Clustering Combined Multi-Objective Optimal Operation of Transmission Systems Considering Voltage Stability
Abstract
:1. Introduction
2. Assessment of the Reactive Power Reserve in Voltage Control Areas
2.1. Identifying Voltage Control Areas
- The electrical distance between nodes was calculated;
- Hierarchical spectral clustering based on electrical distance was conducted.
2.1.1. Derivation of the Electrical Distance
2.1.2. Determining VCAs Using Clustering Approach
- 1.
- Represent the power system as a graph: A power system can be represented as a graph whose vertex and edge sets are and , respectively;
- 2.
- Obtain the Laplacian matrix and normalized Laplacian matrix of the graph :Here, W is a weight matrix whose element represents the connectivity between vertices i and j, while D is a diagonal matrix whose element . The weight has the following properties.
- 3.
- Perform spectral embedding: Obtain the eigenvalues and eigenvectors of , and use the first k eigenvectors of to coordinate the vertices in the Euclidean space . Normalize each coordinate so that all vectors have their own norm of 1;
- 4.
- Conduct hierarchical clustering: Calculate the distances between the normalized coordinates of the vertices and cluster them according to their proximity to each other.
2.1.3. Reactive Power Reserve in Voltage Control Areas
3. Proposed Method for Clustering Combined Multi-Objective Optimal Operation
3.1. Overall Framework
3.2. Stage 1
3.2.1. Decision Variables
3.2.2. Objective Functions
3.2.3. Constraints
3.3. Stage 2
3.3.1. Decision Variables
3.3.2. Objective Functions
3.3.3. Constraints
4. Solution for the Proposed Framework
4.1. Non-Dominated Sorting Genetic Algorithm III
- Set equality/inequality constraints and generate reference points;
- Generate the initial population , which becomes the parent population when ;
- Evaluate the fitness and feasibility of ;
- Create the offspring population by recombination and mutation from ;
- Evaluate the fitness and feasibility of ;
- Combine and () and sort according to non-domination levels;
- Choose the best N individuals from according to the non-domination levels and reference point-based selection;
- The N individuals of are transferred to .
- Iterate steps three to eight until t iterations are performed.
4.2. Application of NSGA-III to the Proposed Framework
5. Case Studies and Results
5.1. Base Case
5.1.1. Results of Stage One in the Base Case
5.1.2. Results of Stage Two in the Base Case
5.2. Consideration of High-Level Penetration of Renewable Energy
5.2.1. Results of Stage One for High-Level Penetration of Renewable Energy Scenario
5.2.2. Results of Stage Two in the High-Level Penetration of Renewable Energy Scenario
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Gen. | Bus No. | [$/MW] | [$/MW] | [$] |
---|---|---|---|---|
1 | 0.117647 | 20 | 20,000 | |
4 | 0.022222 | 20 | 20,000 | |
6 | 0.064516 | 20 | 20,000 | |
8 | 0.039683 | 20 | 20,000 | |
10 | 0.022222 | 20 | 20,000 | |
12 | 0.117647 | 20 | 20,000 | |
15 | 0.064516 | 20 | 20,000 | |
18 | 0.022222 | 20 | 20,000 | |
19 | 0.117647 | 20 | 20,000 | |
24 | 0.039683 | 20 | 20,000 | |
