Thermal Characterization of Binary Calcium-Lithium Chloride Salts for Thermal Energy Storage at High Temperature
Abstract
1. Introduction
2. Experimental and Methodology
2.1. Sample Preparation
2.2. Materials Characterization
2.3. Experimental Procedure
3. Results and Discussions
3.1. Thermophysical Properties
3.2. Thermal Repeatability
3.3. Thermal Stability
3.4. Chemical/Structural Stability
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jacobson, M.Z.; Delucchi, M.A.; Bauer, Z.A.; Goodman, S.C.; Chapman, W.E.; Cameron, M.A.; Bozonnat, C.; Chobadi, L.; Clonts, H.A.; Enevoldsen, P. 100% clean and renewable wind, water, and sunlight all-sector energy roadmaps for 139 countries of the world. Joule 2017, 1, 108–121. [Google Scholar] [CrossRef]
- Alva, G.; Lin, Y.; Fang, G. An overview of thermal energy storage systems. Energy 2018, 144, 341–378. [Google Scholar] [CrossRef]
- Sharma, A.; Tyagi, V.V.; Chen, C.; Buddhi, D. Review on thermal energy storage with phase change materials and applications. Renew. Sustain. Energy Rev. 2009, 13, 318–345. [Google Scholar] [CrossRef]
- Sharma, S.D.; Sagara, K. Latent heat storage materials and systems: A review. Int. J. Green Energy 2005, 2, 1–56. [Google Scholar] [CrossRef]
- Pielichowska, K.; Pielichowski, K. Phase change materials for thermal energy storage. Prog. Mater. Sci. 2014, 65, 67–123. [Google Scholar] [CrossRef]
- Kenisarin, M.M. High-temperature phase change materials for thermal energy storage. Renew. Sustain. Energy Rev. 2010, 14, 955–970. [Google Scholar] [CrossRef]
- Liu, M.; Saman, W.; Bruno, F. Review on storage materials and thermal performance enhancement techniques for high temperature phase change thermal storage systems. Renew. Sustain. Energy Rev. 2012, 16, 2118–2132. [Google Scholar] [CrossRef]
- Khare, S.; Dell’Amico, M.; Knight, C.; McGarry, S. Selection of materials for high temperature latent heat energy storage. Sol. Energy Mater. Sol. Cells 2012, 107, 20–27. [Google Scholar] [CrossRef]
- Xu, B.; Li, P.; Chan, C. Application of phase change materials for thermal energy storage in concentrated solar thermal power plants: A review to recent developments. Appl. Energy 2015, 160, 286–307. [Google Scholar] [CrossRef]
- Maldonado, J.M.; Fullana-Puig, M.; Martín, M.; Solé, A.; Fernández, Á.G.; De Gracia, A.; Cabeza, L.F. Phase change material selection for thermal energy storage at high temperature range between 210 C and 270 C. Energies 2018, 11, 861. [Google Scholar] [CrossRef]
- Tian, H.; Wang, W.; Ding, J.; Wei, X.; Huang, C. Preparation of binary eutectic chloride/expanded graphite as high-temperature thermal energy storage materials. Sol. Energy Mater. Sol. Cells 2016, 149, 187–194. [Google Scholar] [CrossRef]
- Tian, H.; Wang, W.; Ding, J.; Wei, X. Thermal performance and economic evaluation of NaCl–CaCl2 eutectic salt for high-temperature thermal energy storage. Energy 2021, 227, 120412. [Google Scholar] [CrossRef]
- Xu, X.; Dehghani, G.; Ning, J.; Li, P. Basic properties of eutectic chloride salts NaCl-KCl-ZnCl2 and NaCl-KCl-MgCl2 as HTFs and thermal storage media measured using simultaneous DSC-TGA. Sol. Energy 2018, 162, 431–441. [Google Scholar] [CrossRef]
- Wei, X.; Song, M.; Peng, Q.; Ding, J.; Yang, J. A new ternary chloride eutectic mixture and its thermo-physical properties for solar thermal energy storage. Energy Procedia 2014, 61, 1314–1317. [Google Scholar] [CrossRef]
- Du, L.; Ding, J.; Tian, H.; Wang, W.; Wei, X.; Song, M. Thermal properties and thermal stability of the ternary eutectic salt NaCl-CaCl2-MgCl2 used in high-temperature thermal energy storage process. Appl. Energy 2017, 204, 1225–1230. [Google Scholar] [CrossRef]
