Carbon Inequality Embodied in Inter-Provincial Trade of China’s Yangtze River Economic Belt
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Methodology
2.2.1. YEB-MRIO Table Compilation
2.2.2. Embodied Carbon and Value Added Transfer Calculation
2.2.3. Carbon Gini Coefficient and Deviation Coefficient Calculation
2.3. Data Source
3. Results
3.1. Production-Based versus Consumption-Based Carbon Emissions and Value Added
3.2. Characteristics of Embodied Carbon Emission and Value Added Flow Relationship
3.3. Quantitative Analysis of Carbon Inequality from the Carbon Gini Coefficient and Deviation Coefficient
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Sector Code | Sector Name |
---|---|
S1 | Agriculture, Forestry, Animal Husbandry, and Fishery |
S2 | Mining and washing of coal |
S3 | Extraction of petroleum and natural gas |
S4 | Mining and processing of metal ores |
S5 | Mining and processing of nonmetals and other ores |
S6 | Food and tobacco processing |
S7 | Textile industry |
S8 | Manufacture of leather, fur, feather, and related products |
S9 | Processing of timber and furniture |
S10 | Manufacture of paper, printing, and articles for culture, education, and sport activity |
S11 | Processing of petroleum, coking, and processing of nuclear fuel |
S12 | Manufacture of chemical products |
S13 | Manufacture of non-metallic mineral products |
S14 | Smelting and processing of metals |
S15 | Manufacture of metal products |
S16 | Manufacture of general-purpose machinery |
S17 | Manufacture of special-purpose machinery |
S18 | Manufacture of transport equipment |
S19 | Manufacture of electrical machinery and equipment |
S20 | Manufacture of communication equipment, computers, and other electronic equipment |
S21 | Manufacture of measuring instruments |
S22 | Other manufacturing and waste resources |
S23 | Repair of metal products, machinery, and equipment |
S24 | Production and distribution of electric power and heat power |
S25 | Production and distribution of gas |
S26 | Production and distribution of tap water |
S27 | Construction |
S28 | Wholesale and retail trades |
S29 | Transport, storage, and postal services |
S30 | Accommodation and catering |
S31 | Information transfer, software, and information technology services |
S32 | Finance |
S33 | Real estate |
S34 | Leasing and commercial services |
S35 | Scientific research |
S36 | Polytechnic services |