25 | 0.045455 | 20 | 20,000 | |
26 | 0.031847 | 20 | 20,000 | |
27 | 0.022222 | 20 | 20,000 | |
31 | 1.428571 | 20 | 20,000 | |
32 | 0.064516 | 20 | 20,000 | |
34 | 0.117647 | 20 | 20,000 | |
36 | 0.117647 | 20 | 20,000 | |
40 | 0.022222 | 20 | 20,000 | |
42 | 0.022222 | 20 | 20,000 | |
46 | 0.526316 | 20 | 20,000 | |
49 | 0.049020 | 20 | 20,000 | |
54 | 0.208333 | 20 | 20,000 | |
55 | 0.064516 | 20 | 20,000 | |
56 | 0.117647 | 20 | 20,000 | |
59 | 0.064516 | 20 | 20,000 | |
61 | 0.062500 | 20 | 20,000 | |
62 | 0.064516 | 20 | 20,000 | |
65 | 0.025575 | 20 | 20,000 | |
66 | 0.025510 | 20 | 20,000 | |
69 | 0.019365 | 20 | 20000 | |
70 | 0.117647 | 20 | 20,000 | |
72 | 0.064516 | 20 | 20,000 | |
73 | 0.022222 | 20 | 20,000 | |
74 | 0.022222 | 20 | 20,000 | |
76 | 0.064516 | 20 | 20,000 | |
77 | 0.010000 | 20 | 20,000 | |
80 | 0.020964 | 20 | 20,000 | |
85 | 0.062500 | 20 | 20,000 | |
87 | 2.500000 | 20 | 20,000 | |
89 | 0.016474 | 20 | 20,000 | |
90 | 0.039682 | 20 | 20,000 | |
91 | 0.064516 | 20 | 20,000 | |
92 | 0.022222 | 20 | 20,000 | |
99 | 0.064516 | 20 | 20,000 | |
100 | 0.039682 | 20 | 20,000 | |
103 | 0.250000 | 20 | 20,000 | |
104 | 0.039682 | 20 | 20,000 | |
105 | 0.117647 | 20 | 20,000 | |
107 | 0.039682 | 20 | 20,000 | |
110 | 0.117647 | 20 | 20,000 | |
111 | 0.277777 | 20 | 20,000 | |
112 | 0.022222 | 20 | 20,000 | |
113 | 0.062500 | 20 | 20,000 | |
116 | 0.022222 | 20 | 20,000 |
References
- Matevosyan, J.; MacDowell, J.; Miller, N.; Badrzadeh, B.; Ramasubramanian, D.; Isaacs, A.; Quint, R.; Quitmann, E.; Pfeiffer, R.; Urdal, H.; et al. A Future with Inverter-Based Resources: Finding Strength from Traditional Weakness. IEEE Power Energy Mag. 2021, 19, 18–28. [Google Scholar] [CrossRef]
- Sarkar, M.N.I.; Meegahapola, L.G.; Datta, M. Reactive Power Management in Renewable Rich Power Grids: A Review of Grid-Codes, Renewable Generators, Support Devices, Control Strategies and Optimization Algorithms. IEEE Access 2018, 6, 41458–41489. [Google Scholar] [CrossRef]
- Rani, N.; Malakar, T. Assessment of effective reactive power reserve in power system networks under uncertainty applying coronavirus herd immunity optimizer (CHIO) for operation simulation. Electric Power Syst. Res. 2023, 220, 109267. [Google Scholar] [CrossRef]
- Nazir, M.S.; Abdalla, A.N.; Wang, Y.; Chu, Z.; Jie, J.; Tian, P.; Jiang, M.; Khan, I.; Sanjeevikumar, P.; Tang, Y. Optimization configuration of energy storage capacity based on the microgrid reliable output power. J. Energy Storage 2020, 32, 101866. [Google Scholar] [CrossRef]
- Capitanescu, F. Assessing Reactive Power Reserves with Respect to Operating Constraints and Voltage Stability. IEEE Trans. Power Syst. 2011, 26, 2224–2234. [Google Scholar] [CrossRef] [Green Version]
- Leonardi, B.; Ajjarapu, V. Investigation of various generator reactive power reserve (GRPR) definitions for online voltage stability/security assessment. In Proceedings of the 2008 IEEE Power and Energy Society General Meeting—Conversion and Delivery of Electrical Energy in the 21st Century, Pittsburgh, PA, USA, 20–24 July 2008; pp. 1–7. [Google Scholar]
