Review: The Energy Implications of Averting Climate Change Catastrophe
Abstract
:1. Introduction
2. Materials and Methods
3. Importance of Timing for Low-Carbon Energy
4. Assessment of Conventional Approaches
- They cannot deliver major CC mitigation in a timely manner;
- Their mitigation potential is too small;
- Feedback effects reduce their mitigation potential;
- Political opposition limits their deployment at scale;
- Their expansion conflicts with other important aims.
4.1. Non-Fossil Fuel Energy Sources
4.2. Carbon Dioxide Removal (CDR)
4.3. Energy Efficiency
5. Solar Geoengineering: Impact on Low-Carbon Energy
6. Global Equity in Energy and Climate Change Impacts
6.1. Inequality in Low-Income Countries, Especially in the Tropics
- Tropical ecosystems are near their upper thermal limit, so rising temperatures could exceed optimum plant germination temperature or even exceed the upper limit for germination [72]. (Further, [73] argued that many tropical ecosystems have adapted to a narrow temperature range, although Sentinella et al. [72] dispute this claim.) Thus, temperature rises could have adverse consequences for agriculture. In contrast, in more temperate climates, rising temperatures shift more species closer to their optimum germination temperature [73].
- Even for similar extreme weather events like floods or droughts, the risks for low-income communities and households are much higher than in wealthier countries, as poorer communities have fewer resources, both material and administrative, for coping and recovery and tend to lose a bigger share of their wealth. Even worse, a vicious cycle can occur between losses from disasters—whatever the cause—and poverty: ‘(…) poverty is a major driver of people’s vulnerability to natural disasters, which in turn increase poverty in a measurable and significant way’ [74]. Cappelli et al. [75] even argued for a vicious cycle that ‘keeps some countries stuck in a disasters-inequality trap’.
- Further, there are significant differences in human mortality from extreme weather events depending on the level of vulnerability. As the IPCC [2] noted, ‘Between 2010 and 2020, human mortality from floods, droughts and storms was 15 times higher in highly vulnerable regions, compared to regions with very low vulnerability’.
6.2. Inequality in High-Income Countries
7. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
A/C | air conditioner |
APC | Announced Pledges Scenario |
BECCS | bioenergy with carbon capture and storage |
CC | climate change |
CCC | catastrophic climate change |
CCS | carbon capture and storage |
CDR | carbon dioxide removal |
CO2 | carbon dioxide |
CO2-eq | carbon dioxide equivalent |
DAC | direct air capture |
DEA | dynamic energy analysis |
EIA | Energy Information Administration |
EJ | exajoule (1018 joules) |
EROI | energy return on investment |
ESME | Ecosystem Maintenance Energy |
ESS | Earth System Science |
EU | European Union |
EW | enhanced weathering |
FF | fossil fuels |
GHG | greenhouse gas |
Gt | gigatonne = 19 tonnes |
GW | gigawatt (109 watts) |
IEA | International Energy Agency |
IPCC | Intergovernmental Panel on Climate Change |
Mt | megatonne (106 tonnes) |
OA | ocean acidification |
OAE | ocean alkalinity enhancement |
OECD | Organization for Economic Cooperation and Development |
OPEC | Organization of the Petroleum Exporting Countries |
ppm | parts per million (atmospheric) |
PV | photovoltaic |
RE | renewable energy |
SDG | Sustainable Development Goal |
SG | solar geoengineering |
SRM | solar radiation management |
t CO2/cap | tonnes of CO2 per capita |
TWh | terawatt hours (1012 watt hrs) |
USD | US dollars |
UNEP | United Nations Environment Program |
References
- Energy Institute. Statistical Review of World Energy 2023, 72nd ed. Available online: https://www.energyinst.org/statistical-review (accessed on 26 March 2023).
- Intergovernmental Panel on Climate Change (IPCC). Synthesis Report of the IPCC Sixth Assessment Report (AR6): Summary for Policymakers. Available online: https://report.ipcc.ch/ar6syr/pdf/IPCC_AR6_SYR_SPM.pdf (accessed on 21 March 2023).
