Synthesis of Hexagonal Nanophases in the La2O3–MO3 (M = Mo, W) Systems
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Particle Size and Morphology of Starting Oxide Powders and Mechanically Activated Powders
3.2. Synthesis of the Hexagonal Phase La18W10O57 (9La2O3:10WO3) from a Mechanically Activated La2O3 + WO3 Mixture
3.3. Synthesis of the Hexagonal Phase La18W10O57 from a Mechanically Activated 9La2O3 + 10WO3 Mixture
3.4. Synthesis of a Hexagonal Phase in the La2O3–MoO3 System from a Mechanically Activated Oxide Mixture
3.5. Evaluation of the Crystallite Size in Hexagonal Lanthanum Tungstate and Lanthanum Molybdate and Microstructure of the Nanoceramics
3.6. Ionic Conductivity of the Hexagonal La15M8.5O48 (M = Mo, W) Nanophases, Coarse-Grained La18W10O57 Ceramic, and High-Temperature Phases (Orthorhombic β-La2WO6 and Tetragonal γ-La2MoO6)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chen, X.Y.; Bao, S.P.; Wu, Y.C. Controlled Synthesis and Luminescent Properties of Eu2+(Eu3+), Dy3+-Doped Sr3Al2O6 Phosphors by Hydrothermal Treatment and Postannealing Approach. J. Solid State Chem. 2010, 183, 2004–2011. [Google Scholar] [CrossRef]
- Wang, L.-L.; Wang, Q.-L.; Xu, X.-Y.; Li, J.-Z.; Gao, L.-B.; Kang, W.-K.; Shi, J.-S.; Wang, J. Energy Transfer from Bi3+ to Eu3+ Triggers Exceptional Long-Wavelength Excitation Band in ZnWO4:Bi3+, Eu3+ Phosphors. J. Mater. Chem. C 2013, 1, 8033. [Google Scholar] [CrossRef]
- Mani, K.P.; Vimal, G.; Biju, P.R.; Joseph, C.; Unnikrishnan, N.V.; Ittyachen, M.A. Optical Nonlinearity and Photoluminescence Studies of Red Emitting Samarium Molybdate Nanophosphor. ECS J. Solid State Sci. Technol. 2015, 4, R67–R71. [Google Scholar] [CrossRef]
- Wang, H.; Li, Y.; Ning, Z.; Huang, L.; Zhong, C.; Wang, C.; Liu, M.; Lai, X.; Gao, D.; Bi, J. A Novel Red Phosphor LixNa1-xEu(WO4)2 Solid Solution: Influences of Li/Na Ratio on the Microstructures and Luminescence Properties. J. Lumin. 2018, 201, 364–371. [Google Scholar] [CrossRef]
- Yengkhom, D.D.; Ningombam, G.S.; Singh, T.D.; Chipem, F.A.S.; Singh, N.R. Luminescence Enhancement and Tunable Color Emission in Eu/Dy/Sm Codoped CaW1−xMoxO4 Phosphor. Inorg. Chem. Commun. 2022, 141, 109571. [Google Scholar] [CrossRef]
- Ishigaki, T.; Matsushita, N.; Yoshimura, M.; Uematsu, K.; Toda, K.; Sato, M. Melt Synthesis of Oxide Red Phosphors La2WO6: Eu3+. Phys. Procedia 2009, 2, 587–601. [Google Scholar] [CrossRef]
- Wang, R.; Liu, Y.; Zhu, Y. Effect of Corroded SiO2 on the Luminescent Properties of La2MoO6:Eu3+ Phosphors. J. Lumin. 2021, 239, 118342. [Google Scholar] [CrossRef]
- Li, X.; Sun, Z.; Jia, M.; Liu, G.; Fu, Z.; Wei, Y.; Sheng, T.; Li, P. Investigation of the Luminescent Mechanism in Eu3+-Doped Ln2MoO6 (Ln3+= La3+, Gd3+, Y3+) Phosphors for Warm WLED. Mater. Res. Bull. 2020, 124, 110767. [Google Scholar] [CrossRef]
- Tang, Y.-S.; Hu, S.-F.; Lin, C.C.; Bagkar, N.C.; Liu, R.-S. Thermally Stable Luminescence of KSrPO4:Eu2+ Phosphor for White Light UV Light-Emitting Diodes. Appl. Phys. Lett. 2007, 90, 151108. [Google Scholar] [CrossRef]