S37 | Administration of water, environment, and public facilities |
S38 | Resident, repair, and other services |
S39 | Education |
S40 | Health care and social work |
S41 | Culture, sports, and entertainment |
S42 | Public administration, social insurance, and social organizations |
Appendix B
Sector | Shanghai | Jiangsu | Zhejiang | Anhui | Jiangxi | Hubei | Hunan | Chongqing | Sichuan | Guizhou | Yunnan |
---|---|---|---|---|---|---|---|---|---|---|---|
S1 | 1.00 | 7.75 | 7.32 | 3.69 | 2.11 | 8.43 | 9.13 | 1.71 | 5.58 | 3.02 | 4.95 |
S2 | 0.00 | 4.60 | 0.23 | 22.72 | 6.83 | 0.79 | 13.44 | 13.81 | 14.83 | 12.42 | 17.09 |
S3 | 0.00 | 0.16 | 0.00 | 0.00 | 0.00 | 0.36 | 0.09 | 0.22 | 8.20 | 0.00 | 0.00 |
S4 | 0.00 | 0.23 | 0.03 | 0.17 | 0.41 | 0.28 | 0.79 | 0.28 | 5.21 | 0.10 | 1.21 |
S5 | 0.00 | 0.35 | 0.24 | 0.26 | 0.74 | 1.14 | 0.82 | 0.35 | 1.20 | 0.02 | 0.35 |
S6 | 0.96 | 1.83 | 0.76 | 0.71 | 0.83 | 3.05 | 1.46 | 0.53 | 3.71 | 0.29 | 0.70 |
S7 | 0.74 | 2.54 | 3.73 | 0.07 | 0.07 | 0.40 | 0.02 | 0.05 | 1.18 | 0.00 | 0.04 |
S8 | 0.44 | 0.64 | 0.65 | 0.05 | 0.14 | 0.13 | 0.50 | 0.03 | 0.38 | 0.00 | 0.00 |
S9 | 0.20 | 0.48 | 0.25 | 0.04 | 0.11 | 0.09 | 1.88 | 0.02 | 0.41 | 0.01 | 0.02 |
S10 | 0.98 | 2.63 | 1.71 | 0.63 | 0.83 | 0.83 | 6.31 | 0.90 | 1.74 | 0.10 | 0.30 |
S11 | 6.91 | 4.97 | 5.70 | 1.45 | 5.63 | 3.01 | 4.60 | 5.40 | 18.61 | 3.22 | 5.22 |
S12 | 4.33 | 11.41 | 6.34 | 13.48 | 0.59 | 19.47 | 13.80 | 4.04 | 9.68 | 2.11 | 4.42 |
S13 | 3.12 | 62.65 | 40.52 | 48.29 | 41.85 | 41.16 | 68.73 | 30.77 | 61.44 | 30.91 | 34.55 |
S14 | 30.01 | 145.60 | 20.60 | 39.88 | 44.47 | 39.04 | 3.01 | 22.90 | 72.05 | 12.39 | 32.39 |
S15 | 0.77 | 1.17 | 0.87 | 0.17 | 0.08 | 0.43 | 0.31 | 0.32 | 0.81 | 0.49 | 0.03 |
S16 | 6.16 | 5.00 | 1.52 | 0.54 | 0.18 | 3.21 | 0.36 | 0.17 | 2.75 | 0.03 | 0.05 |
S17 | 0.27 | 0.75 | 0.34 | 0.13 | 0.13 | 1.64 | 0.17 | 0.03 | 1.34 | 0.01 | 0.03 |
S18 | 1.47 | 1.14 | 1.09 | 0.32 | 0.24 | 0.71 | 0.07 | 1.11 | 1.64 | 0.08 | 0.19 |
S19 | 0.38 | 0.87 | 0.73 | 0.26 | 0.18 | 0.14 | 0.19 | 0.10 | 0.78 | 0.00 | 0.02 |
S20 | 0.32 | 0.74 | 0.26 | 0.05 | 0.05 | 0.02 | 0.14 | 0.04 | 0.28 | 0.00 | 0.00 |
S21 | 0.02 | 0.13 | 0.11 | 0.00 | 0.01 | 0.03 | 0.08 | 0.09 | 0.04 | 0.00 | 0.00 |
S22 | 0.04 | 0.04 | 0.10 | 0.02 | 0.01 | 0.03 | 0.06 | 0.03 | 0.05 | 0.01 | 0.09 |
S23 | 0.03 | 0.05 | 0.09 | 0.21 | 0.08 | 0.03 | 0.07 | 0.01 | 0.03 | 0.00 | 0.11 |