- Leonardi, B.; Ajjarapu, V. Development of Multilinear Regression Models for Online Voltage Stability Margin Estimation. IEEE Trans. Power Syst. 2011, 26, 374–383. [Google Scholar] [CrossRef]
- Arya, L.D.; Titare, L.S.; Kothari, D.P. Improved particle swarm optimization applied to reactive power reserve maximization. Int. J. Elect. Power Energy Syst. 2010, 32, 368–374. [Google Scholar] [CrossRef]
- Mousavi, O.A.; Cherkaoui, R. Maximum Voltage Stability Margin Problem with Complementarity Constraints for Multi-Area Power Systems. IEEE Trans. Power Syst. 2014, 29, 2993–3002. [Google Scholar] [CrossRef] [Green Version]
- Mousavi, O.A.; Cherkaoui, M.B.R. Preventive reactive power management for improving voltage stability margin. Electric Power Syst. Res. 2013, 96, 36–46. [Google Scholar] [CrossRef]
- Sun, Q.; Cheng, H.; Song, Y. Bi-Objective Reactive Power Reserve Optimization to Coordinate Long- and Short-Term Voltage Stability. IEEE Access 2018, 6, 13057–13065. [Google Scholar] [CrossRef]
- De, M.; Goswami, S.K. Optimal Reactive Power Procurement with Voltage Stability Consideration in Deregulated Power System. IEEE Trans. Power Syst. 2014, 29, 2078–2086. [Google Scholar] [CrossRef]
- El-Araby, E.-S.E.; Yorino, N. Reactive power reserve management tool for voltage stability enhancement. IET Gener. Transm. Distrib. 2018, 12, 1879–1888. [Google Scholar] [CrossRef]
- Dong, F.; Chowdhury, B.H.; Crow, M.L.; Acar, L. Improving voltage stability by reactive power reserve management. IEEE Trans. Power Syst. 2005, 20, 338–345. [Google Scholar] [CrossRef]
- Ibrahim, T.; De Rubira, T.T.; Del Rosso, A.; Patel, M.; Guggilam, S.; Mohamed, A.A. Alternating Optimization Approach for Voltage-Secure Multi-Period Optimal Reactive Power Dispatch. IEEE Trans. Power Syst. 2022, 37, 3805–3816. [Google Scholar] [CrossRef]
- Sánchez-García, R.J.; Fennelly, M.; Norris, S.; Wright, N.; Niblo, G.; Brodzki, J.; Bialek, J.W. Hierarchical Spectral Clustering of Power Grids. IEEE Trans. Power Syst. 2014, 29, 2229–2237. [Google Scholar] [CrossRef] [Green Version]
- Jiang, T.; Bai, L.; Jia, H.; Li, F. Spectral clustering-based partitioning of volt/VAR control areas in bulk power systems. IET Gener. Transm. Distrib. 2017, 11, 1126–1133. [Google Scholar] [CrossRef]
- Farmer, W.J.; Rix, A.J. Evaluating power system network inertia using spectral clustering to define local area stability. Int. J. Elect. Power Energy Syst. 2022, 134, 107404. [Google Scholar] [CrossRef]
- Ding, L.; Gonzalez-Longatt, F.M.; Wall, P.; Terzija, V. Two-Step Spectral Clustering Controlled Islanding Algorithm. IEEE Gener. Trans. Power Syst. 2013, 28, 75–84. [Google Scholar] [CrossRef] [Green Version]
- Mugemanyi, S.; Qu, Z.; Rugema, F.X.; Bananeza, Y.D.C.; Wang, L. Optimal Reactive Power Dispatch Using Chaotic Bat Algorithm. IEEE Access 2020, 8, 65830–65867. [Google Scholar] [CrossRef]
- Ben oualid Medani, K.; Sayah, S.; Bekrar, A. Whale optimization algorithm based optimal reactive power dispatch: A case study of the Algerian power system. Electric Power Syst. Res. 2018, 163 Pt B, 696–705. [Google Scholar] [CrossRef]
