Recent Progress in the Fabrication of Photonic Crystals Based on Porous Anodic Materials
Abstract
:1. Introduction
2. Fabrication of PCs by Anodization Method
2.1. Mechanism of the Anodization Process
2.2. Different Anodization Methods
2.2.1. Mild Anodization
2.2.2. Hard Anodization
2.2.3. Pulse Anodization
2.2.4. Cyclic Anodization
3. PCs Based on AAO
3.1. Sulfuric Acid
3.2. Oxalic Acid
3.3. Phosphoric Acid
4. PCs Based on pSi
5. PC-Based TNTs
6. Optical Properties and Applications of PCs
6.1. Distributed Bragg Reflectors
6.2. Fabry–Perot Interferometers
6.3. Optical Microcavities
6.4. Gradient-Index Filter
7. Conclusions and Outlook
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Joannopoulos, J.D.; Villeneuve, P.R.; Fan, S. Photonic crystals: Putting a new twist on light. Nature 1997, 386, 143–149. [Google Scholar] [CrossRef]
- Sibilia, C.; Benson, T.M.; Marciniak, M.; Szoplik, T. Photonic Crystals: Physics and Technology; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Prather, D.W.; Shi, S.; Sharkawy, A.; Murakowski, J.; Schneider, G. Photonic Crystals: Theory, Aplications and Fabrication; Wiley: New York, NY, USA, 2009. [Google Scholar]
- Lourtioz, J.-M.; Benisty, H.; Berger, V.; Gerard, J.-M.; Maystre, D.; Tchelnokov, A. Photonic Crystals: Towards Nanoscale Photonic Devices; Springer: Berlin/Heidelberg, Germany, 2005. [Google Scholar]
- Wei, L.; Pavin, S.; Zhao, X.; Lu, M. Photonic Crystals for Biomolecule Sensing Applications. In Nanophotonics in Biomedical Engineering; Springer: Berlin/Heidelberg, Germany, 2021; pp. 1–19. [Google Scholar]
- Dong, J.-W.; Chen, X.-D.; Zhu, H.; Wang, Y.; Zhang, X. Valley photonic crystals for control of spin and topology. Nat. Mater. 2017, 16, 298–302. [Google Scholar] [CrossRef] [PubMed]
- Butt, M.; Khonina, S.; Kazanskiy, N. 2D-Photonic crystal heterostructures for the realization of compact photonic devices. Photonics Nanostruct. Fundam. Appl. 2021, 44, 100903. [Google Scholar] [CrossRef]
- Askarian, A. Design and analysis of all optical half subtractor in 2D photonic crystal platform. Optik 2021, 228, 166126. [Google Scholar] [CrossRef]
- Xu, H.; Qin, Z.; Liu, F.; Zhong, D.; Ni, H.; Liu, F. Optical bistability of graphene in PT–symmetric Thue–Morse photonic crystals. J. Mater. Sci. 2022, 57, 6524–6535. [Google Scholar] [CrossRef]
- Ni, H.; Wang, J.; Wu, A. Optical bistability in aperiodic multilayer composed of graphene and Thue-Morse lattices. Optik 2021, 242, 167163. [Google Scholar] [CrossRef]
- Wei, H.; Chen, X.; Zhao, D.; Zhao, M.; Wang, Y.; Zhang, P. Temperature Sensing Based on Defect Mode of One-Dimensional Superconductor-Semiconductor Photonic Crystals. Crystals 2023, 13, 302. [Google Scholar] [CrossRef]
- Wang, X.; Cui, Y.; Li, T.; Lei, M.; Li, J.; Wei, Z. Recent advances in the functional 2D photonic and optoelectronic devices. Adv. Opt. Mater. 2019, 7, 1801274. [Google Scholar] [CrossRef]
- Nucara, L.; Greco, F.; Mattoli, V. Electrically responsive photonic crystals: A review. J. Mater. Chem. C 2015, 3, 8449–8467. [Google Scholar] [CrossRef]
- Collins, G.; Armstrong, E.; McNulty, D.; O’Hanlon, S.; Geaney, H.; O’Dwyer, C. 2D and 3D photonic crystal materials for photocatalysis and electrochemical energy storage and conversion. Sci. Technol. Adv. MaTerialS 2016, 17, 563–582. [Google Scholar] [CrossRef]
- Maldovan, M. Phonon wave interference and thermal bandgap materials. Nat. Mater. 2015, 14, 667–674. [Google Scholar] [CrossRef]
- Sani, M.H.; Ghanbari, A.; Saghaei, H. High-sensitivity biosensor for simultaneous detection of cancer and diabetes using photonic crystal microstructure. Opt. Quantum Electron. 2022, 54, 2. [Google Scholar] [CrossRef]