- Moriarty, P.; Honnery, D. Review: Renewable energy in an increasingly uncertain future. Appl. Sci. 2023, 13, 388. [Google Scholar] [CrossRef]
- Steffen, W.; Richardson, K.; Rockström, J.; Cornell, S.E.; Fetzer, I.; Bennett, E.M.; Biggs, R.; Carpenter, S.R.; de Vries, W.; de Wit, C.A.; et al. Planetary boundaries: Guiding human development on a changing planet. Science 2015, 347, 1259855. [Google Scholar] [CrossRef] [PubMed]
- Bradshaw, C.J.A.; Ehrlich, P.R.; Beattie, A.; Ceballos, G.; Crist, E.; Diamond, J.; Dirzo, R.; Ehrlich, A.H.; Harte, J.; Harte, M.E.; et al. Underestimating the challenges of avoiding a ghastly future. Front. Conserv. Sci. 2021, 1, 615419. [Google Scholar] [CrossRef]
- Brodie, J.F.; Watson, J.E.M. Human responses to climate change will likely determine the fate of biodiversity. Proc. Natl. Acad. Sci. USA 2023, 120, e2205512120. [Google Scholar] [CrossRef]
- Dirzo, R.; Ceballos, G.; Ehrlich, P.R. Circling the drain: The extinction crisis and the future of humanity. Philos. Trans. R. Soc. B 2022, 377, 20210378. [Google Scholar] [CrossRef]
- Georgian, S.; Hameed, S.; Morgan, L.; Amon, D.J.; Sumaila, U.R.; Johns, D.; Ripple, W.J. Scientists’ warning of an imperiled ocean. Biol. Conserv. 2022, 272, 109595. [Google Scholar] [CrossRef]
- World Economic Forum. Plastic Pollution Is a Public Health Crisis. How Do We Reduce Plastic Waste? 2022. Available online: https://www.weforum.org/agenda/2022/07/plastic-pollution-ocean-circular-economy/ (accessed on 3 June 2023).
- Crist, E.; Ripple, W.J.; Ehrlich, P.R.; Rees, W.E.; Wolf, C. Scientists’ warning on population. Sci. Total Environ. 2022, 845, 157166. [Google Scholar] [CrossRef]
- United Nations (UN). World Population Prospects 2022. 2022. (Also Earlier UN Forecasts). Available online: https://population.un.org/wpp/ (accessed on 12 April 2023).
- Moriarty, P.; Honnery, D. The risk of catastrophic climate change: Future energy implications. Futures 2021, 128, 102728. [Google Scholar] [CrossRef]
- Lade, S.J.; Steffen, W.; de Vries, W.; Carpenter, S.R.; Donges, J.F.; Gerten, D.; Hoff, H.; Newbold, T.; Richardson, K.; Rockström, J. Human impacts on planetary boundaries amplified by Earth system interactions. Nat. Sustain. 2020, 3, 119–128. [Google Scholar] [CrossRef]
- Irvine, P.J.; Keith, D.W. Halving warming with stratospheric aerosol geoengineering moderates policy-relevant climate hazards. Environ. Res. Lett. 2020, 15, 044011. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2022: Mitigation of Climate Change. (Also, Earlier Reports). 2022. Available online: https://www.ipcc.ch/report/ar6/wg3/ (accessed on 1 July 2023).
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2022: Impacts, Adaptation and Vulnerability; CUP: Cambridge, UK, 2022. [Google Scholar] [CrossRef]
- International Energy Agency (IEA). Key World Energy Statistics 2021; (Also. Earlier Editions); IEA/OECD: Paris, France, 2021; Available online: https://www.iea.org/reports/key-world-energy-statistics-2021 (accessed on 15 April 2023).
- Valavanidis, A. Extreme Weather Events Exacerbated by the Global Impact of Climate Change. Available online: Chem-tox-ecotox.org/ScientificReviews (accessed on 28 May 2023).