S24 | 0.04 | 0.04 | 0.10 | 0.02 | 0.01 | 0.03 | 0.06 | 0.03 | 0.05 | 0.01 | 0.09 |
S25 | 56.70 | 386.94 | 220.03 | 176.06 | 79.26 | 112.41 | 83.38 | 44.48 | 50.63 | 100.93 | 35.49 |
S26 | 2.72 | 2.26 | 0.02 | 0.04 | 0.21 | 0.03 | 0.01 | 0.08 | 0.38 | 0.34 | 0.20 |
S27 | 0.01 | 0.01 | 0.01 | 0.00 | 0.04 | 0.01 | 0.03 | 0.00 | 0.06 | 0.00 | 0.00 |
S28 | 1.88 | 0.76 | 5.80 | 2.85 | 0.61 | 6.10 | 5.75 | 1.80 | 1.87 | 1.46 | 2.48 |
S29 | 2.71 | 0.55 | 2.83 | 1.12 | 0.90 | 4.82 | 4.24 | 1.17 | 4.31 | 9.13 | 2.00 |
S30 | 20.97 | 19.61 | 14.51 | 9.97 | 6.92 | 14.65 | 13.39 | 8.93 | 9.62 | 7.27 | 10.22 |
S31 | 2.71 | 0.55 | 2.83 | 1.12 | 0.90 | 4.82 | 4.24 | 1.17 | 4.31 | 9.13 | 2.00 |
S32 | 20.97 | 19.61 | 14.51 | 9.97 | 6.92 | 14.65 | 13.39 | 8.93 | 9.62 | 7.27 | 10.22 |
S33 | 0.93 | 0.12 | 0.37 | 0.32 | 0.17 | 0.69 | 1.04 | 0.11 | 0.71 | 2.01 | 0.23 |
S34 | 0.93 | 0.12 | 0.37 | 0.32 | 0.17 | 0.69 | 1.04 | 0.11 | 0.71 | 2.01 | 0.23 |
S35 | 0.93 | 0.12 | 0.37 | 0.32 | 0.17 | 0.69 | 1.04 | 0.11 | 0.71 | 2.01 | 0.23 |
S36 | 0.93 | 0.12 | 0.37 | 0.32 | 0.17 | 0.69 | 1.04 | 0.11 | 0.71 | 2.01 | 0.23 |
S37 | 0.93 | 0.12 | 0.37 | 0.32 | 0.17 | 0.69 | 1.04 | 0.11 | 0.71 | 2.01 | 0.23 |
S38 | 0.93 | 0.12 | 0.37 | 0.32 | 0.17 | 0.69 | 1.04 | 0.11 | 0.71 | 2.01 | 0.23 |
S39 | 0.93 | 0.12 | 0.37 | 0.32 | 0.17 | 0.69 | 1.04 | 0.11 | 0.71 | 2.01 | 0.23 |
S40 | 0.93 | 0.12 | 0.37 | 0.32 | 0.17 | 0.69 | 1.04 | 0.11 | 0.71 | 2.01 | 0.23 |
S41 | 0.93 | 0.12 | 0.37 | 0.32 | 0.17 | 0.69 | 1.04 | 0.11 | 0.71 | 2.01 | 0.23 |
S42 | 0.93 | 0.12 | 0.37 | 0.32 | 0.17 | 0.69 | 1.04 | 0.11 | 0.71 | 2.01 | 0.23 |
Sector | Shanghai | Jiangsu | Zhejiang | Anhui | Jiangxi | Hubei | Hunan | Chongqing | Sichuan | Guizhou | Yunnan |
---|---|---|---|---|---|---|---|---|---|---|---|
S1 | 115.91 | 4345.03 | 2137.78 | 2725.87 | 1911.91 | 3716.39 | 3187.66 | 1312.73 | 4395.97 | 2155.10 | 2405.44 |
S2 | 0.00 | 149.74 | 2.18 | 590.92 | 28.04 | 21.34 | 115.93 | 97.68 | 274.43 | 822.26 | 180.37 |
S3 | 2.84 | 65.12 | 0.00 | 0.00 | 0.00 | 24.38 | 0.00 | 114.41 | 486.41 | 0.00 | 0.00 |
S4 | 0.00 | 43.22 | 11.55 | 270.16 | 162.46 | 176.52 | 195.84 | 55.06 | 319.46 | 79.38 | 226.20 |
S5 | 0.00 | 47.78 | 125.89 | 126.72 | 121.48 | 408.02 | 206.50 | 77.80 | 233.24 | 356.84 | 48.12 |
S6 | 982.01 | 1800.70 | 962.36 | 1088.24 | 733.96 | 1905.81 | 1887.40 | 550.76 | 2000.19 | 1182.88 | 1422.32 |