- Sizova, S.; Shakurov, R.; Mitko, T.; Shirshikov, F.; Solovyeva, D.; Konopsky, V.; Alieva, E.; Klinov, D.; Bespyatykh, J.; Basmanov, D. The Elaboration of Effective Coatings for Photonic Crystal Chips in Optical Biosensors. Polymers 2021, 14, 152. [Google Scholar] [CrossRef]
- Rashidnia, A.; Pakarzadeh, H.; Hatami, M.; Ayyanar, N. Photonic crystal-based biosensor for detection of human red blood cells parasitized by plasmodium falciparum. Opt. Quantum Electron. 2022, 54, 38. [Google Scholar] [CrossRef]
- Roberts, A.; Gandhi, S. A concise review on potential cancer biomarkers and advanced manufacturing of smart platform-based biosensors for early-stage cancer diagnostics. Biosens. Bioelectron. X 2022, 11, 100178. [Google Scholar] [CrossRef]
- Yablonovitch, E.; Gmitter, T.; Meade, R.; Rappe, A.; Brommer, K.; Joannopoulos, J. Donor and acceptor modes in photonic band structure. Phys. Rev. Lett. 1991, 67, 3380. [Google Scholar] [CrossRef]
- Yablonovitch, E. Photonic crystals. J. Mod. Opt. 1994, 41, 173–194. [Google Scholar] [CrossRef]
- John, S. Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett. 1987, 58, 2486. [Google Scholar] [CrossRef]
- Bond, W.L. Precision lattice constant determination. Acta Crystallogr. 1960, 13, 814–818. [Google Scholar] [CrossRef]
- Lopez, C. Materials aspects of photonic crystals. Adv. Mater. 2003, 15, 1679–1704. [Google Scholar] [CrossRef]
- Steele, J.J.; van Popta, A.C.; Hawkeye, M.M.; Sit, J.C.; Brett, M.J. Nanostructured gradient index optical filter for high-speed humidity sensing. Sens. Actuators B Chem. 2006, 120, 213–219. [Google Scholar] [CrossRef]
- Kilian, K.A.; Böcking, T.; Gooding, J.J. The importance of surface chemistry in mesoporous materials: Lessons from porous silicon biosensors. Chem. Commun. 2009, 630–640. [Google Scholar] [CrossRef] [PubMed]
- Colodrero, S.; Ocaña, M.; González-Elipe, A.R.; Míguez, H. Response of nanoparticle-based one-dimensional photonic crystals to ambient vapor pressure. Langmuir 2008, 24, 9135–9139. [Google Scholar] [CrossRef] [PubMed]
- Guo, D.-L.; Fan, L.-X.; Wang, F.-H.; Huang, S.-Y.; Zou, X.-W. Porous Anodic Aluminum Oxide Bragg Stacks as Chemical Sensors. J. Phys. Chem. C 2008, 112, 17952–17956. [Google Scholar] [CrossRef]
- Lotsch, B.V.; Ozin, G.A. Clay Bragg stack optical sensors. Adv. Mater. 2008, 20, 4079–4084. [Google Scholar] [CrossRef]
- Bonifacio, L.D.; Puzzo, D.P.; Breslav, S.; Willey, B.M.; McGeer, A.; Ozin, G.A. Towards the photonic nose: A novel platform for molecule and bacteria identification. Adv. Mater. 2010, 22, 1351–1354. [Google Scholar] [CrossRef]
- Colodrero, S.; Mihi, A.; Häggman, L.; Ocana, M.; Boschloo, G.; Hagfeldt, A.; Miguez, H. Porous one-dimensional photonic crystals improve the power-conversion efficiency of dye-sensitized solar cells. Adv. Mater. 2009, 21, 764–770. [Google Scholar] [CrossRef]
- Schubert, M.; Xi, J.; Kim, J.; Schubert, E. Distributed Bragg reflector consisting of high- and low-refractive-index thin film layers made of the same material. Appl. Phys. Lett. 2007, 90, 141115. [Google Scholar] [CrossRef]
- Calvo, M.E.; Colodrero, S.; Rojas, T.C.; Anta, J.A.; Ocana, M.; Míguez, H. Photoconducting Bragg mirrors based on TiO2 nanoparticle multilayers. Adv. Funct. Mater. 2008, 18, 2708–2715. [Google Scholar] [CrossRef]
- Kurt, P.; Banerjee, D.; Cohen, R.E.; Rubner, M.F. Structural color via layer-by-layer deposition: Layered nanoparticle arrays with near-UV and visible reflectivity bands. J. Mater. Chem. 2009, 19, 8920–8927. [Google Scholar] [CrossRef]