- Davoodi, E.; Babaei, E.; Mohammadi-Ivatloo, B.; Rasouli, M. A Novel Fast Semidefinite Programming-Based Approach for Optimal Reactive Power Dispatch. IEEE Trans. Ind. Inform. 2020, 16, 288–298. [Google Scholar] [CrossRef]
- López, J.C.; Rider, M.J. Optimal Reactive Power Dispatch with Discrete Controllers Using a Branch-and-Bound Algorithm: A Semidefinite Relaxation Approach. IEEE Trans. Power Syst. 2021, 36, 4539–4550. [Google Scholar]
- Saddique, M.S.; Bhatti, A.R.; Haroon, S.S.; Sattar, M.K.; Amin, S.; Sajjad, I.A.; ul Haq, S.S.; Awan, A.B.; Rasheed, N. Solution to optimal reactive power dispatch in transmission system using meta-heuristic techniques—Status and technological review. Electric Power Syst. Res. 2020, 178, 106031. [Google Scholar] [CrossRef]
- Deb, K.; Jain, H. An Evolutionary Many-Objective Optimization Algorithm Using Reference-Point-Based Nondominated Sorting Approach, Part I: Solving Problems with Box Constraints. IEEE Trans. Evol. Comput. 2014, 18, 577–601. [Google Scholar] [CrossRef]
- Jain, H.; Deb, K. An Evolutionary Many-Objective Optimization Algorithm Using Reference-Point Based Nondominated Sorting Approach, Part II: Handling Constraints and Extending to an Adaptive Approach. IEEE Trans. Evol. Comput. 2014, 18, 602–622. [Google Scholar] [CrossRef]
- Lagonotte, P.; Sabonnadiere, J.C.; Leost, J.-Y.; Paul, J.-P. Structural analysis of the electrical system: Application to secondary voltage control in France. IEEE Trans. Power Syst. 1989, 4, 479–486. [Google Scholar] [CrossRef]
- Jain, H.; Deb, K. Localized reactive power markets using the concept of voltage control areas. IEEE Trans. Power Syst. 2004, 19, 1555–1561. [Google Scholar]
- Kargarian, A.; Raoofat, M.; Mohammadi, M. Reactive power market management considering voltage control area reserve and system security. Appl. Energy 2011, 88, 3832–3840. [Google Scholar] [CrossRef]
- Paramasivam, M.; Dasgupta, S.; Ajjarapu, V.; Vaidya, U. Contingency Analysis and Identification of Dynamic Voltage Control Areas. IEEE Trans. Power Syst. 2015, 30, 2974–2983. [Google Scholar] [CrossRef]
- Ibrahim, T.; Rosso, A.D.; Guggilam, S.; Dowling, K.; Patel, M. EPRI-VCA: Optimal Reactive Power Dispatch Tool. In Proceedings of the 2022 IEEE Power and Energy Society General Meeting (PESGM), Denver, CO, USA, 17–21 July 2022; pp. 1–5. [Google Scholar]
- Mao, X.; Zhu, W.; Wu, L.; Zhou, B. Comparative study on methods for computing electrical distance. Int. J. Elect. Power Energy Syst. 2021, 130, 106923. [Google Scholar] [CrossRef]
- Alimisis, V.; Taylor, P.C. Zoning Evaluation for Improved Coordinated Automatic Voltage Control. IEEE Trans. Power Syst. 2015, 30, 2736–2746. [Google Scholar] [CrossRef]
- Yang, Y.; Sun, Y.; Wang, Q.; Liu, F.; Zhu, L. Fast Power Grid Partition for Voltage Control with Balanced-Depth-Based Community Detection Algorithm. IEEE Trans. Power Syst. 2022, 37, 1612–1622. [Google Scholar] [CrossRef]
- Zhao, J.; Ju, L.; Luo, W.; Zhao, J. Reactive power optimization considering dynamic reactive power reserves. In Proceedings of the 2014 International Conference on Power System Technology, Chengdu, China, 20–22 October 2014; Volume 14, pp. 97–102. [Google Scholar]