S7 | 36.83 | 1159.04 | 1348.76 | 177.19 | 186.63 | 533.53 | 152.13 | 28.03 | 148.31 | 2.56 | 5.52 |
S8 | 62.50 | 959.70 | 963.72 | 259.22 | 382.15 | 210.69 | 210.08 | 66.51 | 82.30 | 18.16 | 5.58 |
S9 | 89.90 | 539.71 | 556.75 | 246.73 | 177.44 | 194.43 | 287.39 | 75.34 | 211.73 | 25.71 | 23.29 |
S10 | 160.60 | 963.43 | 1005.41 | 252.57 | 300.69 | 333.10 | 376.57 | 167.65 | 230.18 | 24.03 | 87.95 |
S11 | 303.81 | 521.21 | 489.47 | 162.01 | 127.54 | 281.89 | 175.15 | 17.95 | 221.32 | 20.40 | 61.12 |
S12 | 1298.36 | 4838.20 | 2712.93 | 1183.19 | 1128.00 | 1534.60 | 1200.39 | 616.96 | 1151.05 | 445.75 | 326.25 |
S13 | 134.82 | 1231.13 | 669.31 | 917.84 | 729.81 | 1273.41 | 1073.47 | 489.98 | 845.67 | 102.91 | 189.04 |
S14 | 242.05 | 2693.90 | 686.44 | 697.14 | 1073.75 | 611.90 | 1261.20 | 332.02 | 588.19 | 302.29 | 493.10 |
S15 | 229.70 | 1318.88 | 871.68 | 436.90 | 148.93 | 515.02 | 404.66 | 193.38 | 370.40 | 25.12 | 25.46 |
S16 | 491.86 | 1722.95 | 1387.96 | 447.81 | 141.81 | 333.62 | 365.98 | 225.80 | 387.75 | 32.10 | 15.42 |
S17 | 281.29 | 1378.77 | 658.68 | 341.03 | 131.09 | 307.47 | 679.65 | 103.90 | 306.22 | 15.14 | 14.36 |
S18 | 1377.02 | 2102.66 | 991.04 | 516.56 | 254.63 | 1388.32 | 712.51 | 1387.01 | 695.80 | 74.47 | 58.11 |
S19 | 346.75 | 2455.78 | 1165.26 | 779.92 | 430.24 | 360.22 | 290.80 | 175.25 | 250.23 | 32.50 | 18.33 |
S20 | 515.06 | 3130.99 | 560.67 | 487.51 | 265.55 | 232.39 | 431.86 | 522.18 | 736.63 | 37.98 | 27.46 |
S21 | 79.53 | 767.97 | 264.81 | 61.65 | 28.38 | 55.04 | 44.93 | 47.21 | 31.76 | 7.75 | 6.59 |
S22 | 59.60 | 146.75 | 1583.64 | 200.12 | 436.82 | 383.67 | 148.78 | 69.55 | 303.77 | 106.90 | 42.47 |
S23 | 39.58 | 2.75 | 16.31 | 8.52 | 0.27 | 12.68 | 16.94 | 2.52 | 2.67 | 0.95 | 4.19 |
S24 | 339.60 | 1433.78 | 1225.92 | 572.39 | 385.63 | 788.54 | 308.67 | 271.09 | 907.84 | 579.46 | 664.60 |
S25 | 40.86 | 126.30 | 51.83 | 38.41 | 29.93 | 49.93 | 28.61 | 59.97 | 96.71 | 12.39 | 44.80 |
S26 | 21.59 | 102.19 | 79.47 | 33.34 | 50.69 | 55.14 | 47.97 | 31.92 | 58.09 | 8.82 | 17.56 |
S27 | 974.08 | 4732.53 | 3226.35 | 1948.95 | 1842.46 | 2468.01 | 2286.37 | 2009.20 | 2847.96 | 1173.43 | 2130.87 |
S28 | 4246.53 | 7412.03 | 6466.23 | 4273.31 | 1363.11 | 2592.57 | 2577.58 | 1546.32 | 2487.74 | 785.58 | 1515.39 |
S29 | 1530.01 | 3524.97 | 3179.22 | 992.53 | 943.93 | 1615.89 | 1702.37 | 1071.67 | 1480.23 | 1217.85 | 417.16 |