- Urbanowicz, P.; Tomaszewicz, E.; Groń, T.; Duda, H.; Pacyna, A.W.; Mydlarz, T. Magnetic Properties of R2WO6 (Where R = Nd, Sm, Eu, Gd, Dy and Ho). Phys. B Condens. Matter 2009, 404, 2213–2217. [Google Scholar] [CrossRef]
- Li, Q.; Thangadurai, V. Novel Nd2WO6-Type Sm2−xAxM1−yByO6−δ (A = Ca, Sr; M = Mo, W; B = Ce, Ni) Mixed Conductors. J. Power Sources 2011, 196, 169–178. [Google Scholar] [CrossRef]
- Orlova, E.I.; Morkhova, Y.A.; Egorova, A.V.; Kharitonova, E.P.; Lyskov, N.V.; Voronkova, V.I.; Kabanov, A.A.; Veligzhanin, A.A.; Kabanova, N.A. Mechanism of Conductivity in the Rare Earth Layered Ln2MoO6 (Ln = La, Pr, and Nd) Oxymolybdates: Theoretical and Experimental Investigations. J. Phys. Chem. C 2022, 126, 9623–9633. [Google Scholar] [CrossRef]
- Baldin, E.D.; Sorokin, T.A.; Orlova, E.I.; Gorshkov, N.V.; Kharitonova, E.P.; Lyskov, N.V.; Goffman, V.G.; Voronkova, V.I. Proton Conductivity in Rare-Earth Fluorine-Containing Molybdates NaLn4Mo3O15F. Russ. J. Electrochem. 2023, 59, 54–59. [Google Scholar] [CrossRef]
- Shimura, T.; Fujimoto, S.; Iwahara, H. Proton Conduction in Non-Perovskite-Type Oxides at Elevated Temperatures. Solid State Ion. 2001, 143, 117–123. [Google Scholar] [CrossRef]
- Magrasó, A.; Polfus, J.M.; Frontera, C.; Canales-Vázquez, J.; Kalland, L.-E.; Hervoches, C.H.; Erdal, S.; Hancke, R.; Islam, M.S.; Norby, T.; et al. Complete Structural Model for Lanthanum Tungstate: A Chemically Stable High Temperature Proton Conductor by Means of Intrinsic Defects. J. Mater. Chem. 2012, 22, 1762–1764. [Google Scholar] [CrossRef]
- Magrasó, A.; Haugsrud, R. Effects of the La/W Ratio and Doping on the Structure, Defect Structure, Stability and Functional Properties of Proton-Conducting Lanthanum Tungstate La28−xW4+xO54+δ. A Review. J. Mater. Chem. A 2014, 2, 12630–12641. [Google Scholar] [CrossRef]
- Escolastico, S.; Seeger, J.; Roitsch, S.; Ivanova, M.; Meulenberg, W.A.; Serra, J.M. Enhanced H2 Separation through Mixed Proton-Electron Conducting Membranes Based on La5.5W0.8M0.2O11.25−δ. ChemSusChem 2013, 6, 1523–1532. [Google Scholar] [CrossRef]
- Magrasó, A. Transport Number Measurements and Fuel Cell Testing of Undoped and Mo-Substituted Lanthanum Tungstate. J. Power Sources 2013, 240, 583–588. [Google Scholar] [CrossRef]
- Polfus, J.M.; Li, Z.; Xing, W.; Sunding, M.F.; Walmsley, J.C.; Fontaine, M.-L.; Henriksen, P.P.; Bredesen, R. Chemical Stability and H2 Flux Degradation of Cercer Membranes Based on Lanthanum Tungstate and Lanthanum Chromite. J. Membr. Sci. 2016, 503, 42–47. [Google Scholar] [CrossRef]
- Chambrier, M.-H.; Kodjikian, S.; Ibberson, R.M.; Goutenoire, F. Ab-Initio Structure Determination of β-La2WO6. J. Solid State Chem. 2009, 182, 209–214. [Google Scholar] [CrossRef]
- Allix, M.; Chambrier, M.-H.; Véron, E.; Porcher, F.; Suchomel, M.; Goutenoire, F. Synthesis and Structure Determination of the High Temperature Form of La2WO6. Cryst. Growth Des. 2011, 11, 5105–5112. [Google Scholar] [CrossRef]
