trans. Plasma Sci. 2021, 49, 1627–1635. [Google Scholar] [CrossRef]
- Du, B.X.; Liang, H.C.; Li, J.; Ran, Z.Y. Electrical field distribution along SF6/N2 filled DC-GIS/GIL epoxy spacer. IEEE Trans. Dielectr. Electr. Insul. 2018, 25, 1202–1210. [Google Scholar] [CrossRef]
- Lutz, B.; Kindersberger, J. Surface charge accumulation on cylindrical polymeric model insulators in air: Simulation and measurement. IEEE Trans. Dielectr. Electr. Insul. 2011, 18, 2040–2048. [Google Scholar] [CrossRef]
- Zhou, H.; Ma, G.; Wang, Y.; Li, C.; Tu, Y.; Ye, S.; Zhang, B.; Guo, X.; Yang, X. Surface charge accumulation on 500 Kv cone-type GIS spacer under residual DC voltage. IEEE Trans. Dielectr. Electr. Insul. 2018, 25, 1230–1237. [Google Scholar] [CrossRef]
- Winter, A.; Kindersberger, J. Transient field distribution in gas-solid insulation systems under DC voltages. IEEE Trans. Dielectr. Electr. Insul. 2014, 21, 116–128. [Google Scholar] [CrossRef]
- Winter, A.; Kindersberger, J. Stationary resistive field distribution along epoxy resin insulators in air under DC voltage. IEEE Trans. Dielectr. Electr. Insul. 2012, 19, 1732–1739. [Google Scholar] [CrossRef]
- Hoshina, Y.; Yasuoka, T.; Takei, M. Influence of tiny metal particles on charge accumulation phenomena of GIS model spacer in high-pressure SF6 gas. IEEE Trans. Dielectr. Electr. Insul. 2013, 20, 1895–1901. [Google Scholar] [CrossRef]
- He, S.; Lin, C.; Hu, J.; Li, C.; He, J. Tailoring charge transport in epoxy based composite under temperature gradient using K2Ti6O13 and asbestine whiskers. J. Phys. D Appl. Phys. 2018, 51, 215306. [Google Scholar] [CrossRef]
- Zhang, B.; Li, X.; Wang, T.; Zhang, G. Surface charging characteristics of GIL model spacers under DC stress in C4F7N/CO2 gas mixture. IEEE Trans. Dielectr. Electr. Insul. 2020, 27, 597–605. [Google Scholar] [CrossRef]
- Wang, H.; Xue, J.Y.; Chen, J.H.; Deng, J.D.; Wan, B.Q.; Zhang, G.J. Influence of metal particles on surface charge accumulation characteristics of GIL spacer in SF6/N2 mixture. Trans. China Electrotech. Soc. 2018, 033, 4663–4671. (In Chinese) [Google Scholar]
- Imano, A.M. Accumulation of surface charges on the particle contaminated spacer surface in compressed gas under impulse voltage stress. J. Electrost. 2004, 61, 1–19. [Google Scholar] [CrossRef]
- Li, C.; Xu, Y.; Lin, C.; Chen, G.; Tu, Y.; Zhou, Y.; Lei, Z.; Han, T.; Suraci, S.V.; Wang, J.; et al. Surface charging phenomenon on HVDC spacers in compressed SF6 insulation and charge tailoring strategies. CSEE J. Power Energy Syst. 2019, 6, 83–99. [Google Scholar]
- Li, C.Y.; Zhang, C.H.; Lv, J.Z.; Liang, F.W.; Liang, Z.D.; Fan, X.H.; Riechert, U.; Li, Z.; Liu, P.; Xue, J.Y.; et al. China’s 10-year progress in DC gas-insulated equipment: From basic research to industry perspective. IEnergy 2022, 1, 400–433. [Google Scholar] [CrossRef]
- Du, B.; Dong, J.; Liang, H.; Kong, X. Polarity reversal and over voltage affecting discharge inception of tri-post insulator in ±800 Kv GIL. IEEE Trans. Dielectr. Electr. Insul. 2022, 29, 223–230. [Google Scholar] [CrossRef]