S30 | 306.94 | 1047.25 | 1165.11 | 375.61 | 347.69 | 606.08 | 525.09 | 316.98 | 981.06 | 326.94 | 389.76 |
S31 | 2028.67 | 3140.08 | 1833.47 | 543.95 | 628.97 | 1411.61 | 985.60 | 666.57 | 1759.18 | 396.78 | 525.71 |
S32 | 4717.76 | 5971.00 | 2496.68 | 1430.87 | 970.32 | 2337.28 | 1425.20 | 1609.16 | 2809.33 | 697.31 | 1057.34 |
S33 | 2550.71 | 6831.50 | 1475.61 | 1892.73 | 1218.15 | 2237.40 | 1388.15 | 1430.99 | 2924.43 | 385.46 | 470.50 |
S34 | 1394.51 | 2982.97 | 2464.83 | 910.79 | 379.59 | 949.03 | 719.90 | 654.21 | 667.68 | 213.75 | 325.26 |
S35 | 311.30 | 415.24 | 148.79 | 37.88 | 58.06 | 105.89 | 424.96 | 21.99 | 176.01 | 10.56 | 47.35 |
S36 | 894.74 | 662.39 | 1327.50 | 267.05 | 226.22 | 362.63 | 391.96 | 254.62 | 383.87 | 90.28 | 264.50 |
S37 | 117.67 | 494.77 | 245.68 | 141.11 | 76.99 | 96.84 | 158.37 | 125.54 | 109.13 | 21.47 | 81.09 |
S38 | 280.98 | 1421.77 | 422.32 | 332.09 | 353.54 | 604.30 | 1500.85 | 361.42 | 764.70 | 266.76 | 162.87 |
S39 | 1010.32 | 2753.88 | 544.04 | 801.87 | 461.35 | 790.80 | 1253.40 | 484.99 | 1024.79 | 378.03 | 770.23 |
S40 | 694.28 | 1804.86 | 1197.16 | 479.79 | 247.15 | 439.96 | 739.81 | 365.52 | 705.05 | 151.04 | 474.26 |
S41 | 189.76 | 643.20 | 425.81 | 258.43 | 357.61 | 560.72 | 728.34 | 110.71 | 448.00 | 109.99 | 127.32 |
S42 | 674.39 | 2933.17 | 2120.93 | 842.31 | 816.88 | 1404.39 | 1971.19 | 451.44 | 1425.64 | 871.07 | 959.20 |
Appendix C
Province | Population |
---|---|
Shanghai | 2418 |
Jiangsu | 8029 |
Zhejiang | 5657 |
Anhui | 6255 |
Jiangxi | 4622 |
Hubei | 5902 |
Hunan | 6860 |
Chongqing | 3075. |
Sichuan | 8302 |
Guizhou | 3580 |
Yunnan | 4801 |
References
- Qian, Y.K.; Zheng, H.R.; Meng, H.R.; Meng, J.; Shan, Y.L.; Zhou, Y.; Guan, D.B. Large inter-city inequality in consumption-based CO2 emissions for China’s pearl river basin cities. Resour. Conserv. Recycl. 2022, 176, 105923. [Google Scholar] [CrossRef]
- Moser, S.C. Communicating climate change: History, challenges, process and future directions. WIREs Clim. Chang. 2010, 1, 31–53. [Google Scholar] [CrossRef]
- Patz, J.A.; Frumkin, H.; Holloway, T.; Vimont, D.J.; Haines, A. Climate change: Challenges and opportunities for global health. JAMA J. Am. Med. Assoc. 2014, 312, 1565–1580. [Google Scholar] [CrossRef]
- BP Statistical Review of World Energy. Available online: https://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy.html (accessed on 19 April 2023).