- Chambrier, M.-H.; Le Bail, A.; Kodjikian, S.; Suard, E.; Goutenoire, F. Structure Determination of La18W10O57. Inorg. Chem. 2009, 48, 6566–6572. [Google Scholar] [CrossRef] [PubMed]
- Yanovskii, V.K.; Voronkova, V.I. Polytypism of La2WO6 Crystals. Kristallografiya 1981, 26, 604. [Google Scholar]
- Chambrier, M.-H.; Ibberson, R.M.; Goutenoire, F. Structure Determination of α-La6W2O15. J. Solid State Chem. 2010, 183, 1297–1302. [Google Scholar] [CrossRef]
- Chambrier, M.-H.; Le Bail, A.; Giovannelli, F.; Redjaïmia, A.; Florian, P.; Massiot, D.; Suard, E.; Goutenoire, F. La10W2O21: An Anion-Deficient Fluorite-Related Superstructure with Oxide Ion Conduction. Inorg. Chem. 2014, 53, 147–159. [Google Scholar] [CrossRef]
- Kovalevsky, A.V.; Kharton, V.V.; Naumovich, E.N. Oxygen Ion Conductivity of Hexagonal La2W1.25O6.75. Mater. Lett. 1999, 38, 300–304. [Google Scholar] [CrossRef]
- Vigen, C.K.; Pan, J.; Haugsrud, R. Defects and Transport in Acceptor Doped La2WO6 and Nd1.2Lu0.8WO6. ECS J. Solid State Sci. Technol. 2013, 2, N243–N248. [Google Scholar] [CrossRef]
- Shlyakhtina, A.V.; Lyskov, N.V.; Kolbanev, I.V.; Vorob’eva, G.A.; Shchegolikhin, A.N.; Voronkova, V.I. Specific Features of Phase Formation and Properties of Compounds La2W1+XO6+3x (x~0; 0.11–0.22). Russ. J. Electrochem. 2023, 59, 60–69. [Google Scholar] [CrossRef]
- Ivanova, M.E.; Seeger, J.; Serra, J.M.; Solis, C.; Meulenberg, W.A.; Roitsch, S.; Buchkremer, H.P. Influence of the La6W2O15 Phase on the Properties and Integrity of La6-xWO12-δ–Based Membranes. Chem. Mater. Res. 2012, 2, 27–81. [Google Scholar]
- Yoshimura, M. X-Ray Characterization and Thermal Properties of 3R2O3 2WO3 Compounds (R = La, Ce, Pr, and Nd). J. Am. Ceram. Soc. 1977, 60, 77–78. [Google Scholar] [CrossRef]
- Bode, J.H.G.; Kuijt, H.R.; Lahey, M.A.J.T.; Blasse, G. Vibrational spectra of compounds Ln2MoO6 and Ln2WO6. Solid State Chem. 1973, 8, 114–119. [Google Scholar] [CrossRef]
- Ivanova, M.M.; Balagina, Z.M.; Rode, E.Y. La2O3–WO3 Phase Diagram. Izv. Akad. Nauk SSSR Neorg. Mater. 1970, 6, 914. [Google Scholar]
- Yoshimura, M.; Sibeeude, F.; Ruanet, A.; Foex, M. Polymorphism of R2O3·WO3 (R = rare-earth) compounds at high temperature. Rev. Int. Htes Refract. 1971, 12, 215–219. [Google Scholar]
- Brixner, L.H.; Sleight, A.W.; Licis, M.S. Ln2MoO6-Type Rare Earth Molybdates—Preparation and Lattice Parameters. J. Solid State Chem. 1972, 5, 186–190. [Google Scholar] [CrossRef]
- Yanovskii, V.K.; Voronkova, V.I. Crystallography and Properties of La2WO6 Lanthanum Oxytungstates. Kristallografiya 1975, 20, 579. [Google Scholar]
- Yoshimura, M.; Rouanet, A. High Temperature Phase Relation in the System La2O3–WO3. Mater. Res. Bull. 1976, 11, 151–158. [Google Scholar] [CrossRef]
- Blasse, G. Dilanthanide Molybdates and Tungstates Ln2MO6. J. Inorg. Nucl. Chem. 1966, 28, 1488–1489. [Google Scholar] [CrossRef]