- Calvo, M.E.; Sobrado, O.S.; Lozano, G.; Míguez, H. Molding with nanoparticle-based one-dimensional photonic crystals: A route to flexible and transferable Bragg mirrors of high dielectric contrast. J. Mater. Chem. 2009, 19, 3144–3148. [Google Scholar] [CrossRef]
- Scotognella, F.; Puzzo, D.P.; Monguzzi, A.; Wiersma, D.S.; Maschke, D.; Tubino, R.; Ozin, G.A. Nanoparticle One-Dimensional Photonic-Crystal Dye Laser. Small 2009, 5, 2048–2052. [Google Scholar] [CrossRef]
- Lin, V.S.-Y.; Motesharei, K.; Dancil, K.-P.S.; Sailor, M.J.; Ghadiri, M.R. A porous silicon-based optical interferometric biosensor. Science 1997, 278, 840–843. [Google Scholar] [CrossRef]
- Gates, B.D.; Xu, Q.; Stewart, M.; Ryan, D.; Willson, C.G.; Whitesides, G.M. New approaches to nanofabrication: Molding, printing, and other techniques. Chem. Rev. 2005, 105, 1171–1196. [Google Scholar] [CrossRef]
- Schroden, R.C.; Al-Daous, M.; Blanford, C.F.; Stein, A. Optical properties of inverse opal photonic crystals. Chem. Mater. 2002, 14, 3305–3315. [Google Scholar] [CrossRef]
- Jensen, M.O.; Brett, M.J. Periodically structured glancing angle deposition thin films. IEEE Trans. Nanotechnol. 2005, 4, 269–277. [Google Scholar] [CrossRef]
- Wang, Y. Angelatos AS Caruso F. Template synthesis of nanostructured materials via layer-by-layer assembly. Chem. Mater 2008, 20, 848–858. [Google Scholar] [CrossRef]
- Ariga, K.; Hill, J.P.; Lee, M.V.; Vinu, A.; Charvet, R.; Acharya, S. Challenges and breakthroughs in recent research on self-assembly. Sci. Technol. Adv. Mater. 2008, 8, 014109. [Google Scholar] [CrossRef]
- Kim, J.Y.; Kim, S.H.; Lee, H.H.; Lee, K.; Ma, W.; Gong, X.; Heeger, A.J. New architecture for high-efficiency polymer photovoltaic cells using solution-based titanium oxide as an optical spacer. Adv. Mater. 2006, 18, 572–576. [Google Scholar] [CrossRef]
- Sanchez, C.; Boissiere, C.; Grosso, D.; Laberty, C.; Nicole, L. Design, synthesis, and properties of inorganic and hybrid thin films having periodically organized nanoporosity. Chem. Mater. 2008, 20, 682–737. [Google Scholar] [CrossRef]
- Butail, G.; Ganesan, P.; Teki, R.; Mahima, R.; Ravishankar, N.; Duquette, D.; Ramanath, G. Branched titania nanotubes through anodization voltage control. Thin Solid Film. 2011, 520, 235–238. [Google Scholar] [CrossRef]
- Li, S.; Yin, J.; Zhang, G. Fabrication of multi-sectional TiO2 nanotube arrays by anodization. Sci. China Chem. 2010, 53, 1068–1073. [Google Scholar] [CrossRef]
- Gong, J.; Butler, W.H.; Zangari, G. Tailoring morphology in free-standing anodic aluminium oxide: Control of barrier layer opening down to the sub-10 nm diameter. Nanoscale 2010, 2, 778–785. [Google Scholar] [CrossRef] [PubMed]
- Toh, C.-S.; Kayes, B.M.; Nemanick, E.J.; Lewis, N.S. Fabrication of free-standing nanoscale alumina membranes with controllable pore aspect ratios. Nano Lett. 2004, 4, 767–770. [Google Scholar] [CrossRef]
- Liang, J.; Chik, H.; Yin, A.; Xu, J. Two-dimensional lateral superlattices of nanostructures: Nonlithographic formation by anodic membrane template. J. Appl. Phys. 2002, 91, 2544–2546. [Google Scholar] [CrossRef]
- Sulka, G.D. Highly ordered anodic porous alumina formation by self-organized anodizing. Nanostructured Mater. Electrochem. 2008, 1–116. [Google Scholar] [CrossRef]
- Bhattacharyya, P.; Basu, S. Nanostructured Ceramic Materials for Chemical Sensors: Present Status and Future Prospects. Trans. Indian Ceram. Soc. 2010, 69, 1–23. [Google Scholar] [CrossRef]
- Sang, V.A.A.N.B.; Joo, W. Fabrication of hierarchical porous anodized titania. Mater. Res. 2001, 16, 331–334. [Google Scholar]
