Electricity Blackout and Its Ripple Effects: Examining Liquidity and Information Asymmetry in U.S. Financial Markets
Abstract
:1. Introduction
2. Measures of Liquidity and Information Asymmetry
3. Data and Empirical Results
3.1. Data
3.2. Empirical Results
3.2.1. Change in Liquidity Surrounding the Blackout
3.2.2. Regression Results for Firms Listed on Major Financial Markets
3.2.3. Regression Results for the Utility and Electrical Manufacturing Firms
3.2.4. Regression Results for Non-U.S. Firms
3.2.5. Regression Results for Liquidity Recovery
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aldhous, P.; Lee, S.M.; Hirji, Z. The Texas Winter Storm and Power Outages Killed Hundreds More People Than the State Says. BuzzFeed News. Available online: https://www.buzzfeednews.com/article/peteraldhous/texas-winter-storm-power-outage-death-toll (accessed on 26 May 2021).
- Mogul, S.; Saifi, A.; Syed, R. Nearly 220 Million People in Pakistan without Power after a Countrywide Outage. CNN Business. Available online: https://www.cnn.com/2023/01/22/asia/pakistan-power-outage-intl-hnk/index.html (accessed on 23 January 2023).
- Muir, A.; Lopatto, J. Final Report on the 14 August 2003 Blackout in the United States and Canada: Causes and Recommendations. Available online: https://www.osti.gov/etdeweb/biblio/20461178 (accessed on 1 April 2004).
- Joo, S.K.; Kim, J.C.; Liu, C.C. Empirical Analysis of the Impact of 2003 Blackout on Security Values of U.S. Utilities and Electrical Equipment Manufacturing Firms. IEEE Trans. Power Syst. 2007, 22, 1012–1018. [Google Scholar] [CrossRef]
- Electricity Consumers Resource Council. The Economic Impacts of the August 2003 Blackout. Available online: http://www.elcon.org/Documents/EconomicImpactsOfAugust2003Blackout.pdf (accessed on 9 February 2004).
- Yamashita, K.; Joo, S.K.; Li, J.; Zhang, P.; Liu, C.C. Analysis, control, and economic impact assessment of major blackout events. Eur. Trans. Electr. Power 2008, 18, 854–871. [Google Scholar] [CrossRef]
- Foerster, S.R.; Karolyi, G.A. Multimarket trading and liquidity: A transaction data analysis of Canada–US interlistings. J. Int. Financ. Mark. Inst. Money 1998, 8, 393–412. [Google Scholar] [CrossRef]
- Chebbi, K.; Ammer, M.A.; Hameed, A. The COVID-19 pandemic and stock liquidity: Evidence from S&P 500. Q. Rev. Econ. Financ. 2021, 81, 134–142. [Google Scholar]
- Foley, S.; Kwan, A.; Philip, R.; Ødegaard, B.A. Contagious margin calls: How COVID-19 threatened global stock market liquidity. J. Financ. Mark. 2021, 59, 134–142. [Google Scholar]
- Tissaoui, K.; Hkiri, B.; Talbi, M.; Alghassab, W.; Alfreahat, K.I. Market volatility and illiquidity during the COVID-19 outbreak: Evidence from the Saudi stock exchange through the wavelet coherence approaches. N. Am. J. Econ. Financ. 2021, 58, 101521. [Google Scholar] [CrossRef]
- Nguyen, C.T.; Hai, P.T.; Nguyen, H.K. Stock market returns and liquidity during the COVID-19 outbreak: Evidence from the financial services sector in Vietnam. Asian J. Econ. Bank. 2021, 5, 324–342. [Google Scholar] [CrossRef]