- Vaughan, A. Is the climate becoming too extreme to predict? New Sci. 2021, 251, 11. [Google Scholar] [CrossRef]
- Capellán-Pérez, I.; de Castro, C.; González, L.J.M. Dynamic Energy Return on Energy Investment (EROI) and material requirements in scenarios of global transition to renewable energies. Energy Strategy Rev. 2019, 26, 100399. [Google Scholar] [CrossRef]
- Fizaine, F.; Court, V. Energy expenditure, economic growth, and the minimum EROI of society. Energy Policy 2016, 95, 172–186. [Google Scholar] [CrossRef]
- Archer, D.; Eby, M.; Brovkin, V.; Ridgwell, A.; Cao, L.; Mikolajewicz, U.; Caldeira, K.; Matsumoto, K.; Munhoven, G.; Montenegro, A.; et al. Atmospheric lifetime of fossil fuel carbon dioxide. Annu. Rev. Earth Planet. Sci. 2009, 37, 117–134. [Google Scholar] [CrossRef]
- Schwartz, S.E. Observation based budget and lifetime of excess atmospheric carbon dioxide. Atmos. Chem. Phys. 2021. preprint. Available online: https://acp.copernicus.org/preprints/acp-2021-924/ (accessed on 20 April 2023).
- International Energy Agency (IEA). World Energy Outlook 2022; IEA/OECD: Paris, France, 2022; Available online: https://www.iea.org/topics/world-energy-outlook (accessed on 19 April 2023).
- Moriarty, P. Global nuclear energy: An uncertain future. AIMS Energy 2021, 9, 1027–1042. [Google Scholar] [CrossRef]
- Moriarty, P.; Honnery, D. The limits of renewable energy. AIMS Energy 2021, 9, 812–829. [Google Scholar] [CrossRef]
- Hall, C.A.S. Will EROI be the primary determinant of our economic future? The view of the natural scientist versus the economist. Joule 2017, 1, 635–638. [Google Scholar] [CrossRef]
- Moriarty, P.; Honnery, D. Feasibility of a 100% global renewable energy system. Energies 2020, 13, 5543. [Google Scholar] [CrossRef]
- Ferroni, F.; Hopkirk, R.J. Energy Return on Energy Invested (ERoEI) for photovoltaic solar systems in regions of moderate insolation. Energy Policy 2016, 94, 336–344. [Google Scholar] [CrossRef]
- Raugei, M.; Sgouridis, S.; Murphy, D.; Fthenakis, V.; Frischknecht, R.; Breyer, C.; Bardi, U.; Barnhart, C.; Buckley, A.; Carbajales-Dale, M.; et al. Energy Return on Energy Invested (ERoEI) for photovoltaic solar systems in region of moderate insolation: A comprehensive response. Energy Policy 2017, 102, 377–384. [Google Scholar] [CrossRef]
- Daaboul, J.; Moriarty, P.; Honnery, D. Net green energy potential of solar photovoltaic and wind energy generation systems. J. Clean. Prod. 2023, 415, 137806. [Google Scholar] [CrossRef]
- Halabi, A.L.M.; Siacara, A.T.; Sakano, V.K.; Pileggi, R.G.; Futai, M.M. Tailings dam failures: A historical analysis of the risk. J. Fail. Anal. Prev. 2022, 22, 464–477. [Google Scholar] [CrossRef]
- Mills, M.P. Mines, Minerals, and “Green” Energy: A Reality Check. Manhattan Institute Report. July 2020. Available online: http://www.goinggreencanada.ca/green_energy_reality_check.pdf (accessed on 3 May 2023).