- Kessel, P.; Glavitsch, H. Estimating the Voltage Stability of a Power System. IEEE Trans. Power Deliv. 1986, 1, 346–354. [Google Scholar] [CrossRef]
- Dharmapala, K.D.; Rajapakse, A.; Narendra, K.; Zhang, Y. Machine Learning Based Real-Time Monitoring of Long-Term Voltage Stability Using Voltage Stability Indices. IEEE Access 2020, 8, 222544–222555. [Google Scholar] [CrossRef]
- Lee, D.; Lee, J.; Jang, G. Stochastic Approach to Hosting Limit of Transmission System and Improving Method Utilizing HVDC. Appl. Sci. 2022, 12, 696. [Google Scholar] [CrossRef]
Case | Cost | |||
---|---|---|---|---|
1.3660 p.u. | 0.03223 p.u. | 158.51 Mvar | 491.38 | |
0.7814 p.u. | 0.01538 p.u. | 441.31 Mvar | 484.26 |
Area | VCA 1 | VCA 2 | VCA 3 | VCA 4 |
---|---|---|---|---|
957.17 | 158.51 | 1356.96 | 988.50 | |
1556.65 | 441.31 | 1000.08 | 1302.01 |
Case | L-Index | |||
---|---|---|---|---|
0.2075 p.u. | 0.01067 p.u. | 1556.65 Mvar | 0.1240 | |
0.2094 p.u. | 0.01133 p.u. | 1580.34 Mvar | 0.1128 |
Case | L-Index | |||
---|---|---|---|---|
0.06162 p.u. | 0.01148 p.u. | 441.31 Mvar | 0.1259 | |
0.06624 p.u. | 0.009817 p.u. | 525.23 Mvar | 0.1247 |
Case | L-Index | |||
---|---|---|---|---|
0.1077 p.u. | 0.01454 p.u. | 1000.08 Mvar | 0.07456 | |
0.1040 p.u. | 0.01340 p.u. | 1093.02 Mvar | 0.07494 |
Case | L-Index | |||
---|---|---|---|---|
0.2299 p.u. | 0.02090 p.u. | 1302.01 Mvar | 0.1252 | |
0.2152 p.u. | 0.02628 p.u. | 1419.68 Mvar | 0.1108 |
Case | Cost | |||
---|---|---|---|---|
0.9893 p.u. | 0.04587 p.u. | 0 Mvar | 398.03 | |
0.6187 p.u. | 0.01389 p.u. | 789.86 Mvar | 354.14 |
Area | VCA One | VCA Two | VCA Three | VCA Four |
---|---|---|---|---|
104.10 | 0 | 1436.82 | 821.47 | |
1588.38 | 989.72 | 807.13 | 789.86 |
Case | L-Index | |||
---|---|---|---|---|
0.1493 p.u. | 0.00922 p.u. | 1588.38 Mvar | 0.1223 | |
0.1398 p.u. | 0.01765 p.u. | 1610.34 Mvar | 0.1180 |
Case | L-Index | |||
---|---|---|---|---|
0.03763 p.u. | 0.01923 p.u. | 989.72 Mvar | 0.05798 | |
0.03688 p.u. | 0.02067 p.u. | 1001.47 Mvar | 0.05735 |
Case | L-Index | |||
---|---|---|---|---|
0.1834 p.u. | 0.009658 p.u. | 807.13 Mvar | 0.1346 | |
0.1778 p.u. | 0.01295 p.u. | 818.13 Mvar | 0.1346 |
Case | L-Index | |||
---|---|---|---|---|
0.1978 p.u. | 0.01716 p.u. | 789.86 Mvar | 0.2107 | |
0.1973 p.u. | 0.01908 p.u. | 881.46 Mvar | 0.2002 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, K.; Lee, D.; Jang, G. Clustering Combined Multi-Objective Optimal Operation of Transmission Systems Considering Voltage Stability. Energies 2023, 16, 5914. https://doi.org/10.3390/en16165914
Park K, Lee D, Jang G. Clustering Combined Multi-Objective Optimal Operation of Transmission Systems Considering Voltage Stability. Energies. 2023; 16(16):5914. https://doi.org/10.3390/en16165914
Chicago/Turabian StylePark, Kyeongseon, Dongyeong Lee, and Gilsoo Jang. 2023. "Clustering Combined Multi-Objective Optimal Operation of Transmission Systems Considering Voltage Stability" Energies 16, no. 16: 5914. https://doi.org/10.3390/en16165914
APA StylePark, K., Lee, D., & Jang, G. (2023). Clustering Combined Multi-Objective Optimal Operation of Transmission Systems Considering Voltage Stability. Energies, 16(16), 5914. https://doi.org/10.3390/en16165914