Optimal Sizing of a Photovoltaic/Battery Energy Storage System to Supply Electric Substation Auxiliary Systems under Contingency
Abstract
:1. Introduction
2. Materials and Methods
2.1. Case Study
2.2. Hybrid PV/BESS System
2.3. Problem Statement
2.4. Economic Modelling
2.5. Technical Modelling
2.6. Optimization Process
3. Results
3.1. Scenario 1: Only BESS
3.2. Scenario 2: PV/BESS System
3.3. Scenario 3: Optimized PV/BESS System
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- ONS—Operador Nacional do Sistema Elétrico. Requisitos Mínimos Para Subestações e Seus Equipamentos. Submódulo 2.6. 2022. Available online: https://apps08.ons.org.br/ONS.Sintegre.Proxy/ecmprsite/ecmfragmentsdocuments/Subm%C3%B3dulo%202.6-RQ_2021.08.docx_261430f7-8a33-4963-a75b-26578bef0c0f.pdf (accessed on 6 June 2023).
- Empresa de Pesquisa Energética. Instruções Para Solicitação de Cadastramento e Habilitação Técnica com Vistas à Participação nos Leilões de Energia Elétrica [Internet]. Instruções Para Solicitação de Cadastramento e Habilitação Técnica com vistas à Participação nos Leilões de Energia Elétrica. N. EPE-DEE-RE-065/2013-R8. 2021. Available online: https://www.epe.gov.br/sites-pt/leiloes-de-energia/Documents/EPE-DEE-RE-065_2013_R8_UFV.pdf (accessed on 6 June 2023).
- Beckman, W.A.; Blair, N.; Duffie, J.A. Solar Engineering of Thermal Processes, Photovoltaics and Wind, 5th ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2020. [Google Scholar] [CrossRef]
- Kalogirou, S.A. Solar Energy Engineering: Processes and Systems, 2nd ed.; Academic Press: San Diego, CA, USA, 2009. [Google Scholar] [CrossRef]
- Santos, D.S.d.O.; de Mattos Neto, P.S.G.; de Oliveira, J.F.L.; Siqueira, H.V.; Barchi, T.M.; Lima, A.R.; Madeiro, F.; Dantas, D.A.P.; Converti, A.; Pereira, A.C.; et al. Solar irradiance forecasting using dynamic ensemble selection. Appl. Sci. 2022, 12, 3510. [Google Scholar] [CrossRef]
- Rajagukguk, R.A.; Ramadhan, R.A.A.; Lee, H.J. A Review on deep learning models for forecasting time series data of solar irradiance and photovoltaic power. Energies 2020, 13, 6623. [Google Scholar] [CrossRef]
- Evans, A.; Strezov, V.; Evans, T.J. Assessment of utility energy storage options for increased renewable energy penetration. Renew. Sustain. Energy Rev. 2012, 16, 4141–4147. [Google Scholar] [CrossRef]
- Wang, Z.; Tuo, X.; Zhou, J.; Xiao, G. Performance study of large capacity industrial lead-carbon battery for energy storage. J. Energy Storage 2022, 55, 105398. [Google Scholar] [CrossRef]
- Bandini, G.; Caposciutti, G.; Marracci, M.; Buffi, A.; Tellini, B. Characterization of lithium-batteries for high power applications. J. Energy Storage 2022, 50, 104607. [Google Scholar] [CrossRef]
- Yanamandra, K.; Pinisetty, D.; Gupta, N. Impact of carbon additives on lead-acid battery electrodes: A review. Renew. Sustain. Energy Rev. 2023, 173, 113078. [Google Scholar] [CrossRef]
- Costa, T.; Vasconcelos, A.; Arcanjo, A.; Silva Junior, W.; Pereira, A.; Jatobá, E.; Filho, J.B.M.; Barreto, E.; Villalba, M.; Marinho, M. PV/BESS microgrid sizing for substation support of the electric power transmission. In XV SEPOPE—Volume I: Simpósio de Especialistas em Planejamento da Operação e Expansão de Sistemas de Energia Elétrica (Anais de Eventos do CIGRE-Brasil); Patriota de Siqueira, I., Ed.; Comitê Nacional Brasileiro de Produção e Transmissão de Energia Elétrica CIGRE-Brasil: Foz do Iguaçu, Brazil, 2022. [Google Scholar]