- Escolástico, S.; Vert, V.B.; Serra, J.M. Preparation and Characterization of Nanocrystalline Mixed Proton−Electronic Conducting Materials Based on the System Ln6WO12. Chem. Mater. 2009, 21, 3079–3089. [Google Scholar] [CrossRef]
- Novikova, N.E.; Sorokin, T.A.; Antipin, A.M.; Bolotina, N.B.; Alekseeva, O.A.; Sorokina, N.I.; Voronkova, V.I. Characteristic Features of Polytypism in Compounds with the La18W10O57-Type Structure. Acta Crystallogr. Sect. C 2019, 75, 740–749. [Google Scholar] [CrossRef] [PubMed]
- Pautonnier, A.; Coste, S.; Barré, M.; Lacorre, P. Higher Lanthanum Molybdates: Structures, Crystal Chemistry and Properties. Prog. Solid State Chem. 2022, 69, 100382. [Google Scholar] [CrossRef]
- Buttrey, D.J.; Vogt, T.; Wildgruber, U.; Robinson, W.R. Structural Refinement of the High Temperature Form of Bi2MoO6. J. Solid State Chem. 1994, 111, 118–127. [Google Scholar] [CrossRef]
- Sillén, L.G.; Lundborg, K. La2MoO6, ein Lanthanoxymolybdat mit Schichtenstruktur. Z. Anorg. Chem. 1943, 252, 2–8. [Google Scholar] [CrossRef]
- Klevtsov, P.V.; Kharchenko, L.Y.; Klevtsova, R.F. On crystallization and polymorphism of rare earths oxymolybdate composition Ln2MoO6. Kristallografiya 1975, 20, 571–578. [Google Scholar]
- Efremov, V.A.; Tyulin, A.V.; Trunov, V.K. The true structure of tetragonal Ln2O2MoO4 and factors determining the structure of coordination polyhedral. Russ. J. Coord. Chem. 1987, 13, 1276–1282. [Google Scholar]
- Xue, J.S.; Antonio, M.R.; Soderholm, L. Polymorphs of Ln2MoO6: A Neutron Diffraction Investigation of the Crystal Structures of La2MoO6 and Tb2MoO6. Chem. Mater. 1995, 7, 333–340. [Google Scholar] [CrossRef]
- Kolbanev, I.V.; Shlyakhtina, A.V.; Degtyarev, E.N.; Konysheva, E.Y.; Lyskov, N.V.; Stolbov, D.N.; Streletskii, A.N. Room-temperature Mechanochemical Synthesis of RE Molybdates: Impact of Structural Similarity and Basicity of Oxides. J. Am. Ceram. Soc. 2021, 104, 5698–5710. [Google Scholar] [CrossRef]
- López-Vergara, A.; Porras-Vázquez, J.M.; Infantes-Molina, A.; Canales-Vázquez, J.; Cabeza, A.; Losilla, E.R.; Marrero-López, D. Effect of Preparation Conditions on the Polymorphism and Transport Properties of La6–xMoO12−δ (0 ≤ x ≤ 0.8). Chem. Mater. 2017, 29, 6966–6975. [Google Scholar] [CrossRef]
- Shlyakhtina, A.V.; Lyskov, N.V.; Kolbanev, I.V.; Shchegolikhin, A.N.; Karyagina, O.K.; Shcherbakova, L.G. Key Trends in the Proton Conductivity of Ln6−xMoO12−δ(Ln = La, Nd, Sm, Gd -Yb; x = 0, 0.5, 0.6, 0.7, 1) Rare-Earth Molybdates. Int. J. Hydrog. Energy 2021, 46, 16989–16998. [Google Scholar] [CrossRef]
- Shlyakhtina, A.V.; Savvin, S.N.; Lyskov, N.V.; Kolbanev, I.V.; Karyagina, O.K.; Chernyak, S.A.; Shcherbakova, L.G.; Núñez, P. Polymorphism in the Family of Ln6−xMoO12−δ (Ln = La, Gd–Lu; x = 0, 0.5) Oxygen Ion- and Proton-Conducting Materials. J. Mater. Chem. A 2017, 5, 7618–7630. [Google Scholar] [CrossRef]
- Aronov, M.N. Laboratory vibrating eccentric mill. Instrum. Exp. Tech. 1959, 1, 153–154. [Google Scholar]
- Aronov, M.N.; Morgulis, L.M. Certificate of authorship No. 113794. 3794.