- Li, D.Y.; Zhang, B.Y.; Gao, W.Q.; Hou, Y.C.; Zhang, G.X. “Charge Speckles” pattern in surface charge distribution of insulator under DC voltage. Trans. China Electrotech. Soc. 2018, 33, 77–83. (In Chinese) [Google Scholar]
- Du, Q.D.; Zhang, Q.G.; Zhao, J.P.; Wu, Z.C.; Wang, C.Q. Influence of electric conductivity of materials on field and surface charge distribution of Basin-type insulator. High Volt. Eng. 2018, 44, 95–101. (In Chinese) [Google Scholar]
- Chen, X.; Guan, H.; Jiang, T.; Du, H.; Paramane, A.; Zhou, H. Surface charge dissipation and DC flashover characteristic of DBD plasma treated epoxy resin/AlN nanocomposites. IEEE Trans. Dielectr. Electr. Insul. 2020, 27, 504–511. [Google Scholar] [CrossRef]
- Li, X.; Wan, M.; Zhang, G.; Lin, X. Surface charge characteristics of DC-GIL insulator under multiphysics coupled field: Effects of ambient temperature, load current, and gas pressure. IEEE Trans. Dielectr. Electr. Insul. 2022, 29, 1530–1539. [Google Scholar] [CrossRef]
- Li, J.; Wang, Y.; Chen, H.; Liang, H.; Yao, H.; Zhang, C.; Du, B. Polishing orientation affecting surface charging and flashover characteristics of GIL/GIS epoxy spacer. IEEE Trans. Dielectr. Electr. Insul. 2022, 29, 1625–1632. [Google Scholar] [CrossRef]
- Du, Q.; Zhang, Q.; Wu, Z.; Ma, J.; Zhao, J. Surface charge distribution on DC basin-type insulator. IEEE Trans. Dielectr. Electr. Insul. 2019, 26, 17–25. [Google Scholar] [CrossRef]
- Ma, Y.Y.; Zhang, C.; Kong, F.; Wang, T.T.; Chen, G.Y.; Shao, T. Effect of plasma jet array assisted film deposition on epoxy resin surface electrical characteristics. High Volt. Eng. 2018, 44, 3089–3096. (In Chinese) [Google Scholar]
- Pan, C.; Tiang, J.; Wang, D.; Zhou, R.; Yang, D.; Ye, G.; Fu, M. Influence of temperature on the characteristics of surface charge accumulation on PTFE model insulators. IEEE Trans. Dielectr. Electr. Insul. 2017, 24, 1210–1219. [Google Scholar] [CrossRef]
- Mahmoodi, J.; Mirzaie, M.; Akmal, A.S. Contribution of surface charges on high-voltage DC silicon rubber insulators to DC flashover performance. IET Gener. Transm. Dis. 2018, 12, 5851–5857. [Google Scholar] [CrossRef]
- Amer, M.; Laninga, J.; McDermid, W.; Swatek, D.R.; Kordi, B. Surface charging and its effects on DC flashover strength of insulating materials. IEEE Trans. Dielectr. Electr. Insul 2018, 25, 2452–2460. [Google Scholar] [CrossRef]
- Kumara, S.; Serdyuk, Y.V.; Gubanski, S.M. Simulation of surface charge effect on impulse flashover characteristics of outdoor polymeric insulators. IEEE Trans. Dielectr. Electr. Insul. 2010, 17, 1754–1763. [Google Scholar] [CrossRef]
- Wang, F.; Fang, Z.; Qiu, Y.C. Study of charge accumulation on insulator surface in HVDC gas-insulated switchgear. Proc. CSEE 2005, 25, 105–109. [Google Scholar]
- Tang, J.; Pan, C.; Wang, D.B.; Fu, M.L.; Zhuo, R. Development of studies about surface charge accumulation on insulating material under HVDC. Trans. China Electrotech. Soc. 2017, 08, 16–27. (In Chinese) [Google Scholar]
- Lorenzi, A.D.; Grando, L.; Pesce, A.; Bettini, P.; Specogna, R. Modeling of epoxy resin spacers for the 1 MV DC gas insulated line of ITER neutral beam injector system. IEEE Trans. Dielectr. Electr. Insul. 2009, 16, 77–87. [Google Scholar] [CrossRef]