- Yin, J.; Lin, H.; Shi, J.; Lin, Z.; Bao, J.; Wang, Y.; Lin, X.; Qin, Y.; Zhang, W. Lead-carbon batteries toward future energy storage: From mechanism and materials to applications. Electrochem. Energy Rev. 2022, 5, 3. [Google Scholar] [CrossRef]
- Lan, H.; Wen, S.; Hong, Y.Y.; Yu, D.C.; Zhang, L. Optimal sizing of hybrid PV/diesel/battery in ship power system. Appl. Energy 2015, 158, 26–34. [Google Scholar] [CrossRef] [Green Version]
- Yahiaoui, A.; Benmansour, K.; Tadjine, M. Control, analysis and optimization of hybrid PV-Diesel-Battery systems for isolated rural city in Algeria. Sol. Energy 2016, 137, 1–10. [Google Scholar] [CrossRef]
- Liu, C.; Wang, X.; Wu, X.; Guo, J. Economic scheduling model of microgrid considering the lifetime of batteries. IET Gener. Transm. Distrib. 2017, 11, 759–767. [Google Scholar] [CrossRef]
- Sufyan, M.; Abd Rahim, N.; Tan, C.; Muhammad, M.A.; Sheikh Raihan, S.R. Optimal sizing and energy scheduling of isolated microgrid considering the battery lifetime degradation. PLoS ONE 2019, 14, e0211642. [Google Scholar] [CrossRef]
- Chedid, R.; Sawwas, A.; Fares, D. Optimal design of a university campus micro-grid operating under unreliable grid considering PV and battery storage. Energy 2020, 200, 117510. [Google Scholar] [CrossRef]
- Bandyopadhyay, S.; Mouli, G.R.C.; Qin, Z.; Elizondo, L.R.; Bauer, P. Techno-economical model based optimal sizing of PV-battery systems for microgrids. IEEE Trans. Sustain. Energy 2020, 11, 1657–1668. [Google Scholar] [CrossRef]
- Alramlawi, M.; Li, P. Design Optimization of a Residential PV-Battery Microgrid with a Detailed Battery Lifetime Estimation Model. IEEE Trans. Ind. Appl. 2020, 56, 2020–2030. [Google Scholar] [CrossRef]
- Alramlawi, M.; Gabash, A.; Mohagheghi, E.; Li, P. Optimal operation of hybrid PV-battery system considering grid scheduled blackouts and battery lifetime. Sol. Energy 2018, 161, 125–137. [Google Scholar] [CrossRef]
- Zheng, Z.; Li, X.; Pan, J.; Luo, X. A multi-year two-stage stochastic programming model for optimal design and operation of residential photovoltaic-battery systems. Energy Build. 2021, 239, 110835. [Google Scholar] [CrossRef]
- Wu, Y.; Liu, Z.; Liu, J.; Xiao, H.; Liu, R.; Zhang, L. Optimal battery capacity of grid-connected PV-battery systems considering battery degradation. Renew. Energy 2022, 181, 10–23. [Google Scholar] [CrossRef]
- Najafi Ashtiani, M.; Toopshekan, A.; Razi Astaraei, F.; Yousefi, H.; Maleki, A. Techno-economic analysis of a grid-connected PV/battery system using the teaching-learning-based optimization algorithm. Sol. Energy 2020, 203, 69–82. [Google Scholar] [CrossRef]
- Shivam, K.; Tzou, J.C.; Wu, S.C. A multi-objective predictive energy management strategy for residential grid-connected PV-battery hybrid systems based on machine learning technique. Energy Convers. Manag. 2021, 237, 114103. [Google Scholar] [CrossRef]
- Chakir, A.; Tabaa, M.; Moutaouakkil, F.; Medromi, H.; Julien-Salame, M.; Dandache, A.; Alami, K. Optimal energy management for a grid connected PV-battery system. Energy Rep. 2020, 6, 218–231. [Google Scholar] [CrossRef]
- Abushnaf, J.; Rassau, A. Impact of energy management system on the sizing of a grid-connected PV/battery system. Electr. J. 2018, 31, 58–66. [Google Scholar] [CrossRef]
- Mulleriyawage, U.G.K.; Shen, W.X. Optimally sizing of battery energy storage capacity by operational optimization of residential PV-Battery systems: An Australian household case study. Renew. Energy 2020, 160, 852–864. [Google Scholar] [CrossRef]