- O’Sullivan, M.; Gravatt, M.; Popineau, J.; O’ Sullivan, J.; Mannington, W.; McDowell, J. Carbon dioxide emissions from geothermal power plants. Renew. Energy 2021, 175, 990–1000. [Google Scholar] [CrossRef]
- Sterman, J.D.; Siegel, L.; Rooney-Varga, J.N. Does replacing coal with wood lower CO2 emissions? Dynamic lifecycle analysis of wood bioenergy. Environ. Res. Lett. 2018, 13, 015007. [Google Scholar] [CrossRef]
- Voigt, C.C.; Straka, T.M.; Fritze, M. Producing wind energy at the cost of biodiversity: A stakeholder view on a green-green dilemma. J. Renew. Sustain. Energy 2019, 11, 063303. [Google Scholar] [CrossRef]
- Rehbein, J.A.; Watson, J.E.M.; Lane, J.L.; Sonter, L.J.; Venter, O.; Atkinson, S.C.; Allan, J.R. Renewable energy development threatens many globally important biodiversity areas. Glob. Chang. Biol. 2020, 26, 3040–3051. [Google Scholar] [CrossRef]
- Niebuhr, B.B.; Sant’Ana, D.; Panzacchi, M.; van Moorter, B.; Sandström, P.; Ronaldo, G.; Morato, R.G.; Skarin, A. Renewable energy infrastructure impacts biodiversity beyond the area it occupies. Proc. Natl. Acad. Sci. USA 2022, 119, e2208815119. [Google Scholar] [CrossRef]
- Wasti, A.; Ray, P.; Wi, S.; Folch, C.; Ubierna, M.; Karki, P. Climate change and the hydropower sector: A global review. WIREs Clim. Chang. 2022, 13, e757. [Google Scholar] [CrossRef]
- Schmelz, W.J.; Hochman, G.; Miller, K.G. Total cost of carbon capture and storage implemented at a regional scale: Northeastern and midwestern United States. Interface Focus 2020, 10, 20190065. [Google Scholar] [CrossRef]
- Bastin, J.-F.; Finegold, Y.; Garcia, C.; Mollicone, D.; Rezende, M.; Routh, D.; Sacande, M.; Sparrow, B.; Sparrow, C.M.; Zohner, T.W. The global tree restoration potential. Science 2019, 365, 76–79. Available online: https://www.science.org/doi/10.1126/science.abc8905 (accessed on 10 October 2022). [CrossRef]
- Veldman, J.W.; Aleman, J.C.; Alvarado, S.T.; Anderson, T.M.; Archibald, S.; Bond, W.J.; Boutton, T.W.; Buchmann, N.; Buisson, E.; Canadell, J.G.; et al. Comment on “The global tree restoration potential”. Science 2019, 366, eaay7976. [Google Scholar] [CrossRef] [PubMed]
- Boysen, L.R.; Lucht, W.; Gerten, D.; Heck, V.; Lenton, T.M.; Schellnhuber, H.J. The limits to global-warming mitigation by terrestrial carbon removal. Earth’s Future 2017, 5, 463–474. [Google Scholar] [CrossRef]
- Bentley, R. Colin Campbell, oil exploration geologist and key proponent of ‘Peak Oil’. Biophys. Econ. Sustain. 2023, 8, 3. [Google Scholar] [CrossRef]
- Deming, D.M. King Hubbert and the rise and fall of peak oil theory. AAPG Bull. 2023, 107, 851–861. [Google Scholar] [CrossRef]
- Halttunen, K.; Slade, R.; Staffell, I. What if we never run out of oil? From certainty of “peak oil” to “peak demand”. Energy Res. Soc. Sci. 2022, 85, 102407. [Google Scholar] [CrossRef]
- BP. BP Energy Outlook 2023 Edition; BP: London, UK, 2023; Available online: https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/energy-outlook/bp-energy-outlook-2023.pdf (accessed on 10 June 2023).
- DNV. Energy Transition Outlook 2022: Executive Summary. 2022. Available online: https://www.dnv.com/energy-transition-outlook/index.html (accessed on 10 June 2023).
- Lovins, A.B. How big is the energy efficiency resource? Environ. Res. Lett. 2018, 13, 090401. [Google Scholar] [CrossRef]
- Lovins, A. Reframing automotive fuel efficiency. SAE Int. J. Sustain. Transp. Energy Environ. Policy 2020, 1, 59–84. [Google Scholar] [CrossRef]
- Organization of the Petroleum Exporting Countries (OPEC). OPEC World Oil Outlook; OPEC: Vienna, Austria, 2021; Available online: http://www.opec.org (accessed on 23 October 2022).
- Steren, A.; Rubin, O.D.; Rosenzweig, S. Energy-efficiency policies targeting consumers may not save energy in the long run: A rebound effect that cannot be ignored. Energy Res. Soc. Sci. 2022, 90, 102600. [Google Scholar] [CrossRef]
- Huestis, S. Cryptocurrency’s Energy Consumption Problem. 2023. Available online: https://rmi.org/cryptocurrencys-energy-consumption-problem/#:~:text=Bitcoin%20alone%20is%20estimated%20to,fuel%20used%20by%20US%20railroads (accessed on 12 April 2023).