- Sulka, G.; Brzózka, A.; Zaraska, L.; Jaskuła, M. Through-hole membranes of nanoporous alumina as templates for fabricating silver and tin nanowire arrays. Electrochim. Acta 2010, 55, 4368–4376. [Google Scholar] [CrossRef]
- Belwalkar, A.; Grasing, E.; Van Geertruyden, W.; Huang, Z.; Misiolek, W. Effect of processing parameters on pore structure and thickness of anodic aluminum oxide (AAO) tubular membranes. J. Membr. Sci. 2008, 319, 192–198. [Google Scholar] [CrossRef]
- Ding, G.; Zheng, M.; Xu, W.; Shen, W. Fabrication of controllable free-standing ultrathin porous alumina membranes. Nanotechnology 2005, 16, 1285. [Google Scholar] [CrossRef]
- Chen, W.; Wu, J.-S.; Yuan, J.-H.; Xia, X.-H.; Lin, X.-H. An environment-friendly electrochemical detachment method for porous anodic alumina. J. Electroanal. Chem. 2007, 600, 257–264. [Google Scholar] [CrossRef]
- Xu, T.; Zangari, G.; Metzger, R.M. Periodic holes with 10 nm diameter produced by grazing Ar+ milling of the barrier layer in hexagonally ordered nanoporous alumina. Nano Lett. 2002, 2, 37–41. [Google Scholar] [CrossRef]
- Yuan, J.; He, F.; Sun, D.; Xia, X. A simple method for preparation of through-hole porous anodic alumina membrane. Chem. Mater. 2004, 16, 1841–1844. [Google Scholar] [CrossRef]
- Yuan, J.; Chen, W.; Hui, R.; Hu, Y.; Xia, X. Mechanism of one-step voltage pulse detachment of porous anodic alumina membranes. Electrochim. Acta 2006, 51, 4589–4595. [Google Scholar] [CrossRef]
- Abd-Elnaiem, A.M.; Asafa, T.B.; Trivinho-Strixino, F.; Delgado-Silva, A.d.O.; Callewaert, M.; De Malsche, W. Optical reflectance from anodized Al-0.5 wt% Cu thin films: Porosity and refractive index calculations. J. Alloys Compd. 2017, 721, 741–749. [Google Scholar] [CrossRef]
- Calvo, M.E.; Colodrero, S.; Hidalgo, N.; Lozano, G.; López-López, C.; Sanchez-Sobrado, O.; Miguez, H. Porous one dimensional photonic crystals: Novel multifunctional materials for environmental and energy applications. Energy Environ. Sci. 2011, 4, 4800–4812. [Google Scholar] [CrossRef]
- Pacholski, C.; Sartor, M.; Sailor, M.J.; Cunin, F.; Miskelly, G.M. Biosensing using porous silicon double-layer interferometers: Reflective interferometric Fourier transform spectroscopy. J. Am. Chem. Soc. 2005, 127, 11636–11645. [Google Scholar] [CrossRef]
- Roduner, E. Size matters: Why nanomaterials are different. Chem. Soc. Rev. 2006, 35, 583–592. [Google Scholar] [CrossRef]
- Meng, G.; Jung, Y.J.; Cao, A.; Vajtai, R.; Ajayan, P.M. Controlled fabrication of hierarchically branched nanopores, nanotubes, and nanowires. Proc. Natl. Acad. Sci. USA 2005, 102, 7074–7078. [Google Scholar] [CrossRef]
- Meng, G.; Han, F.; Zhao, X.; Chen, B.; Yang, D.; Liu, J.; Xu, Q.; Kong, M.; Zhu, X.; Jung, Y.J. A general synthetic approach to interconnected nanowire/nanotube and nanotube/nanowire/nanotube heterojunctions with branched topology. Angew. Chem. 2009, 121, 7302–7306. [Google Scholar] [CrossRef]
- Jani, A.M.M.; Losic, D.; Voelcker, N.H. Nanoporous anodic aluminium oxide: Advances in surface engineering and emerging applications. Prog. Mater. Sci. 2013, 58, 636–704. [Google Scholar] [CrossRef]
- Lin, J.; Liu, K.; Chen, X. Synthesis of periodically structured titania nanotube films and their potential for photonic applications. Small 2011, 7, 1784–1789. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Zhang, G.; Guo, D.; Yu, L.; Zhang, W. Anodization fabrication of highly ordered TiO2 nanotubes. J. Phys. Chem. C 2009, 113, 12759–12765. [Google Scholar] [CrossRef]