- Li, J. Optimal sizing of grid-connected photovoltaic battery systems for residential houses in Australia. Renew. Energy 2019, 136, 1245–1254. [Google Scholar] [CrossRef]
- Aziz, A.; Tajuddin, M.; Adzman, M.; Ramli, M.; Mekhilef, S. Energy management and optimization of a PV/diesel/battery hybrid energy system using a combined dispatch strategy. Sustainability 2019, 11, 683. [Google Scholar] [CrossRef] [Green Version]
- Falama, R.Z.; Kaoutoing, M.D.; Mbakop, F.K.; Dumbrava, V.; Makloufi, S.; Djongyang, N.; Salah, C.B.; Doka, S.Y. A comparative study based on a techno-environmental-economic analysis of some hybrid grid-connected systems operating under electricity blackouts: A case study in Cameroon. Energy Convers. Manag. 2022, 251, 114935. [Google Scholar] [CrossRef]
- Alramlawi, M.; Gabash, A.; Mohagheghi, E.; Li, P. Optimal operation of PV-battery-diesel microgrid for industrial loads under grid blackouts. In Proceedings of the 2018 IEEE International Conference on Environment and Electrical Engineering and 2018 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I & CPS Europe), Palermo, Italy, 12–15 June 2018; pp. 1–5. [Google Scholar] [CrossRef] [Green Version]
- Hamidieh, M.; Ghassemi, M. Microgrids and resilience: A review. IEEE Access 2022, 10, 106059–106080. [Google Scholar] [CrossRef]
- Liu, Y.; Lei, S.; Hou, Y. Restoration of power distribution systems with multiple data centers as critical loads. IEEE Trans. Smart Grid 2019, 10, 5294–5307. [Google Scholar] [CrossRef]
- Babaei, S.; Jiang, R.; Zhao, C. Distributionally robust distribution network configuration under random contingency. IEEE Trans. Power Syst. 2020, 35, 3332–3341. [Google Scholar] [CrossRef] [Green Version]
- Tabares, A.; Martinez, N.; Ginez, L.; Resende, J.F.; Brito, N.; Franco, J.F. Optimal capacity sizing for the integration of a battery and photovoltaic microgrid to supply auxiliary services in substations under a contingency. Energies 2020, 13, 6037. [Google Scholar] [CrossRef]
- Costa, T.; Arcanjo, A.; Vasconcelos, A.; Silva, W.; Azevedo, C.; Pereira, A.; Jatobá, E.; Filho, J.B.; Barreto, E.; Villalva, M.G.; et al. Development of a method for sizing a hybrid battery energy storage system for application in AC microgrid. Energies 2023, 16, 1175. [Google Scholar] [CrossRef]
- de Araujo Silva Júnior, W.; Vasconcelos, A.; Arcanjo, A.C.; Costa, T.; Nascimento, R.; Pereira, A.; Jatobá, E.; Bione Filho, J.; Barreto, E.; Villalva, M.G.; et al. Characterization of the operation of a BESS with a photovoltaic system as a regular source for the auxiliary systems of a high-voltage substation in Brazil. Energies 2023, 16, 1012. [Google Scholar] [CrossRef]
- Ramos, F.; Pinheiro, A.; Nascimento, R.; Silva Junior, W.D.A.; Mohamed, M.A.; Annuk, A.; Marinho, M.H.N. Development of operation strategy for battery energy storage system into hybrid AC microgrids. Sustainability 2022, 14, 13765. [Google Scholar] [CrossRef]
- ANNEL—Agência Nacional de Energia Elétrica. NOTA TÉCNICA Nº 90/2019–SRT-SCT-SFE/ANEEL. Available online: https://antigo.aneel.gov.br/web/guest/consultas-publicas?p_p_id=participacaopublica_WAR_participacaopublicaportlet&p_p_lifecycle=2&p_p_state=normal&p_p_mode=view&p_p_cacheability=cacheLevelPage&p_p_col_id=column-2&p_p_col_pos=1&p_p_col_count=2&_participacaopublica_WAR_participacaopublicaportlet_ideDocumento=38906&_participacaopublica_WAR_participacaopublicaportlet_tipoFaseReuniao=fase&_participacaopublica_WAR_participacaopublicaportlet_jspPage=%2Fhtml%2Fpp%2Fvisualizar.jsp (accessed on 19 June 2023).