- Davis, S.C.; Boundy, R.G. Transportation Energy Data Book, Edition 40. ORNL/TM-2022/2376. Available online: https://tedb.ornl.gov/wp-content/uploads/2022/03/TEDB_Ed_40.pdf (accessed on 18 May 2023).
- Naddaf, M. The world faces a water crisis—4 powerful charts show how. Nature 2023, 615, 774–775. [Google Scholar] [CrossRef]
- Robock, A. Benefits and risks of stratospheric solar radiation management for climate intervention (geoengineering). Bridge 2020, 50, 59–67. Available online: http://climate.envsci.rutgers.edu/pdf/RobockBridge.pdf (accessed on 14 October 2022).
- Moriarty, P.; Honnery, D. Renewable energy and energy reductions or solar geoengineering for climate change mitigation? Energies 2022, 15, 7315. [Google Scholar] [CrossRef]
- Royal Society. Geoengineering the Climate: Science, Governance and Uncertainty; Royal Society: London, UK, 2009; Available online: https://royalsociety.org/topics-policy/publications/2009/geoengineering-climate/ (accessed on 8 March 2021).
- Trisos, C.H.; Amatulli, G.; Gurevitch, J.; Robock, A.; Xia, L.; Zambri, B. Potentially dangerous consequences for biodiversity of solar geoengineering implementation and termination. Nat. Ecol. Evol. 2018, 2, 475–482. [Google Scholar] [CrossRef] [PubMed]
- Vaughan, A. Engineering the oceans. New Sci. 2022, 255, 46–49. [Google Scholar] [CrossRef]
- Gentile, E.; Tarantola, F.; Lockley, A.; Vivian, C.; Caserini, S. Use of aircraft in ocean alkalinity enhancement. Sci. Total Environ. 2022, 822, 153484. [Google Scholar] [CrossRef]
- Fakhraee, M.; Li, Z.; Planavsky, N.J.; Reinhard, C.T. Environmental impacts and carbon capture potential of ocean alkalinity enhancement. Res. Sq. 2022, preprint. [Google Scholar] [CrossRef]
- Open Letter: We Call for an International Non-Use Agreement on Solar Geoengineering. 2022. Available online: https://www.solargeoeng.org/non-use-agreement/open-letter/ (accessed on 10 August 2023).
- McGuire, B. Hacking the Earth: What could go wrong with geoengineering? Responsible Sci. J. 2021, 3, 18–19. [Google Scholar]
- Biermann, F.; Oomen, J.; Gupta, A.; Ali, S.H.; Conca, K.; Hajer, M.A.; Kashwan, P.; Kotzé, L.J.; Leach, M.; Messner, D.; et al. Solar geoengineering: The case for an international non-use agreement. WIREs Clim. Chang. 2022, 13, e754. [Google Scholar] [CrossRef]
- Rockström, J.; Steffen, W.; Noone, K.; Persson, A.; Chapin, F.S., III; Lambin, E.F.; Lenton, T.M.; Scheffer, M.; Folke, C.; Schellnhuber, H.J.; et al. A safe operating space for humanity. Nature 2009, 461, 472–475. [Google Scholar] [CrossRef]
- A measure for environmental justice. Nature 2023, 618, 7. Available online: https://www.nature.com/articles/d41586-023-01749-9 (accessed on 4 August 2023).
- Gupta, J.; Liverman, D.; Prodani, K.; Aldunce, P.; Bai, X.; Broadgate, W.; Ciobanu, D.; Gifford, L.; Gordon, C.; Hurlbert, M.; et al. Earth system justice needed to identify and live within Earth system boundaries. Nat. Sustain. 2023, 6, 630–638. [Google Scholar] [CrossRef]
- Chancel, L.; Piketty, P. Global Income Inequality, 1820–2020: The Persistence and Mutation of Extreme Inequality. 2021. Available online: https://halshs.archives-ouvertes.fr/halshs-03321887ffhalshs-03321887 (accessed on 23 May 2023).