- Yin, H.; Wang, Z.; Lai, X.; Wang, Y.; Tang, Z. Optimum design and key thermal property of NaCl–KCl–CaCl2 eutectic salt for ultra-high-temperature thermal energy storage. Sol. Energy Mater. Sol. Cells 2022, 236, 111541. [Google Scholar] [CrossRef]
- Zhong, Z.; Yang, W.; He, J. Research on preparation and properties of ternary chloride molten salt. Guangdong Chem. Ind. 2019, 46, 49–51. [Google Scholar]
- Wei, X.; Xie, P.; Zhang, X.; Wang, W.; Lu, J.; Ding, J. Research on preparation and thermodynamic properties of chloride molten salt materials. CIESC J. 2020, 71, 2423–2431. [Google Scholar]
- Wang, Y.; Li, X.; Li, N.; Ling, C.; Tang, Z.; Li, Z. Thermal transport and storage performances of NaCl–KCl–NaF eutectic salt for high temperatures latent heat. Sol. Energy Mater. Sol. Cells 2020, 218, 110756. [Google Scholar] [CrossRef]
- Li, Y.; Yue, G.; Yu, Y.; Zhu, Q. Preparation and thermal characterization of LiNO3–NaNO3–KCl ternary mixture and LiNO3–NaNO3–KCl/EG composites. Energy 2020, 196, 117067. [Google Scholar] [CrossRef]
- Hassan, N.; Minakshi, M.; Ruprecht, J.; Liew, W.Y.H.; Jiang, Z.-T. A Binary Salt Mixture LiCl–LiOH for Thermal Energy Storage. Materials 2023, 16, 1434. [Google Scholar] [CrossRef] [PubMed]
- FactSage. Phase Diagram. Available online: https://www.factsage.com/ (accessed on 28 March 2022).
- Jiang, Y.; Sun, Y.; Bruno, F.; Li, S. Thermal stability of Na2CO3-Li2CO3 as a high temperature phase change material for thermal energy storage. Thermochim. Acta 2017, 650, 88–94. [Google Scholar] [CrossRef]
- Rai, U.; Singh, O.; Singh, N.; Singh, N.B. Excess thermodynamic functions for a simple eutectic: M-Aminophenol—Pyrogallol systems. Thermochim. Acta 1983, 71, 373–375. [Google Scholar] [CrossRef]
- Rai, U.; George, S. Thermochemical studies on the eutectics and addition compounds in the binary systems of benzidine with p-nitrophenol, m-aminophenol and resorcinol. Thermochim. Acta 1994, 243, 17–25. [Google Scholar] [CrossRef]
- Kim, J.; Kang, H.; Hwang, K.; Yoon, S. Thermal decomposition study on Li2O2 for Li2NiO2 synthesis as a sacrificing positive additive of lithium-ion batteries. Molecules 2019, 24, 4624. [Google Scholar] [CrossRef]
Standard Material | Expected Melting Point C | Measured Melting Point C | Relative Error % | Expected Heat of Fusion J/g | Measured Heat of Fusion J/g | Relative Error % |
---|---|---|---|---|---|---|
Gold (Au) | 1064.2 | 1061.6 | 0.2 | 64.6 | 67 | 3 |
Lithium Chloride (LiCl) | 610 | 602 | 1 | 441 | 449 | 1 |
System | The Heat of Fusion J/g |
---|---|
CaCl2 | 253 |
LiCl | 416 |
58 wt.% CaCl2-42 wt.% LiCl (Calculated) | 321.46 |
58 wt.% CaCl2-42 wt.% LiCl (Experimental) | 206 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hassan, N.; Minakshi, M.; Liew, W.Y.H.; Amri, A.; Jiang, Z.-T. Thermal Characterization of Binary Calcium-Lithium Chloride Salts for Thermal Energy Storage at High Temperature. Energies 2023, 16, 4715. https://doi.org/10.3390/en16124715
Hassan N, Minakshi M, Liew WYH, Amri A, Jiang Z-T. Thermal Characterization of Binary Calcium-Lithium Chloride Salts for Thermal Energy Storage at High Temperature. Energies. 2023; 16(12):4715. https://doi.org/10.3390/en16124715
Chicago/Turabian StyleHassan, Naveed, Manickam Minakshi, Willey Yun Hsien Liew, Amun Amri, and Zhong-Tao Jiang. 2023. "Thermal Characterization of Binary Calcium-Lithium Chloride Salts for Thermal Energy Storage at High Temperature" Energies 16, no. 12: 4715. https://doi.org/10.3390/en16124715
APA StyleHassan, N., Minakshi, M., Liew, W. Y. H., Amri, A., & Jiang, Z.-T. (2023). Thermal Characterization of Binary Calcium-Lithium Chloride Salts for Thermal Energy Storage at High Temperature. Energies, 16(12), 4715. https://doi.org/10.3390/en16124715