- ANEEL. Procedimentos de Distribuição de Energia Elétrica no Sistema Elétrico Nacional—PRODIST Modulo 8. 2022. Available online: https://www2.aneel.gov.br/cedoc/aren2021956_2_7.pdf (accessed on 6 June 2023).
- Silva, T.C.; Pinto, G.M.; de Souza, T.A.Z.; Valerio, V.; Silvério, N.M.; Coronado, C.J.R.; Guardia, E.C. Technical and economical evaluation of the photovoltaic system in Brazilian public buildings: A case study for peak and off-peak hours. Energy 2020, 190, 116282. [Google Scholar] [CrossRef]
- Klein, S.A.; Beckman, W.A.; Mitchell, J.W.; Duffie, J.A.; Duffie, N.A.; Freeman, T.L.; Mitchell, J.C. TRNSYS 18: A Transient System Simulation Program; Solar Energy Laboratory, University of Wisconsin: Madison, WI, USA, 2017; Available online: http://sel.me.wisc.edu/trnsys (accessed on 6 June 2023).
- Mondol, J.D.; Yohanis, Y.G.; Norton, B. Optimising the economic viability of grid-connected photovoltaic systems. Appl. Energy 2009, 86, 985–999. [Google Scholar] [CrossRef]
- Mazzeo, D.; Oliveti, G.; Baglivo, C.; Congedo, P.M. Energy reliability-constrained method for the multi-objective optimization of a photovoltaic-wind hybrid system with battery storage. Energy 2018, 156, 688–708. [Google Scholar] [CrossRef]
- Jiménez-Fernández, S.; Salcedo-Sanz, S.; Gallo-Marazuela, D.; Gómez-Prada, G.; Maellas, J.; Portilla-Figueras, A. Sizing and maintenance visits optimization of a hybrid photovoltaic-hydrogen stand-alone facility using evolutionary algorithms. Renew. Energy 2014, 66, 402–413. [Google Scholar] [CrossRef]
- Blank, J.; Deb, K. Pymoo: Multi-objective optimization in Python. IEEE Access 2020, 8, 89497–89509. [Google Scholar] [CrossRef]
- Regnier, J.; Sareni, B.; Roboam, X. System optimization by multiobjective genetic algorithms and analysis of the coupling between variables, constraints and objectives. COMPEL—Int. J. Comput. Math. 2005, 24, 805–820. [Google Scholar] [CrossRef] [Green Version]
- Petchrompo, S.; Coit, D.W.; Brintrup, A.; Wannakrairot, A.; Parlikad, A.K. A review of Pareto pruning methods for multi-objective optimization. Comput. Ind. Eng. 2022, 167, 108022. [Google Scholar] [CrossRef]
- Ojstersek, R.; Brezocnik, M.; Buchmeister, B. Multi-objective optimization of production scheduling with evolutionary computation: A review. Int. J. Ind. Eng. Comput. 2020, 11, 359–376. [Google Scholar] [CrossRef]
- Deb, K.; Agrawal, S.; Pratap, A.; Meyarivan, T. A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II. In International Conference on Parallel Problem Solving from Nature PPSNVI, PPSN: Parallel Problem Solving from Nature; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2000; Volume 1917, pp. 849–858. [Google Scholar] [CrossRef]
- Shadmand, M.B.; Balog, R.S. Multi-objective optimization and design of photovoltaic-wind hybrid system for community smart DC microgrid. IEEE Trans. Smart Grid 2014, 5, 2635–2643. [Google Scholar] [CrossRef]
- Ghiasi, M. Detailed study, multi-objective optimization, and design of an AC-DC smart microgrid with hybrid renewable energy resources. Energy 2019, 169, 496–507. [Google Scholar] [CrossRef]