- Luo, Y.; Tang, J.; Pan, C.; Lin, S.J.; Wang, Z.Q. The transition mechanism of surface charge accumulation dominating way in DC GIS/GIL. Trans. China Electrotech. Soc. 2019, 34, 185–194. (In Chinese) [Google Scholar]
- Chen, K.; Liang, X.D.; Liu, S. Experimental study on the decay process of surface charges on epoxy insulators under different temperature in air. High Volt. Eng. 2018, 044, 723–1728. (In Chinese) [Google Scholar]
- Xue, J.; Chen, J.; Dong, J.; Wang, H.; Li, W.; Deng, J.; Zhang, G. The regulation mechanism of SiC/epoxy coatings on surface charge behavior and flashover performance of epoxy/alumina spacers. J. Phys. D Appl. Phys. 2019, 52, 405502. [Google Scholar] [CrossRef]
- Amer, M.; Laninga, J.; McDermid, W.; Swatek, D.R.; Kordi, B. New experimental study on the DC flashover voltage of polymer insulators: Combined effect of surface charges and air humidity. High Volt. 2019, 4, 316–323. [Google Scholar] [CrossRef]
- Lin, C.; Li, C.; He, J.; Hu, J.; Zhang, B. Surface charge inversion algorithm based on bilateral surface potential measurements of cone-type spacer. IEEE Trans. Dielectr. Electr. Insul. 2017, 24, 1905–1912. [Google Scholar] [CrossRef]
- Xue, J.Y.; Wang, H.; Li, K.F.; Fan, X.F.; Liu, X.Y.; Liu, Y.Q.; Deng, J.B.; Zhang, G.J. Research on charge distribution characteristics on spacer surface in DC GIL. Proc. CSEE 2018, 38, 6164–6172. (In Chinese) [Google Scholar]
- Qi, B.; Gao, C.J.; Xing, Z.L.; Chen, Z.Z.; Zhao, J.K.; Li, C.R. Surface charge distribution on GIS insulator under DC/AC voltage. IEEE Trans. Dielectr. Electr. Insul. 2017, 24, 3173–3181. (In Chinese) [Google Scholar] [CrossRef]
- Li, C.; Zhu, Y.; Zhi, Q.; Sun, J.; Song, S.; Connelly, L.; Li, Z.; Chen, G.; Lei, Z.; Yang, Y.; et al. Dust figures as a way for mapping surface charge distribution-A review. IEEE Trans. Dielectr. Electr. Insul. 2021, 28, 853–863. [Google Scholar] [CrossRef]
- Kumara, S. Surface charges on cylindrical polymeric insulators. IEEE Trans. Dielectr. Electr. Insul. 2012, 19, 1076–1083. [Google Scholar] [CrossRef]
- Zhang, L.; Lin, C.; Li, C.; Suraci, S.V.; Chen, G.; Riechert, U.; Shahsavarian, T.; Hikita, M.; Tu, Y.; Zhang, Z.; et al. Gas-solid interface charge characterization techniques for HVDC GIS/GIL insulators. High Volt. 2020, 5, 95–109. [Google Scholar] [CrossRef]
- Li, C.; Zhu, Y.; Hu, J.; Li, Q.; Zhang, B.; He, J. Charge cluster triggers unpredictable insulation surface flashover in pressurized SF6. J. Phys. D Appl. Phys. 2021, 54, 015308. [Google Scholar] [CrossRef]
- Wu, K.; Pan, C.; Meng, Y.; Cheng, Y. Dynamic behavior of surface charge distribution during partial discharge sequences. IEEE Trans. Dielectr. Electr. Insul. 2013, 20, 612–619. [Google Scholar]
- Mu, H.B.; Zhang, G.J.; Suzuki, S.; Tanaka, S. Surface charge distribution of polymeric insulating materials under HVAC. Proc. CSEE 2010, 30, 130–136. (In Chinese) [Google Scholar]
- Zhou, W. Study on Influencing Factors and Dissipation Characteristics of Charge Accumulation on the Surface of Insulators under DC Voltage. Master’s Thesis, Hunan University, Changsha, China, 2018. (In Chinese). [Google Scholar]