- Zhang, X.; Fu, Q.; Lu, L.; Wang, Q.; Zhang, S. The economic policy uncertainty and stock market liquidity: Evidence from China. N. Am. J. Econ. Financ. 2019, 49, 362–378. [Google Scholar]
- Smimou, K.; Khallouli, W. Does the Euro affect the dynamic relation between stock market liquidity and the business cycle? Emerg. Mark. Rev. 2015, 25, 125–153. [Google Scholar] [CrossRef]
- Epstein, L.G.; Schneider, M. Ambiguity, information quality, and asset pricing. J. Financ. 2008, 63, 197–228. [Google Scholar] [CrossRef] [Green Version]
- Odders-White, E.R.; Ready, M.J. Credit ratings and stock liquidity. Rev. Financ. Stud. 2006, 19, 119–157. [Google Scholar] [CrossRef]
- Ding, R.; Hou, W. Retail investor attention and stock liquidity. J. Int. Financ. Mark. Inst. Money 2015, 37, 12–26. [Google Scholar] [CrossRef]
- Hameed, A.; Kang, W.; Viswanathan, S. Stock market declines and liquidity. J. Financ. 2010, 65, 257–293. [Google Scholar] [CrossRef]
- Chung, K.H.; Elder, J.; Kim, J.-C. Corporate Governance and Liquidity. J. Financ. Quant. Anal. 2010, 45, 265–291. [Google Scholar] [CrossRef]
- Choi, J.H.; Munro, D. Market liquidity and excess volatility: Theory and experiment. J. Econ. Dyn. Control. 2022, 139, 104442. [Google Scholar] [CrossRef]
- Ellis, K.; Michaely, R.; O’Hara, M. The Accuracy of Trade Classification Rules: Evidence from Nasdaq. J. Financ. Quant. Anal. 2000, 35, 529–551. [Google Scholar] [CrossRef] [Green Version]
- Bollen, N.P.; Whaley, R.E. Does Net Buying Pressure Affect the Shape of Implied Volatility Functions? J. Financ. 2004, 59, 711–753. [Google Scholar] [CrossRef]
- Easley, D.; Kiefer, N.M.; O’Hara, M.; Paperman, J.B. Liquidity, Information, and Infrequently Traded Stocks. J. Financ. 1996, 51, 1405–1436. [Google Scholar] [CrossRef]
- Glosten, L.R.; Milgrom, P.R. Bid, ask and transaction prices in a specialist market with heterogeneously informed traders. J. Financ. Econ. 1985, 14, 71–100. [Google Scholar] [CrossRef] [Green Version]
- Silva, F.B.G.; Volkova, E. Can VPIN forecast geopolitical events? Evidence from the 2014 Crimean Crisis. Ann. Financ. 2018, 14, 125–141. [Google Scholar] [CrossRef]
- Huang, R.D.; Hans, R. Stoll. The Components of the Bid-Ask Spread: A General Approach. Rev. Financ. Stud. 1997, 10, 995–1034. [Google Scholar] [CrossRef]
Percentile | |||||||
---|---|---|---|---|---|---|---|
Variable | Mean | Standard Deviation | Min | 25 | 50 | 75 | Max |
Price (USD) | 19.84 | 38.19 | 0.07 | 6.93 | 15.55 | 26.03 | 2502.37 |
Return volatility | 0.0025 | 0.0047 | 0.0000 | 0.0005 | 0.0011 | 0.0027 | 0.1446 |
Dollar trading volume (in thousands) | 12,895 | 81,021 | 24 | 2954 | 6193 | 11,915 | 5,436,000 |
Market value of equity (in millions) | 2020 | 11,018 | 0 | 60 | 213 | 800,468 | 287,637,745 |
Quoted spread | 0.1989 | 0.3608 | 0.0100 | 0.0476 | 0.0934 | 0.1975 | 4.0000 |
Effective spread | 0.0989 | 0.1673 | 0.0000 | 0.0282 | 0.0506 | 0.1013 | 3.3400 |
Realized spread | 0.0757 | 0.1530 | −0.9101 | 0.0161 | 0.0339 | 0.0750 | 3.3000 |
Market quality index | 1307.08 | 13,192.61 | 0.33 | 55.75 | 185.51 | 530.46 | 568,775.61 |