- Ozin, G.A.; Arsenault, A. Nanochemistry: A Chemical Approach to Nanomaterials; Royal Society of Chemistry: London, UK, 2015. [Google Scholar]
- Tian, M.; Xu, S.; Wang, J.; Kumar, N.; Wertz, E.; Li, Q.; Campbell, P.M.; Chan, M.H.; Mallouk, T.E. Penetrating the oxide barrier in situ and separating freestanding porous anodic alumina films in one step. Nano Lett. 2005, 5, 697–703. [Google Scholar] [CrossRef]
- Rabin, O.; Herz, P.R.; Lin, Y.M.; Akinwande, A.I.; Cronin, S.B.; Dresselhaus, M.S. Formation of thick porous anodic alumina films and nanowire arrays on silicon wafers and glass. Adv. Funct. Mater. 2003, 13, 631–638. [Google Scholar] [CrossRef]
- Zhao, X.; Seo, S.-K.; Lee, U.-J.; Lee, K.-H. Controlled electrochemical dissolution of anodic aluminum oxide for preparation of open-through pore structures. J. Electrochem. Soc. 2007, 154, C553. [Google Scholar] [CrossRef]
- Lammel, G.; Renaud, P. Free-standing, mobile 3D porous silicon microstructures. Sens. Actuators A Phys. 2000, 85, 356–360. [Google Scholar] [CrossRef]
- Muñoz, P.; Micó, G.; Bru, L.A.; Pastor, D.; Pérez, D.; Doménech, J.D.; Fernández, J.; Baños, R.; Gargallo, B.; Alemany, R. Silicon nitride photonic integration platforms for visible, near-infrared and mid-infrared applications. Sensors 2017, 17, 2088. [Google Scholar] [CrossRef]
- Lehmann, V. Electrochemistry of Silicon: Instrumentation, Science, Materials and Applications; Wiley-VCH: New York, NY, USA, 2002. [Google Scholar]
- Pace, S.; Vasani, R.B.; Zhao, W.; Perrier, S.; Voelcker, N.H. Photonic porous silicon as a pH sensor. Nanoscale Res. Lett. 2014, 9, 1–7. [Google Scholar] [CrossRef]
- Jenie, S.A.; Plush, S.E.; Voelcker, N.H. Singlet oxygen detection on a nanostructured porous silicon thin film via photonic luminescence enhancements. Langmuir 2017, 33, 8606–8613. [Google Scholar] [CrossRef]
- Kilian, K.A.; Lai, L.M.; Magenau, A.; Cartland, S.; Böcking, T.; Di Girolamo, N.; Gal, M.; Gaus, K.; Gooding, J.J. Smart tissue culture: In situ monitoring of the activity of protease enzymes secreted from live cells using nanostructured photonic crystals. Nano Lett. 2009, 9, 2021–2025. [Google Scholar] [CrossRef]
- Janshoff, A.; Dancil, K.-P.S.; Steinem, C.; Greiner, D.P.; Lin, V.S.-Y.; Gurtner, C.; Motesharei, K.; Sailor, M.J.; Ghadiri, M.R. Macroporous p-Type silicon Fabry–Perot layers. Fabrication, characterization, and applications in biosensing. J. Am. Chem. Soc. 1998, 120, 12108–12116. [Google Scholar] [CrossRef]
- Lee, W.; Park, S.-J. Porous anodic aluminum oxide: Anodization and templated synthesis of functional nanostructures. Chem. Rev. 2014, 114, 7487–7556. [Google Scholar] [CrossRef]
- Santos, A. Nanoporous anodic alumina photonic crystals: Fundamentals, developments and perspectives. J. Mater. Chem. C 2017, 5, 5581–5599. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, L.; Hedhili, M.N.; Zhang, H.; Wang, P. Plasmonic gold nanocrystals coupled with photonic crystal seamlessly on TiO2 nanotube photoelectrodes for efficient visible light photoelectrochemical water splitting. Nano Lett. 2013, 13, 14–20. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, P. Optimization of photoelectrochemical water splitting performance on hierarchical TiO2 nanotube arrays. Energy Environ. Sci. 2012, 5, 6506–6512. [Google Scholar] [CrossRef]
- Li, Z.; Xin, Y.; Wu, W.; Fu, B.; Zhang, Z. Phosphorus cation doping: A new strategy for boosting photoelectrochemical performance on TiO2 nanotube photonic crystals. ACS Appl. Mater. Interfaces 2016, 8, 30972–30979. [Google Scholar] [CrossRef]