- Zhou, H.; Ma, G.; Wang, C.; Wang, G.; Zhang, G.; Tu, Y.; Li, C. Review of charge accumulation on spacer of gas insulated equipment at DC stress. CSEE J. Power Energy Syst. 2019, 6, 496–517. [Google Scholar]
- Takuma, T.; Yashima, M.; Kawamoto, T. Principle of surface charge measurement for thick insulating specimens. IEEE Trans. Dielectr. Electr. Insul. 1998, 5, 497–504. [Google Scholar] [CrossRef]
- Wang, F.; Qiu, Y.; Pfeiffer, W.; Kuffel, E. Insulator surface charge accumulation under impulse voltage. IEEE Trans. Dielectr. Electr. Insul. 2004, 11, 847–854. [Google Scholar] [CrossRef]
- Wang, F.; Liang, F.W.; Chen, S.; Tan, Y.; Zhong, L.; Sun, Q. Surface charge inversion method on cylindrical insulators based on surface potentials measured online. IEEE Trans. Dielectr. Electr. Insul. 2021, 28, 192–197. [Google Scholar] [CrossRef]
- Gao, Y. Study on the Dynamic Characteristics of Surface Charge of Polymer Dielectrics. Ph.D. Dissertation, Tianjing University, Tianjin, China, 2009. (In Chinese). [Google Scholar]
- Qi, B.; Gao, C.J.; Xing, Z.L.; Chen, Z.Z.; Zhao, J.K.; Li, C.R. Distribution characteristic for surface charge on GIS insulator under DC/ AC voltage. Proc. CSEE 2016, 36, 5990–6001. [Google Scholar]
- Zhang, Z.; Deng, B.; Li, C.; Li, Q.; Zhang, Z.; Yan, W. Multiphysics coupled modelling in HVDC GILs: Critical re-examination of ion mobility selection. IEEE Trans. Dielectr. Electr. Insul. 2019, 26, 835–842. [Google Scholar] [CrossRef]
- Kindersberger, J.; Lederle, C. Surface charge decay on insulators in air and sulfurhexafluorid-part II: Measurements. IEEE Trans. Dielectr. Electr. Insul. 2008, 15, 949–957. [Google Scholar] [CrossRef]
- Wang, Z.Y.; Wang, J.; Li, Q.M.; Liu, S.H. 3D Simulation and experimental study of metal particles’ effect in DC GIL on surface charge accumulation. Proc. CSEE 2016, 36, 6718–6726. (In Chinese) [Google Scholar]
- Du, B.X.; Li, A.; Li, J. Effects of AC and pulse voltage combination on surface charge accumulation and decay of epoxy resin. IEEE Trans. Dielectr. Electr. Insul. 2016, 23, 2368–2376. [Google Scholar] [CrossRef]
- Mallem, H.; Ziari, Z.; Sahli, S. Temperature effect on electrical characteristics of negative DC corona charged polyimide films. IEEE Trans. Dielectr. Electr. Insul. 2018, 25, 421–427. [Google Scholar] [CrossRef]
- An, Z.; Xiao, H.; Liu, F.; Zheng, F.; Lei, Q.; Zhang, Y. Improved resistance of epoxy resin to corona discharge by direct fluorination. IEEE Trans. Dielectr. Electr. Insul. 2016, 23, 2278–2287. [Google Scholar] [CrossRef]
- Wang, F.; Qiu, Y.C.; Zhang, Q.G.; Chen, Q.G. Analysis of factors influence charge accumulation on insulator surface under impulse voltage. Trans. China Electrotech. Soc. 2001, 16, 51–54. (In Chinese) [Google Scholar]
- Rerup, T.O.; Crichton, G.C.; Mcallister, I.W. Using the λ function to evaluate probe measurements of charged dielectric surfaces. IEEE Trans. Dielectr. Electr. Insul. 1996, 3, 770–777. [Google Scholar] [CrossRef]