- Koopman, R.; Wang, Z.; Wei, S.J. Tracing value-added and double counting in gross exports. Am. Econ. Rev. 2014, 104, 459–494. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.B.; He, Y.P. Responsibility allocation of China’s provincial net carbon transfer from the perspective of value-added. China Popul. Resour. Environ. 2021, 31, 15–25. [Google Scholar]
- Shao, L.; Li, Y.; Feng, K.S.; Meng, J.; Shan, Y.L.; Guan, D.B. Carbon emission imbalances and the structural paths of Chinese regions. Appl. Energy 2018, 215, 396–404. [Google Scholar] [CrossRef] [Green Version]
- Andrew, R.M.; Peters, G.P. A multi-region input-output table based on the global trade analysis project database (GTAP-MRIO). Econ. Syst. Res. 2013, 25, 99–121. [Google Scholar] [CrossRef]
- Gavrilova, O.; Jonas, M.; Erb, K.; Haberl, H. International trade and Austria’s livestock system: Direct and hidden carbon emission flows associated with production and consumption of products. Ecol. Econ. 2010, 69, 920–929. [Google Scholar] [CrossRef]
- Kankesu, J.; Liu, Y. Bi-lateral CO2 emissions embodied in Australia-China trade. Energy Policy 2016, 92, 205–213. [Google Scholar] [CrossRef] [Green Version]
- Yu, Y.; Chen, F.F. Research on carbon emissions embodied in trade between China and South Korea. Atmos. Poll. Res. 2017, 8, 56–63. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, S.; Chen, B.; Yang, W. Analysis of CO2 emissions embodied in China’s bilateral trade: A non-competitive import input-output approach. J. Clean. Prod. 2017, 163, S410–S419. [Google Scholar] [CrossRef]
- Mi, Z.F.; Meng, J.; Green, F.; Coffman, D.M.; Guan, D.B. China’s “exported carbon” peak: Pattern, drivers, and implications. Geophys. Res. Lett. 2018, 45, 4309–4318. [Google Scholar] [CrossRef] [Green Version]
- Wu, S.M.; Wu, Y.R.; Lei, Y.L.; Li, S.T.; Li, L. Chinese provinces’CO2 emissions embodied in imports and exports. Earth’s Future 2018, 6, 867–888. [Google Scholar] [CrossRef]
- Wu, S.M.; Li, S.T.; Lei, Y.L.; Li, L. Temporal changes in China’s production and consumption-based CO2 emissions and the factors contributing to changes. Energy Econ. 2020, 89, 104770. [Google Scholar] [CrossRef]
- Liu, B.Q.; Sun, C.W. Evaluating carbon dioxide emissions in international trade of China. Energy Policy 2010, 38, 613–621. [Google Scholar] [CrossRef]
- Wu, R.; Geng, Y.; Dong, H.J.; Fujita, T.; Tian, X. Changes of CO2 emissions embodied in China-Japan trade: Drivers and implications. J. Clean. Prod. 2016, 112, 4151–4158. [Google Scholar] [CrossRef]
- Chen, G.Q.; Chen, B. Tracking inter-regional carbon flows: A hybrid network model. Environ. Sci. Technol. 2016, 50, 4731–4741. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.K.; Guo, J.E.; Hewing, G.J.D. The effects of direct trade within China on regional and national CO2 emissions. Energy Econ. 2014, 46, 161–175. [Google Scholar] [CrossRef]
- Ning, Y.; Miao, L.; Ding, T.; Zhang, B. Carbon emission spillover and feedback effects in China based on a multiregional input-output model. Resour. Conserv. Recycl. 2019, 141, 211–218. [Google Scholar] [CrossRef]
- Meng, L.; Guo, J.E.; Chai, J.E.; Zhang, Z.K. China’s regional CO2 emissions: Characteristics, inter-regional transfer and emission reduction policies. Energy Policy 2011, 39, 6136–6144. [Google Scholar] [CrossRef]
- Guo, J.E.; Zhang, Z.K.; Meng, L. China’s provincial CO2 emissions embodied in international and interprovincial trade. Energy Policy 2012, 42, 486–497. [Google Scholar] [CrossRef]
- Feng, K.S.; Steven, J.D.; Sun, L.X.; Li, X.; Guan, D.B.; Liu, W.D.; Liu, Z.; Hubacek, K. Outsourcing CO2 within China. Proc. Natl. Acad. Sci. USA 2013, 110, 11654–11659. [Google Scholar] [CrossRef] [Green Version]