Pre-Event | Event (Blackout) | Difference | |
---|---|---|---|
Quoted Spread | 0.1696 | 0.2107 | 0.0411 (7.41 ***) |
Effective Spread | 0.0890 | 0.1070 | 0.0180 (6.06 ***) |
Realized Spread | 0.0646 | 0.0852 | 0.0206 (7.63 ***) |
Market Quality Index | 1747.7 | 854.4 | −893.3 (−2.77 ***) |
Return Volatility | 0.0021 | 0.0028 | 0.0007 (9.49 ***) |
Dependent Variables | (1) | (2) | (3) | (4) |
---|---|---|---|---|
(Quoted Spread) | (Effective Spread) | (Realized Spread) | (MQI) | |
Blackout dummy | 0.0147 *** | 0.0197 *** | 0.0224 *** | −0.3220 *** |
(4.85) | (7.89) | (9.63) | (−10.06) | |
Price | 0.0043 *** | 0.0030 *** | 0.0019 *** | −0.0248 *** |
(9.42) | (11.39) | (6.42) | (−5.54) | |
Volatility | 9.5528 *** | 7.1466 *** | 5.3614 *** | 41.4198 ** |
(7.08) | (6.27) | (4.86) | (2.33) | |
Log(Volume) | 0.0092 *** | 0.0052 ** | 0.0053 ** | 0.4373 *** |
(2.59) | (2.05) | (2.09) | (9.76) | |
Log(Mcap) | −0.0406 *** | −0.0291 *** | −0.0224 *** | 0.3284 *** |
(−22.05) | (−21.98) | (−16.95) | (18.42) | |
Constant | 0.4465 *** | 0.3297 *** | 0.2446 *** | −2.0202 *** |
(11.79) | (12.94) | (9.06) | (−4.87) | |
Observations | 10,994 | 10,897 | 10,868 | 5006 |
Adjusted R2 | 0.2460 | 0.1937 | 0.1259 | 0.3355 |
Dependent Variables | Electric Utility Firms | Manufacturing Firms | ||||||
---|---|---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | |
(Quoted Spread) | (Effective Spread) | (Realized Spread) | (MQI) | (Quoted Spread) | (Effective Spread) | (Realized Spread) | (MQI) | |
Blackout dummy | 0.0142 * | 0.0155 * | 0.0163 ** | −0.3630 * | 0.0053 | 0.0065 | 0.0010 | 0.1092 |
(1.87) | (1.85) | (2.11) | (−1.86) | (0.18) | (0.30) | (0.05) | (0.36) | |
Price | 0.0015 *** | 0.0012 ** | 0.0009 * | −0.0616 *** | 0.0035 ** | 0.0027 | 0.0023 | −0.0380 *** |
(3.41) | (2.19) | (1.90) | (−5.71) | (2.21) | (1.67) | (1.57) | (−3.25) | |
Volatility | −7.6943 | −0.7971 | 0.7604 | 846.2004 *** | 6.7057 | 7.2378 | 3.8940 | −246.3738 |
(−1.12) | (−0.09) | (0.10) | (9.20) | (0.50) | (0.86) | (0.59) | (−0.60) | |
Log(Volume) | −0.0013 | −0.0033 | −0.0033 | 0.5959 ** | 0.0054 | 0.0053 | 0.0031 | 0.5603 |
(−0.12) | (−0.37) | (−0.40) | (2.17) | (0.18) | (0.25) | (0.16) | (0.86) | |
Log(Mcap) | −0.0155 *** | −0.0104 ** | −0.0073 * | 0.4275 *** | −0.0328 ** | −0.0260 | −0.0248 | 0.1212 |
(−2.69) | (−2.56) | (−1.96) | (5.31) | (−2.59) | (−1.58) | (−1.62) | (0.43) | |
Constant | 0.2435 *** | 0.1765 *** | 0.1285 ** | −4.1638 ** | 0.3594 | 0.2701 | 0.2768 | 0.1154 |
(3.68) | (2.88) | (2.27) | (−2.10) | (1.47) | (1.46) | (1.61) | (0.04) | |
Observations | 66 | 66 | 66 | 64 | 35 | 33 | 33 | 17 |
Adjusted R2 | 0.2800 | 0.1314 | 0.0998 | 0.5996 | 0.3709 | 0.2214 | 0.1834 | 0.6229 |
Dependent Variables | (1) | (2) | (3) | (4) |
---|---|---|---|---|
(Quoted Spread) | (Effective Spread) | (Realized Spread) | (MQI) | |
Blackout dummy | 0.0121 ** | 0.0124 *** | 0.0105 *** | −0.2495 *** |
(2.46) | (3.28) | (3.23) | (−3.23) | |
Price | 0.0031 *** | 0.0019 *** | 0.0010 *** | −0.0426 *** |
(9.05) | (7.07) | (4.28) | (−12.99) | |
Volatility | 5.4826 *** | 4.0680 ** | 0.5755 | −1.0805 |