- Kartha, S.; Kemp-Benedict, E.; Ghosh, E.; Nazareth, A.; Gore, T. The Carbon Inequality Era. Joint Research Report; Stockholm Environment Institute: Stockholm, Sweden, 2020. [Google Scholar]
- Jones, M.W.; Peters, G.P.; Gasser, G.; Andrew, R.M.; Schwingshackl, C.; Gütschow, J.; Houghton, R.A.; Friedlingstein, P.; Pongratz, J.; Le Quéré, C. National contributions to climate change due to historical emissions of carbon dioxide, methane, and nitrous oxide since 1850. Sci. Data 2023, 10, 155. [Google Scholar] [CrossRef]
- Sentinella, A.T.; Warton, D.I.; Sherwin, W.B.; Offord, C.A.; Moles, A.T. Tropical plants do not have narrower temperature tolerances, but are more at risk from warming because they are close to their upper thermal limits. Glob. Ecol. Biogeogr. 2020, 29, 1387–1398. [Google Scholar] [CrossRef]
- Perez, T.M.; Stroud, J.T.; Feeley, K.J. Thermal trouble in the tropics. Science 2016, 351, 1392–1393. [Google Scholar] [CrossRef] [PubMed]
- Hallegatte, S.; Vogt-Schilb, A.; Rozenberg, J.; Bangalore, M.; Beaudet, C. From poverty to disaster and back: A review of the literature. Econ. Disasters Clim. Chang. 2020, 4, 223–247. [Google Scholar] [CrossRef]
- Cappelli, F.; Costantini, V.; Consoli, D. The trap of climate change-induced “natural” disasters and inequality. Glob. Environ. Chang. 2021, 70, 102329. [Google Scholar] [CrossRef]
- Ramachandran, V. Blanket bans on fossil fuels hurt women. Nature 2022, 607, 9. [Google Scholar] [CrossRef]
- International Energy Agency (IEA). Global Air Conditioner Stock, 1990–2050; IEA: Paris, France, 2022; Available online: https://www.iea.org/data-and-statistics/charts/global-air-conditioner-stock-1990-2050 (accessed on 2 March 2023).
- International Energy Agency (IEA). The Future of Cooling: Opportunities for Energy Efficient Air Conditioning; OECD/IEA: Paris, France, 2018; Available online: https://www.iea.org/reports/the-future-of-cooling (accessed on 2 February 2023).
- Raymond, C.; Matthews, T.; Horton, R.M. The emergence of heat and humidity too severe for human tolerance. Sci. Adv. 2020, 6, eaaw1838. [Google Scholar] [CrossRef]
- Hanna, E.G.; Tait, P.W. Limitations to thermoregulation and acclimatization challenge human adaptation to global warming. Int. J. Environ. Res. Public Health 2015, 12, 8034–8074. [Google Scholar] [CrossRef]
- World Bank (2023) Access to Electricity (% of Population). Available online: https://data.worldbank.org/indicator/EG.ELC.ACCS.ZS (accessed on 3 May 2023).