- Zhang, Z.; Wu, H. Multiple band light trapping in ultraviolet, visible and near infrared regions with TiO2 based photonic materials. Chem. Commun. 2014, 50, 14179–14182. [Google Scholar] [CrossRef]
- Lin, S.; Li, D.; Wu, J.; Li, X.; Akbar, S. A selective room temperature formaldehyde gas sensor using TiO2 nanotube arrays. Sens. Actuators B Chem. 2011, 156, 505–509. [Google Scholar] [CrossRef]
- Gao, Y.; Wang, G.; Duanmu, Q.; Tian, J. Electrochemical etching of deep-macropore array on p-type silicon wafers. MEMS/MOEMS Technol. Appl. II 2004, 5641, 201–204. [Google Scholar]
- Sailor, M.J. Porous Silicon in Practice: Preparation, Characterization and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
- Carstensen, J.; Christophersen, M.; Hasse, G.; Föll, H. Parameter dependence of pore formation in silicon within a model of local current bursts. Phys. Status Solidi 2000, 182, 63–69. [Google Scholar] [CrossRef]
- Claussen, J.C.; Carstensen, J.; Christophersen, M.; Langa, S.; Föll, H. Self-organized pore formation and open-loop control in semiconductor etching. Chaos Interdiscip. J. Nonlinear Sci. 2003, 13, 217–224. [Google Scholar] [CrossRef]
- Beale, M.; Benjamin, J.; Uren, M.; Chew, N.; Cullis, A. An experimental and theoretical study of the formation and microstructure of porous silicon. J. Cryst. Growth 1985, 73, 622–636. [Google Scholar] [CrossRef]
- Smith, R.; Collins, S. Porous silicon formation mechanisms. J. Appl. Phys. 1992, 71, R1–R22. [Google Scholar] [CrossRef]
- Choudhari, K.S.; Choi, C.-H.; Chidangil, S.; George, S.D. Recent progress in the fabrication and optical properties of nanoporous anodic alumina. Nanomaterials 2022, 12, 444. [Google Scholar] [CrossRef]
- Macak, J.M.; Tsuchiya, H.; Ghicov, A.; Yasuda, K.; Hahn, R.; Bauer, S.; Schmuki, P. TiO2 nanotubes: Self-organized electrochemical formation, properties and applications. Curr. Opin. Solid State Mater. Sci. 2007, 11, 3–18. [Google Scholar] [CrossRef]
- Korotcenkov, G.; Han, S.; Cho, B.; Brinzari, V. Grain Size Effects in Sensor Response of Nanostructured SnO2- and In2O3-Based Conductometric Thin Film Gas Sensor. Crit. Rev. Solid State Mater. Sci. 2009, 34, 1–17. [Google Scholar] [CrossRef]
- Ghicov, A.; Schmuki, P. Self-ordering electrochemistry: A review on growth and functionality of TiO2 nanotubes and other self-aligned MOx structures. Chem. Commun. 2009, 2791–2808. [Google Scholar] [CrossRef]
- Chazalviel, J.-N.; Wehrspohn, R.; Ozanam, F. Electrochemical preparation of porous semiconductors: From phenomenology to understanding. Mater. Sci. Eng. B 2000, 69, 1–10. [Google Scholar] [CrossRef]
- Su, Z.; Zhou, W.; Jiang, F.; Hong, M. Anodic formation of nanoporous and nanotubular metal oxides. J. Mater. Chem. 2012, 22, 535–544. [Google Scholar] [CrossRef]
- Hebert, K.R.; Albu, S.P.; Paramasivam, I.; Schmuki, P. Morphological instability leading to formation of porous anodic oxide films. Nat. Mater. 2012, 11, 162–166. [Google Scholar] [CrossRef]
- Singh, S.; Festin, M.; Barden, W.R.; Xi, L.; Francis, J.T.; Kruse, P. Universal method for the fabrication of detachable ultrathin films of several transition metal oxides. ACS Nano 2008, 2, 2363–2373. [Google Scholar] [CrossRef]
- Patermarakis, G. The origin of nucleation and development of porous nanostructure of anodic alumina films. J. Electroanal. Chem. 2009, 635, 39–50. [Google Scholar] [CrossRef]
- Wang, M.; Liu, Y.; Yang, H. A unified thermodynamic theory for the formation of anodized metal oxide structures. Electrochim. Acta 2012, 62, 424–432. [Google Scholar] [CrossRef]
- Houser, J.E.; Hebert, K.R. The role of viscous flow of oxide in the growth of self-ordered porous anodic alumina films. Nat. Mater. 2009, 8, 415–420. [Google Scholar] [CrossRef]