- Kumada, A.; Okabe, S. Charge distribution measurement on a truncated cone spacer under DC voltage. IEEE Trans. Dielectr. Electr. Insul. 2004, 11, 929–938. [Google Scholar] [CrossRef]
- Kumada, A.; Okabe, S.; Hidaka, K. Resolution and signal processing technique of surface charge density measurement with electrostatic probe. IEEE Trans. Dielectr. Electr. Insul. 2004, 11, 122–129. [Google Scholar] [CrossRef]
- Ootera, H.; Nakanishi, K. Analytical method for evaluating surface charge distribution on a dielectric from capacitive probe measurement-application to a cone-type spacer in ±500 kV DC-GIS. IEEE Trans. Power Delivery. 2002, 3, 165–172. [Google Scholar] [CrossRef]
- Wang, D.B. The Dispersion of Surface Charge of PTFE under DC Voltage and Its Influence on Flashover Characteristics. Ph.D. Dissertation, Chongqing University, Chongqing, China, 2015. (In Chinese). [Google Scholar]
- Faircloth, D.C.; Allen, N.L. High resolution measurements of surface charge densities on insulator surfaces. IEEE Trans. Dielectr. Electr. Insul. 2003, 10, 285–290. [Google Scholar] [CrossRef]
- Liang, H.C.; Du, B.X.; Li, J. Electric field regulation and parameter optimization of surface nonlinear conductivity spacer for 500 kV DC-GIL. IEEE Trans. Dielectr. Electr. Insul. 2020, 27, 1330–1338. [Google Scholar] [CrossRef]
- Wang, H.; Xue, J.Y.; Guo, B.H.; Deng, J.; Zhang, G. Comparison of time-dependent variation of surface charge accumulation in SF6/N2 and pure SF6. In Proceedings of the 12th IEEE International Conference on the Properties and Applications of Dielectric Materials, Xi’an, China, 20–24 May 2018. [Google Scholar]
- Li, B.T. Study on the Mechanism of Metal Particles on Charge Accumulation on the Surface of Insulators in DC GIL. Master’s Thesis, North China Electric Power University (Beijing), Beijing, China, 2016. [Google Scholar]
- Guo, C.; Zhang, Q.; You, H.; Ma, J.; Li, Y.; Wen, T.; Qin, Y. Influence of electric field non-uniformity on breakdown characteristics in SF6/N2 gas mixtures under lightning impulse. IEEE Trans. Dielectr. Electr. Insul. 2017, 24, 2248–2258. [Google Scholar] [CrossRef]
- Li, C.; Lin, C.; Yang, Y.; Zhang, B.; Liu, W.D.; Li, Q.; Hu, J.; He, S.; Liu, X.; He, J. Novel HVDC spacers by adaptively controlling surface charges-part ii: Experiment. IEEE Trans. Dielectr. Electr. Insul. 2018, 25, 1248–1258. [Google Scholar]
- Qi, B.; Gao, C.J.; Xing, Z.L.; Li, C.R. The accumulation characteristic for surface charge on GIS insulator under switching impulse voltage. Proc. CSEE 2017, 37, 4538–4547. (In Chinese) [Google Scholar]
- Ma, G.; Zhou, H.; Li, C.; Jiang, J.; Chen, X. Designing epoxy insulators in SF6-filled DC-GIL with simulations of ionic conduction and surface charging. IEEE Trans. Dielectr. Electr. Insul. 2015, 22, 3312–3320. [Google Scholar] [CrossRef]
- Li, C.Y.; Hu, J.; Lin, C.J.; He, J.L. The potentially neglected culprit of DC surface flashover: Electron migration under temperature gradients. Sci. Rep. 2017, 7, 3271. [Google Scholar] [CrossRef] [PubMed]
- Yan, W.; Li, C.; Lei, Z.; Han, T.; Zhang, Z.; Davide, F. Surface charging on HVDC spacers considering time-varying effect of temperature and electric fields. IEEE Trans. Dielectr. Electr. Insul. 2019, 26, 1316–1324. [Google Scholar] [CrossRef]