- Riou, M.; Dupriez-Robin, F.; Grondin, D.; Le Loup, C.; Benne, M.; Tran, Q.T. Multi-objective optimization of autonomous microgrids with reliability consideration. Energies 2021, 14, 4466. [Google Scholar] [CrossRef]
- Aghajani, G.; Ghadimi, N. Multi-objective energy management in a micro-grid. Energy Rep. 2018, 4, 218–225. [Google Scholar] [CrossRef]
- Zhou, N.; Liu, N.; Zhang, J.; Lei, J. Multi-objective optimal sizing for battery storage of PV-based microgrid with demand response. Energies 2016, 9, 591. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, W.; Li, J.; Zhang, W.; Liu, Y.; Zhao, B.; Zhang, Y. Optimal sizing for grid-tied microgrids with consideration of joint optimization of planning and operation. IEEE Trans. Sustain. Energy 2018, 9, 237–248. [Google Scholar] [CrossRef]
- Huang, Y.; Masrur, H.; Shigenobu, R.; Hemeida, A.M.; Mikhaylov, A.; Senjyu, T. A comparative design of a campus microgrid considering a multi-scenario and multi-objective approach. Energies 2021, 14, 2853. [Google Scholar] [CrossRef]
- MIT. The Future of Energy Storage—An Interdisciplinary MIT Study. 2022. Available online: https://energy.mit.edu/wp-content/uploads/2022/05/The-Future-of-Energy-Storage.pdf (accessed on 6 June 2023).
- Equatorial Energia Alagoas. Valor de Tarifas e Serviços. Available online: https://al.equatorialenergia.com.br/informacoes-gerais/valor-de-tarifas-e-servicos/#tarifas-grupo-a (accessed on 6 June 2023).
Variable | Value | Reference |
---|---|---|
n | 20 years | [35] |
i | 6% | [35] |
cPV | 4302.94 BRL/kWp | [11] |
cBESS | 5945.10 BRL/kWh | [11] |
cO&M, PV | 1.0% | [35] |
cO&M, BESS | 2.5% | [58] |
T1 * | 0.347 BRL/kWh | [59] |
T2 ** | 1.44 | [59] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gonçalves, A.; Cavalcanti, G.O.; Feitosa, M.A.F.; Dias Filho, R.F.; Pereira, A.C.; Jatobá, E.B.; de Melo Filho, J.B.; Marinho, M.H.N.; Converti, A.; Gómez-Malagón, L.A. Optimal Sizing of a Photovoltaic/Battery Energy Storage System to Supply Electric Substation Auxiliary Systems under Contingency. Energies 2023, 16, 5165. https://doi.org/10.3390/en16135165
Gonçalves A, Cavalcanti GO, Feitosa MAF, Dias Filho RF, Pereira AC, Jatobá EB, de Melo Filho JB, Marinho MHN, Converti A, Gómez-Malagón LA. Optimal Sizing of a Photovoltaic/Battery Energy Storage System to Supply Electric Substation Auxiliary Systems under Contingency. Energies. 2023; 16(13):5165. https://doi.org/10.3390/en16135165
Chicago/Turabian StyleGonçalves, Ailton, Gustavo O. Cavalcanti, Marcílio A. F. Feitosa, Roberto F. Dias Filho, Alex C. Pereira, Eduardo B. Jatobá, José Bione de Melo Filho, Manoel H. N. Marinho, Attilio Converti, and Luis A. Gómez-Malagón. 2023. "Optimal Sizing of a Photovoltaic/Battery Energy Storage System to Supply Electric Substation Auxiliary Systems under Contingency" Energies 16, no. 13: 5165. https://doi.org/10.3390/en16135165
APA StyleGonçalves, A., Cavalcanti, G. O., Feitosa, M. A. F., Dias Filho, R. F., Pereira, A. C., Jatobá, E. B., de Melo Filho, J. B., Marinho, M. H. N., Converti, A., & Gómez-Malagón, L. A. (2023). Optimal Sizing of a Photovoltaic/Battery Energy Storage System to Supply Electric Substation Auxiliary Systems under Contingency. Energies, 16(13), 5165. https://doi.org/10.3390/en16135165