- Sun, L.C.; Qin, L.; Taghizadeh-Hesary, F.; Zhang, J.J.; Mohsin, M.; Chaudhry, I.S. Analyzing carbon emission transfer network structure among provinces in China: New evidence from social network analysis. Environ. Sci. Poll. Res. 2020, 27, 23281–23300. [Google Scholar] [CrossRef]
- Guan, D.B.; Hubacek, K.; Weber, C.L.; Peters, G.P.; Reiner, D.M. The drivers of Chinese CO2 emissions from 1980 to 2030. Glob. Environ. Change 2008, 18, 626–634. [Google Scholar] [CrossRef] [Green Version]
- Lenzen, M.; Pade, L.L.; Munksgaard, J. CO2 multipliers in multi-region input-output models. Econ. Syst. Res. 2004, 16, 391–412. [Google Scholar] [CrossRef]
- Su, B.; Ang, B.W. Multi-region input-output analysis of CO2 emissions embodied in trade: The feedback effects. Ecol. Econ. 2011, 71, 42–53. [Google Scholar] [CrossRef]
- Wiebe, K.S.; Bruckner, M.; Giljum, S.; Lutz, C.; Polzin, C. Carbon and materials embodied in the international trade of emerging economies a multiregional input-output assessment of trends between 1995 and 2005. J. Indust. Ecolog. 2012, 16, 636–646. [Google Scholar] [CrossRef]
- Brizga, J.; Feng, K.S.; Hubacek, K. Household carbon footprints in the Baltic States: A global multi-regional input-output analysis from 1995 to 2011. Appl. Energy 2017, 189, 780–788. [Google Scholar] [CrossRef]
- Wang, Y.H.; Xiong, S.Q.; Ma, X.M. Carbon inequality in global trade: Evidence from the mismatch between embodied carbon emissions and value added. Ecol. Econ. 2022, 195, 107398. [Google Scholar] [CrossRef]
- Steinberger, J.K.; Roberts, J.T.; Peters, G.P.; Baiocchi, G. Pathways of human development and carbon emissions embodied in trade. Nat. Clim. Change 2012, 2, 81–85. [Google Scholar] [CrossRef]
- Hubacek, K.; Baiocchi, G.; Feng, K.; Castillo, R.M.; Sun, L.X.; Xue, J.J. Global carbon inequality. Energy Ecol. Environ. 2017, 2, 361–369. [Google Scholar] [CrossRef] [Green Version]
- Duan, Y.W.; Yan, B.Q. Economic gains and environmental losses from international trade: A decomposition of pollution intensity in China’s value-added trade. Energy Econ. 2019, 83, 540–554. [Google Scholar] [CrossRef]
- Lu, M.J.; Chen, H.M. Review of research on carbon emission inequality. Resour. Sci. 2013, 35, 1617–1624. [Google Scholar]
- Heil, M.T.; Wodon, Q.T. Inequality in CO2 emissions between poor and rich countries. J. Environ. Dev. 1997, 6, 426–452. [Google Scholar] [CrossRef]
- Groot, L. Carbon Lorenz curves. Resour. Energy Econ. 2010, 32, 45–64. [Google Scholar] [CrossRef]
- Pan, X.Z.; Teng, F.; Wang, G. A comparison of carbon allocation schemes: On the equity-efficiency tradeoff. Energy 2014, 74, 222–229. [Google Scholar] [CrossRef]
- Teng, F.; He, K.J.; Pan, X.Z.; Zhang, C. How to measure carbon equity: Carbon Gini index based on historical cumulative emission per capita. Clim. Change Res. 2010, 6, 449–455. [Google Scholar] [CrossRef] [Green Version]
- Yang, B.C.; Li, X.T.; Su, Y.P.; Liu, C.Z.; Xue, F.Z. Carbon quota allocation at the provincial level in China under principles of equity and efficiency. Carbon. Manag. 2020, 11, 11–23. [Google Scholar] [CrossRef]
- Hedenus, F.; Azar, C. Estimates of trends in global income and resource inequalities. Ecol. Econ. 2005, 55, 351–364. [Google Scholar] [CrossRef]
- Padilla, E.; Serrano, A. Inequality in CO2 emissions across countries and its relationship with income inequality: A distributive approach. Energy Policy 2006, 34, 1762–1772. [Google Scholar] [CrossRef] [Green Version]
- Clarke-Sather, A.; Qu, J.S.; Wang, Q.; Zeng, J.J.; Li, Y. Carbon inequality at the sub-national scale: A case study of provincial-level inequality in CO2 emissions in China 1997–2007. Energy Policy 2011, 39, 5420–5428. [Google Scholar] [CrossRef]