- Zhou, H.Y.; Ma, G.M.; Liu, S.P.; Li, C.R.; Zhao, S.J.; Tu, Y.P.; Qin, S.C. Study on surface charges accumulation on insulator and its effects on the surface electrical field in DC-GIL with electro-thermal coupling model. Proc. CSEE 2017, 37, 1251–1259. [Google Scholar]
- Zhou, H.Y.; Ma, G.M.; Zhao, S.J.; Liu, S.P.; Li, C.R.; Tu, Y.P.; Song, H.T.; Wu, Z. Effect of temperature on charge accumulation on insulator in DC-GIL. Proc. CSEE 2016, 36, 6675–6681. [Google Scholar]
- Li, C.Y.; Hu, J.; Li, C.J.; Zhang, B.Y.; Zhang, G.X.; He, J.L. Surface charge migration and DC surface flashover of surface-modified epoxy-based insulators. J. Phys. D Appl. Phys. 2017, 50, 065301. [Google Scholar] [CrossRef]
- Li, Z. Simulation of Surface Charge Accumulation on High Voltage DC Composite Insulator. Master’s Thesis, Hunan University, Changsha, China, 2014. (In Chinese). [Google Scholar]
- Wang, F.; Liang, F.W.; Zhong, L.; Chen, S.; Li, C.; Xie, Y. Short-time X-ray irradiation as a non-contact charge dissipation solution for insulators in HVDC GIS/GIL. IEEE Trans. Dielectr. Electr. Insul. 2021, 28, 704–709. [Google Scholar] [CrossRef]
- Liu, W.J. Design of Surface Charge Test and Measurement System of Insulator at Gas-Solid Interface. Master’s Thesis, Hunan University, Changsha, China, 2008. (In Chinese). [Google Scholar]
- Suzuki, K.; Kato, K.; Hakamata, Y.; Okubo, H. Real-time and high-speed measurements of charging processes on dielectric surface in vacuum. IEEE Trans. Dielectr. Electr. Insul. 2003, 10, 563–568. [Google Scholar] [CrossRef]
- Yu, K.K.; Zhang, G.J.; Zheng, N.; Raitses, Y.; Fisch, N.J. Monte Carlo simulation of surface-charging phenomena on insulators prior to flashover in vacuum. IEEE Trans. Plasma Sci. 2009, 37, 698–704. [Google Scholar]
- Tian, H.D.; Li, N.Y.; Wu, Z.H.; Guo, Z.; Peng, Z. Surface charge accumulation characteristics of DC GIL column insulators. Trans. China Electrotech. Soc. 2018, 33, 38–48. [Google Scholar]
- Zhang, Z.S.; Wang, Z.M.; Teyssedre, G.; Tohid, S.; Mohamadreza, A.B.; Chen, G.; Lin, C.; Zhang, B.; Uwe, R.; Lei, Z.; et al. Gas-solid interface charge tailoring techniques: What we grasped and where to go. Nanotechnology 2021, 32, 122001. [Google Scholar] [CrossRef]
- Li, Q.; Naderiallaf, H.; Lei, Z.; Wang, Y.; Liu, P.; Zhang, L.; Wang, Z.; Zhang, Z. Surface charge pattern analysis based on the field-dependent charging theory: A review. IEEE Trans. Dielectr. Electr. Insul. 2020, 27, 257–269. [Google Scholar] [CrossRef]
- Li, C.Y.; Lin, C.J.; Chen, G.; Tu, Y.P.; Zhou, Y.; Li, Q.; Zhang, B.; He, J.L. Field-dependent charging phenomenon of HVDC spacers based on dominant charge behaviors. Appl. Phys. Lett. 2019, 114, 202904. [Google Scholar] [CrossRef]
- Zhang, B.Y.; Zhang, G.X. Review of charge accumulation characteristics at gas-solid interface in DC GIL, part II: Charge control and suppression strategy. Trans. China Electrotech. Soc. 2018, 33, 5–18. [Google Scholar]