- Mezue, K.; Edwards, P.; Nsofor, I.; Goha, A.; Anya, I.; Madu, K.; Baugh, D.; Nunura, F.; Gaulton, G.; Madu, E. Sub-Saharan Africa tackles COVID-19: Challenges and opportunities. Ethn. Dis. 2020, 30, 693–694. [Google Scholar] [CrossRef]
- Schiermeier, Q. Telltale warming likely to hit poorer countries first. Nature 2018, 556, 415–416. [Google Scholar] [CrossRef] [PubMed]
- Witze, A. Extreme heatwaves: Surprising lessons from the record warmth. Nature 2022, 608, 464–465. [Google Scholar] [CrossRef] [PubMed]
- Turco, M.; Abatzoglou, J.A.; Herrera, S.; Zhuang, Y.; Jerez, S.; Lucas, D.D. Anthropogenic climate change impacts exacerbate summer forest fires in California. Proc. Natl. Acad. Sci. USA 2023, 120, e2213815120. [Google Scholar] [CrossRef] [PubMed]
- Polonik, P.; Ricke, K.; Reese, S.; Burney, J. Air quality equity in US climate policy. Proc. Natl. Acad. Sci. USA 2023, 120, e2217124120. [Google Scholar] [CrossRef]
- Levermore, G.; Parkinson, J.; Lee, K.; Laycock, P.; Lindley, S. The increasing trend of the urban heat island intensity. Urban Clim. 2018, 24, 360–368. [Google Scholar] [CrossRef]
- Chakraborty, T.; Hsu, A.; Manya, D.; Sheriff, G. Disproportionately higher exposure to urban heat in lower-income neighborhoods: A multi-city perspective. Environ. Res. Lett. 2019, 14, 105003. [Google Scholar] [CrossRef]
- Cities must protect people from extreme heat. Nature 2021, 595, 331–332. [CrossRef]
- Rockström, J.; Gupta, J.; Qin, D.; Lade, S.J.; Abrams, J.F.; Andersen, L.S.; McKay, D.I.L.; Bai, X.; Bala, G.; Bunn, S.E.; et al. Safe and just Earth system boundaries. Nature 2023, 619, 102–111. [Google Scholar] [CrossRef]
- Mazon, J.; Pino, D.; Vinyoles, M. Is declaring a climate emergency enough to stop global warming? Learning from the COVID-19 pandemic. Front. Clim. 2022, 4, 848587. [Google Scholar] [CrossRef]
- Hickel, J.; Brockway, P.; Kallis, G.; Keyßer, L.; Lenzen, M.; Slameršak, A.; Steinberger, J.; Ürge-Vorsatz, D. Urgent need for post-growth climate mitigation scenarios. Nat. Energy 2021, 6, 766–768. [Google Scholar] [CrossRef]
- Hickel, J.; Kallis, G.; Jackson, T.; O’Neill, D.W.; Schor, J.B.; Steinberger, J.; Victor, P.A.; Ürge-Vorsatz, D. Degrowth can work—Here’s how science can help. Nature 2022, 612, 400–403. [Google Scholar] [CrossRef] [PubMed]
- United Nations (UN). The Sustainable Development Goals Report. 2020. Available online: https://unstats.un.org/sdgs/report/2020/The-Sustainable-Development-Goals-Report-2020.pdf (accessed on 3 May 2023).
- Van Ruijven, B.J.; De Cian, E.; Wing, I.S. Amplification of future energy demand growth due to climate change. Nat. Commun. 2019, 10, 2762. [Google Scholar] [CrossRef] [PubMed]
Energy Type\Year | 2011 | 2022 |
---|---|---|
OECD primary energy share (%) | 46.5 | 38.8 |
Non-OECD primary energy share (%) | 53.5 | 61.2 |
OECD low carbon primary energy share (%) | 61.1 | 48.1 |
Non-OECD low carbon primary energy share (%) | 38.9 | 51.9 |
Energy Type\Year | 2010 | 2020 | 2021 | 2030 | 2040 | 2050 |
---|---|---|---|---|---|---|
RE (all types) (%) | 8.3 | 11.7 | 11.9 | 23.8 | 38.2 | 50.7 |
RE (all types) EJ | 45 | 69 | 74 | 141 | 239 | 319 |
Nuclear energy (%) | 5.6 | 4.9 | 4.8 | 6.1 | 7.8 | 8.9 |
Nuclear energy EJ | 30 | 29 | 30 | 39 | 49 | 56 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moriarty, P.; Honnery, D. Review: The Energy Implications of Averting Climate Change Catastrophe. Energies 2023, 16, 6178. https://doi.org/10.3390/en16176178
Moriarty P, Honnery D. Review: The Energy Implications of Averting Climate Change Catastrophe. Energies. 2023; 16(17):6178. https://doi.org/10.3390/en16176178
Chicago/Turabian StyleMoriarty, Patrick, and Damon Honnery. 2023. "Review: The Energy Implications of Averting Climate Change Catastrophe" Energies 16, no. 17: 6178. https://doi.org/10.3390/en16176178
APA StyleMoriarty, P., & Honnery, D. (2023). Review: The Energy Implications of Averting Climate Change Catastrophe. Energies, 16(17), 6178. https://doi.org/10.3390/en16176178