- Shlyakhtina, A.V.; Vorobieva, G.A.; Leonov, A.V.; Shchegolikhin, A.N.; Chernyak, S.A.; Baldin, E.D.; Streletskii, A.N. Kinetics of Formation and Crystallization of Ln2Ti2O7 (Ln = Gd, Lu) Pyrochlores from Nanoparticulate Precursors. Inorg. Mater. 2022, 58, 964–982. [Google Scholar] [CrossRef]
- Fleig, J. The Influence of Non-Ideal Microstructures on the Analysis of Grain Boundary Impedances. Solid State Ion. 2000, 131, 117–127. [Google Scholar] [CrossRef]
No. | Composition, Tsynthesis | Atmosphere | Ea (±0.01), eV | |
---|---|---|---|---|
400–600 °C | 600–900 °C | |||
1 | La15W8.5O48–800 °C | Dry air | 1.36 | |
Wet air | 1.35 | |||
2 | La18W10O57–1400 °C | Dry air | 1.19 | 0.96 |
Wet air | 1.25 | 0.98 | ||
3 | β-La2WO6–1000 °C | Dry air | 1.13 | |
Wet air | 1.03 | |||
4 | β-La2WO6–1400 °C | Dry air | 1.16 | |
Wet air | 1.05 | |||
5 | La2W1+xO6+3x (x~0.22) single crystal | Dry air | - | 0.89 |
Wet air | - | 0.83 |
No. | Composition, Tsynthesis | Atmosphere | Ea (±0.01), eV | |
---|---|---|---|---|
500–700 °C | 500–900 °C | |||
1 | La15Mo8.5O48–600 °C | Dry air | 1.35 | – |
Wet air | 1.34 | – | ||
2 | γ-La2MoO6–900 °C | Dry air | – | 1.14 |
Wet air | – | 1.09 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baldin, E.; Lyskov, N.; Vorobieva, G.; Kolbanev, I.; Karyagina, O.; Stolbov, D.; Voronkova, V.; Shlyakhtina, A. Synthesis of Hexagonal Nanophases in the La2O3–MO3 (M = Mo, W) Systems. Energies 2023, 16, 5637. https://doi.org/10.3390/en16155637
Baldin E, Lyskov N, Vorobieva G, Kolbanev I, Karyagina O, Stolbov D, Voronkova V, Shlyakhtina A. Synthesis of Hexagonal Nanophases in the La2O3–MO3 (M = Mo, W) Systems. Energies. 2023; 16(15):5637. https://doi.org/10.3390/en16155637
Chicago/Turabian StyleBaldin, Egor, Nikolay Lyskov, Galina Vorobieva, Igor Kolbanev, Olga Karyagina, Dmitry Stolbov, Valentina Voronkova, and Anna Shlyakhtina. 2023. "Synthesis of Hexagonal Nanophases in the La2O3–MO3 (M = Mo, W) Systems" Energies 16, no. 15: 5637. https://doi.org/10.3390/en16155637
APA StyleBaldin, E., Lyskov, N., Vorobieva, G., Kolbanev, I., Karyagina, O., Stolbov, D., Voronkova, V., & Shlyakhtina, A. (2023). Synthesis of Hexagonal Nanophases in the La2O3–MO3 (M = Mo, W) Systems. Energies, 16(15), 5637. https://doi.org/10.3390/en16155637