- Li, C.Y.; Lin, C.J.; Zhang, B.; Li, Q.; Liu, W.D.; Hu, J.; He, J.L. Understanding surface charge accumulation and surface flashover on spacers in compressed gas insulation. IEEE Trans. Dielectr. Electr. Insul. 2018, 25, 1152–1166. [Google Scholar] [CrossRef]
- Zhang, B.Y.; Gao, W.Y.; Hou, Y.; Zhang, G.X. Surface charge accumulation and suppression on fullerene-filled epoxy-resin insulator under DC voltage. IEEE Trans. Dielectr. Electr. Insul. 2018, 25, 2011–2019. [Google Scholar] [CrossRef]
- Wang, S.; Li, A.; Xing, Y.Q.; Li, K.; Li, Z.K. Surface potential and breakdown characteristics of epoxy/AlN nanocomposites under DC and pulse voltages. IEEE Trans. Appl. Supercond. 2019, 29, 1–5. [Google Scholar] [CrossRef]
- Tu, Y.P.; Zhou, F.W.; Cheng, Y.; Jiang, H.; Wang, C.; Bai, F.J.; Lin, J. The control mechanism of micron and nano SiO2/epoxy composite coating on surface charge in epoxy resin. IEEE Trans. Dielectr. Electr. Insul. 2018, 25, 1275–1284. [Google Scholar] [CrossRef]
- Gao, Y.; Li, Z.Y.; Zhao, N.; Wang, M.H.; Han, T.; Liu, Y. Surface charging on epoxy/Al2O3 nanocomposites under DC voltage superimposed by repetitive pulses. IEEE Trans. Plasma Sci. 2019, 47, 3256–3265. [Google Scholar] [CrossRef]
- Gao, Y.; Li, Z.Y.; Wang, M.; Du, B.X. Magnetic field induced variation in surface charge accumulation behavior on epoxy/Al2O3 nanocomposites under DC stress. IEEE Trans. Dielectr. Electr. Insul. 2019, 26, 859–867. [Google Scholar] [CrossRef]
- Du, B.X.; Zhang, J.W.; Gao, Y. Effect of nanosecond rise time of pulse voltage on the surface charge of epoxy/TiO2 nanocomposites. IEEE Trans. Dielectr. Electr. Insul. 2013, 20, 321–328. [Google Scholar] [CrossRef]
- Du, B.X.; Xiao, M. Influence of surface charge on DC flashover characteristics of epoxy/BN nanocomposites. IEEE Trans. Dielectr. Electr. Insul. 2014, 21, 529–536. [Google Scholar] [CrossRef]
- Du, B.X.; Wang, M.Y.; Li, J.; Xing, Y.Q. Temperature dependent surface charge and discharge behavior of epoxy/AlN nanocomposites. IEEE Trans. Dielectr. Electr. Insul. 2018, 25, 1300–1307. [Google Scholar] [CrossRef]
- Chen, Y.; Wu, J. Investigation on relationship between breakdown strength enhancement of composites and dielectric characteristics of nanoparticle. IEEE Trans. Dielectr. Electr. Insul. 2016, 23, 927–934. [Google Scholar] [CrossRef]
- Du, B.X.; Zhang, J.; Gao, Y. Effects of TiO2 particles on surface charge of epoxy nanocomposites. IEEE Trans. Dielectr. Electr. Insul. 2012, 19, 755–762. [Google Scholar] [CrossRef]
- Ma, J.; Tao, F.; Ma, Y.; Zhao, K.; Li, H.; Wen, T.; Zhang, Q. Quantitative analysis on the influence of surface charges on flashover of insulators in SF6. IEEE Trans. Dielectr. Electr. Insul. 2021, 28, 274–281. [Google Scholar] [CrossRef]
- Zhang, B.Y.; Wang, Q.; Qi, J.; Zhang, G.X. Measurement method and accumulation characteristics of surface charge distribution on polymeric material under DC voltage. Proc. CSEE 2016, 36, 6664–6674. [Google Scholar]
- LI, C.Y.; Lin, C.J.; Chen, G.; Zhang, Z.S.; Zhang, L.; He, J.L. Review of gas-solid interface charging phenomena of HVDC spacers. Proc. CSEE 2020, 40, 2016–2025. [Google Scholar]