- Garcia-Vergara, S.; Skeldon, P.; Thompson, G.; Habazaki, H. A flow model of porous anodic film growth on aluminium. Electrochim. Acta 2006, 52, 681–687. [Google Scholar] [CrossRef]
- Hebert, K.R.; Houser, J.E. A model for coupled electrical migration and stress-driven transport in anodic oxide films. J. Electrochem. Soc. 2009, 156, C275. [Google Scholar] [CrossRef]
- Masuda, H.; Tanaka, H.; Baba, N. Preparation of porous material by replacing microstructure of anodic alumina film with metal. Chem. Lett. 1990, 19, 621–622. [Google Scholar] [CrossRef]
- Masuda, H.; Satoh, M. Synthesis of highly ordered porous alumina membranes using electrochemical techniques. Jpn J Appl Phys Part 2 1996, 35, L126–L128. [Google Scholar]
- Lee, W.; Schwirn, K.; Steinhart, M.; Pippel, E.; Scholz, R.; Gösele, U. Structural engineering of nanoporous anodic aluminium oxide by pulse anodization of aluminium. Nat. Nanotechnol. 2008, 3, 234–239. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.; Ji, R.; Gösele, U.; Nielsch, K. Fast fabrication of long-range ordered porous alumina membranes by hard anodization. Nat. Mater. 2006, 5, 741–747. [Google Scholar] [CrossRef] [PubMed]
- Tu, G.; Huang, L.Y. Hard anodizing of 2024 aluminium alloy using pulsed DC and AC power. Trans. IMF 1987, 65, 60–66. [Google Scholar] [CrossRef]
- Lee, W.; Scholz, R.; Gösele, U. A continuous process for structurally well-defined Al2O3 nanotubes based on pulse anodization of aluminum. Nano Lett. 2008, 8, 2155–2160. [Google Scholar] [CrossRef] [PubMed]
- Sulka, G.D.; Hnida, K. Distributed Bragg reflector based on porous anodic alumina fabricated by pulse anodization. Nanotechnology 2012, 23, 075303. [Google Scholar] [CrossRef]
- Ruiz-Clavijo, A.; Caballero-Calero, O.; Martín-González, M. Revisiting anodic alumina templates: From fabrication to applications. Nanoscale 2021, 13, 2227–2265. [Google Scholar] [CrossRef]
- Wang, K.; Liu, G.; Hoivik, N.; Johannessen, E.; Jakobsen, H. Electrochemical engineering of hollow nanoarchitectures: Pulse/step anodization (Si, Al, Ti) and their applications. Chem. Soc. Rev. 2014, 43, 1476–1500. [Google Scholar] [CrossRef]
- Losic, D.; Lillo, M.; Losic, D., Jr. Porous alumina with shaped pore geometries and complex pore architectures fabricated by cyclic anodization. small 2009, 5, 1392–1397. [Google Scholar] [CrossRef]
- Wang, B.; Fei, G.T.; Wang, M.; Kong, M.G.; De Zhang, L. Preparation of photonic crystals made of air pores in anodic alumina. Nanotechnology 2007, 18, 365601. [Google Scholar] [CrossRef]
- Zheng, W.J.; Fei, G.T.; Wang, B.; Jin, Z.; De Zhang, L. Distributed Bragg reflector made of anodic alumina membrane. Mater. Lett. 2009, 63, 706–708. [Google Scholar] [CrossRef]
- Zheng, W.J.; Fei, G.T.; Wang, B.; De Zhang, L. Modulation of transmission spectra of anodized alumina membrane distributed Bragg reflector by controlling anodization temperature. Nanoscale Res. Lett. 2009, 4, 665–667. [Google Scholar] [CrossRef] [PubMed]
- Shang, G.L.; Fei, G.T.; Zhang, Y.; Yan, P.; Xu, S.H.; De Zhang, L. Preparation of narrow photonic bandgaps located in the near infrared region and their applications in ethanol gas sensing. J. Mater. Chem. C 2013, 1, 5285–5291. [Google Scholar] [CrossRef]
- Shang, G.L.; Fei, G.T.; Zhang, Y.; Yan, P.; Xu, S.H.; Ouyang, H.M.; De Zhang, L. Fano resonance in anodic aluminum oxide based photonic crystals. Sci. Rep. 2014, 4, 3601. [Google Scholar] [CrossRef] [PubMed]