- Han, M.Y.; Lao, J.M.; Yao, Q.H.; Zhao, B.; Meng, J. Carbon inequality and economic development across the Belt and Road regions. J. Environ. Manag. 2020, 262, 110250. [Google Scholar] [CrossRef] [PubMed]
- Song, D.Y.; Liu, X.P. Study on spatial allocation of carbon emissions among provinces in China. China Popul. Resour. Environ. 2013, 23, 7–13. [Google Scholar] [CrossRef]
- Leontief, W. Environmental repercussions and the economic structure: An input-output approach. Rev. Econ. Stat. 1970, 52, 262–271. [Google Scholar] [CrossRef]
- Chen, H.; Wen, J.; Pang, J.; Chen, Z.; Wei, Y.S. Research on the carbon transfer and carbon equity at provincial level of China based on MRIO model of 31 provinces. China Environ. Sci. 2020, 40, 5540–5550. [Google Scholar] [CrossRef]
- Cao, T.; Wang, S.G.; Chen, B. Virtual water analysis for the Jing-Jin-Ji region based on multi-regional input-output model. Acta Ecol. Sin. 2018, 38, 788–799. [Google Scholar] [CrossRef]
- Zheng, H.R.; Zhang, Z.K.; Wei, W.D.; Song, M.L.; Dietzenbacher, E.; Wang, X.Y.; Meng, J.; Shan, Y.L.; Ou, J.M.; Guan, D.B. Regional determinants of China’s consumption-based emissions in the economic transition. Environ. Res. Lett. 2020, 15, 074001. [Google Scholar] [CrossRef]
- He, K.; Hertwich, E.G. The Flow of Embodied Carbon Through the Economies of China, the European Union, and the United States. Resour. Conserv. Recycl. 2019, 145, 190–198. [Google Scholar] [CrossRef]
- Yue, S.J.; Wang, X.L. Differences in energy consumption of manufacturing in Yangzi River Delta: A study from the perspective of Industry segmentation. J. Southeast. Univ. (Philos. Soc. Sci.) 2014, 16, 38–43, 134–135. [Google Scholar] [CrossRef]
- Li, Y.M.; Niu, M.M.; Zhang, H.L. Comparison of economic benefits and embodied carbon emissions of intraregional valueadded trade in the Beijing-Tianjin-Hebei region. Resour. Sci. 2019, 41, 1619–1629. [Google Scholar] [CrossRef]
- Wang, M.; Feng, C. Tracking the inequalities of global per capita carbon emissions from perspectives of technological and economic gaps. J. Environ. Manag. 2022, 315, 115144. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y. New Opportunities and Challenges for China’s Industrial Upgrading in the 14th Five-YearPlan Period: A New Struc-tural Economics Perspective. Int. Econ. Rev. 2021, 151, 56–75+5. [Google Scholar]
- Song, C.Y.; Zhang, Z.M.; Xu, W.H.; Elshkaki, A. The spatial effect of industrial transfer on carbon emissions under firm location decision:A carbon neutrality perspective. J. Environ. Manag. 2023, 330, 117139. [Google Scholar] [CrossRef] [PubMed]
Intermediate Demand | Final Demand | Export | Total Output | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Region 1 | Region 11 | Region 12 | Region 1 | Region 11 | Region 12 | ||||||
Intermediate input | Region 1 | ||||||||||
Region 2 | |||||||||||
Region 11 | |||||||||||
Region 12 | |||||||||||
Import | |||||||||||
Value added | |||||||||||
Total input |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ban, Q.; Li, Y.; Tian, G.; Wu, Z.; Xia, Q. Carbon Inequality Embodied in Inter-Provincial Trade of China’s Yangtze River Economic Belt. Energies 2023, 16, 4942. https://doi.org/10.3390/en16134942
Ban Q, Li Y, Tian G, Wu Z, Xia Q. Carbon Inequality Embodied in Inter-Provincial Trade of China’s Yangtze River Economic Belt. Energies. 2023; 16(13):4942. https://doi.org/10.3390/en16134942
Chicago/Turabian StyleBan, Qingqing, Yiwen Li, Guiliang Tian, Zheng Wu, and Qing Xia. 2023. "Carbon Inequality Embodied in Inter-Provincial Trade of China’s Yangtze River Economic Belt" Energies 16, no. 13: 4942. https://doi.org/10.3390/en16134942
APA StyleBan, Q., Li, Y., Tian, G., Wu, Z., & Xia, Q. (2023). Carbon Inequality Embodied in Inter-Provincial Trade of China’s Yangtze River Economic Belt. Energies, 16(13), 4942. https://doi.org/10.3390/en16134942