- Xie, Q.; Liang, S.D.; Fu, K.X.; Liu, L.Z.; Huang, H.; Lu, F.C. Distribution of polymer surface charge under DC voltage and its influence on surface flashover characteristics. IEEE Trans. Dielectr. Electr. Insul. 2018, 25, 2157–2168. [Google Scholar] [CrossRef]
- Nakane, R.; Hayakawa, N.; Okubo, H. Time and space transition of DC electric field distribution based on emerging field by accumulated charge in gas-solid composite insulation structure. IEEE Trans. Dielectr. Electr. Insul. 2021, 28, 440–447. [Google Scholar] [CrossRef]
- Zhang, C.; Ma, Y.Y.; Kong, F.; Wang, R.X.; Ren, C.Y.; Tao, S. Surface charge decay of epoxy resin treated by AP-DBD deposition and direct fluorination. IEEE Trans. Dielectr. Electr. Insul. 2019, 26, 768–775. [Google Scholar] [CrossRef]
- An, Z.; Liu, F.; Tang, Y.; Zheng, F.; Zhang, Y. Resistance of surface fluorinated epoxy resin to corona discharge in SF6 gas. IEEE Trans. Dielectr. Electr. Insul. 2016, 23, 3659–3667. [Google Scholar] [CrossRef]
- Lin, H.F.; Wang, R.X.; Xie, Q.; Zhang, S.; Shao, T. Rapid surface modification by plasma jet to promote surface charge decaying. Trans. China Electrotech. Soc. 2017, 16, 262–270. (In Chinese) [Google Scholar]
- Hu, D.; Ren, C.Y.; Zhang, C.; Qiu, J.T.; Kong, F.; Shao, T.; Yan, P. Effect of deposited film on the surface insulation characteristics of FEP material by atmospheric pressure plasma jet. Proc. CSEE 2019, 39, 4633–4640. (In Chinese) [Google Scholar]
- Kong, F.; Zhang, S.; Lin, H.F.; Ren, C.Y.; Zhang, C.; Shao, T. Effects of nanosecond pulse voltage parameters on characteristics of surface charge for epoxy resin. IEEE Trans. Dielectr. Electr. Insul. 2018, 25, 2058–2066. [Google Scholar] [CrossRef]
- Li, J.; Liang, H.C.; Du, B.X.; Wang, Z.H. Surface functional graded spacer for compact HVDC gaseous insulated system. IEEE Trans. Dielectr. Electr. Insul. 2019, 26, 664–667. [Google Scholar] [CrossRef]
- Du, B.X.; Ran, Z.Y.; Liang, H.C. Novel insulator with interfacial σ-FGM for DC compact gaseous insulated pipeline. IEEE Trans. Dielectr. Electr. Insul. 2019, 26, 818–825. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, F.; Luo, H.; Fan, X.; Li, X.; Wang, X. Review of Surface Charge Accumulation on Insulators in DC Gas-Insulated Power Transmission Lines: Measurement and Suppression Measures. Energies 2023, 16, 6027. https://doi.org/10.3390/en16166027
Liang F, Luo H, Fan X, Li X, Wang X. Review of Surface Charge Accumulation on Insulators in DC Gas-Insulated Power Transmission Lines: Measurement and Suppression Measures. Energies. 2023; 16(16):6027. https://doi.org/10.3390/en16166027
Chicago/Turabian StyleLiang, Fangwei, Hanhua Luo, Xianhao Fan, Xuetong Li, and Xu Wang. 2023. "Review of Surface Charge Accumulation on Insulators in DC Gas-Insulated Power Transmission Lines: Measurement and Suppression Measures" Energies 16, no. 16: 6027. https://doi.org/10.3390/en16166027
APA StyleLiang, F., Luo, H., Fan, X., Li, X., & Wang, X. (2023). Review of Surface Charge Accumulation on Insulators in DC Gas-Insulated Power Transmission Lines: Measurement and Suppression Measures. Energies, 16(16), 6027. https://doi.org/10.3390/en16166027