(3.06) | (2.02) | (0.38) | (−0.03) | |
Log(Volume) | −0.0144 *** | −0.0053 * | −0.0064 ** | 0.5687 *** |
(−3.65) | (−1.76) | (−2.45) | (7.17) | |
Log(Mcap) | −0.0236 *** | −0.0171 *** | −0.0114 *** | 0.3319 *** |
(−13.13) | (−11.11) | (−8.84) | (13.55) | |
Constant | 0.4561 *** | 0.2823 *** | 0.2238 *** | −2.9530 *** |
(13.05) | (10.02) | (8.98) | (−4.56) | |
Observations | 760 | 749 | 746 | 760 |
Adjusted R2 | 0.4605 | 0.4095 | 0.2572 | 0.4725 |
Dependent Variables | (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) |
---|---|---|---|---|---|---|---|---|
(Quoted Spread) | (Quoted Spread) | (Effective Spread) | (Effective Spread) | (Realized Spread) | (Realized Spread) | (MQI) | (MQI) | |
One week after the blackout | 0.0184 *** | 0.0213 *** | 0.0216 *** | −0.2668 *** | ||||
(6.16) | (8.64) | (9.22) | (−8.48) | |||||
Two weeks after the blackout | 0.0187 *** | 0.0222 *** | 0.0230 *** | −0.2150 *** | ||||
(6.28) | (8.93) | (10.17) | (−6.74) | |||||
Price | 0.0044 *** | 0.0040 *** | 0.0035 *** | 0.0030 *** | 0.0022 *** | 0.0020 *** | −0.0261 *** | −0.0262 *** |
(10.39) | (9.46) | (7.86) | (10.89) | (5.31) | (7.83) | (−5.70) | (−5.41) | |
Volatility | 9.2703 *** | 9.3484 *** | 6.5050 *** | 6.7508 *** | 4.5572 *** | 4.5459 *** | 36.0142 ** | 33.5604 *** |
(6.88) | (6.38) | (5.81) | (5.71) | (4.09) | (4.10) | (2.33) | (2.66) | |
Log(Volume) | 0.0108 *** | 0.0109 *** | 0.0027 | 0.0024 | 0.0028 | 0.0022 | 0.4541 *** | 0.4922 *** |
(3.16) | (3.10) | (0.88) | (0.94) | (0.96) | (0.91) | (10.16) | (10.17) | |
Log(Mcap) | −0.0420 *** | −0.0394 *** | −0.0303 *** | −0.0274 *** | −0.0233 *** | −0.0215 *** | 0.3288 *** | 0.3209 *** |
(−20.78) | (−21.89) | (−16.90) | (−21.08) | (−14.24) | (−17.70) | (17.86) | (16.97) | |
Constant | 0.4455 *** | 0.4187 *** | 0.3576 *** | 0.3311 *** | 0.2751 *** | 0.2606 *** | −2.1966 *** | −2.4823 *** |
(12.31) | (11.01) | (10.19) | (12.44) | (8.21) | (10.41) | (−5.33) | (−5.54) | |
Observations | 11,030 | 11,000 | 10,939 | 10,907 | 10,908 | 10,880 | 5041 | 5049 |
Adjusted R2 | 0.2730 | 0.2388 | 0.2132 | 0.1901 | 0.1297 | 0.1253 | 0.3457 | 0.3364 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, D.; Kim, J.-C.; Su, Q.; Joo, S.-K. Electricity Blackout and Its Ripple Effects: Examining Liquidity and Information Asymmetry in U.S. Financial Markets. Energies 2023, 16, 4939. https://doi.org/10.3390/en16134939
Kim D, Kim J-C, Su Q, Joo S-K. Electricity Blackout and Its Ripple Effects: Examining Liquidity and Information Asymmetry in U.S. Financial Markets. Energies. 2023; 16(13):4939. https://doi.org/10.3390/en16134939
Chicago/Turabian StyleKim, Dosung, Jang-Chul Kim, Qing Su, and Sung-Kwan Joo. 2023. "Electricity Blackout and Its Ripple Effects: Examining Liquidity and Information Asymmetry in U.S. Financial Markets" Energies 16, no. 13: 4939. https://doi.org/10.3390/en16134939
APA StyleKim, D., Kim, J.-C., Su, Q., & Joo, S.-K. (2023). Electricity Blackout and Its Ripple Effects: Examining Liquidity and Information Asymmetry in U.S. Financial Markets. Energies, 16(13), 4939. https://doi.org/10.3390/en16134939