- Kushnir, S.E.; Sapoletova, N.A.; Roslyakov, I.V.; Napolskii, K.S. One-Dimensional Photonic Crystals with Nonbranched Pores Prepared via Phosphorous Acid Anodizing of Aluminium. Nanomaterials 2022, 12, 1548. [Google Scholar] [CrossRef] [PubMed]
- Sadykov, A.I.; Kushnir, S.E.; Roslyakov, I.V.; Baranchikov, A.E.; Napolskii, K.S. Selenic acid anodizing of aluminium for preparation of 1D photonic crystals. Electrochem. Commun. 2019, 100, 104–107. [Google Scholar] [CrossRef]
- Gasco-Owens, A.; Veys-Renaux, D.; Cartigny, V.; Rocca, E. Large-pores anodizing of 5657 aluminum alloy in phosphoric acid: An in-situ electrochemical study. Electrochim. Acta 2021, 382, 138303. [Google Scholar] [CrossRef]
- Khan, G.G.; Singh, A.K.; Mandal, K. Structure dependent photoluminescence of nanoporous amorphous anodic aluminium oxide membranes: Role of F+ center defects. J. Lumin. 2013, 134, 772–777. [Google Scholar] [CrossRef]
- Wei, H.; Xu, Q.; Chen, D.; Chen, M.; Chang, M.; Ye, X. Easy preparation of anodic aluminum oxide photonic crystal films with tunable structural colors. Opt. Mater. 2021, 122, 111722. [Google Scholar] [CrossRef]
- Li, A.; Müller, F.; Birner, A.; Nielsch, K.; Gösele, U. Hexagonal pore arrays with a 50–420 nm interpore distance formed by self-organization in anodic alumina. J. Appl. Phys 1998, 84, 6023–6026. [Google Scholar] [CrossRef]
- Jessensky, O.; Müller, F.; Gösele, U. Self-organized formation of hexagonal pore arrays in anodic alumina. Appl. Phys. Lett. 1998, 72, 1173–1175. [Google Scholar] [CrossRef]
- Chu, S.Z.; Wada, K.; Inoue, S.; Isogai, M.; Yasumori, A. Fabrication of ideally ordered nanoporous alumina films and integrated alumina nanotubule arrays by high-field anodization. Adv. Mater. 2005, 17, 2115–2119. [Google Scholar] [CrossRef]
- Bruera, F.A.; Kramer, G.R.; Vera, M.L.; Ares, A.E. Low-cost nanostructured coating of anodic aluminium oxide synthesized in sulphuric acid as electrolyte. Coatings 2021, 11, 309. [Google Scholar] [CrossRef]
- Dobosz, I. Influence of the anodization conditions and chemical treatment on the formation of alumina membranes with defined pore diameters. J. Porous Mater. 2021, 28, 1011–1022. [Google Scholar] [CrossRef]
- Asoh, H.; Matsumoto, M.; Hashimoto, H. Effects of ethanol on the efficiency of the formation of anodic alumina in sulfuric acid. Surf. Coat. Technol. 2019, 378, 124947. [Google Scholar] [CrossRef]
- Matsumoto, M.; Hashimoto, H.; Asoh, H. Formation efficiency of anodic porous alumina in sulfuric acid containing alcohol: Comparison of the effects of monohydric and polyhydric alcohols as additives. J. Electrochem. Soc. 2020, 167, 041504. [Google Scholar] [CrossRef]
- Poznyak, A.; Pligovka, A.; Laryn, T.; Salerno, M. Porous alumina films fabricated by reduced temperature sulfuric acid anodizing: Morphology, composition and volumetric growth. Materials 2021, 14, 767. [Google Scholar] [CrossRef]
- Resende, P.M.; Martín-González, M. Sub-10 nm porous alumina templates to produce sub-10 nm nanowires. Microporous Mesoporous Mater. 2019, 284, 198–204. [Google Scholar] [CrossRef]
- Kushnir, S.E.; Napolskii, K.S. Thickness-dependent iridescence of one-dimensional photonic crystals based on anodic alumina. Mater. Des. 2018, 144, 140–150. [Google Scholar] [CrossRef]
- Hu, X.; Pu, Y.; Ling, Z.; Li, Y. Coloring of aluminum using photonic crystals of porous alumina with electrodeposited Ag. Opt. Mater. 2009, 32, 382–386. [Google Scholar] [CrossRef]
- Masuda, H.; Yada, K.; Osaka, A. Self-ordering of cell configuration of anodic porous alumina with large-size pores in phosphoric acid solution. Jpn. J. Appl. Phys. 1998, 37, L1340. [Google Scholar] [CrossRef]
- Li, F.; Zhang, L.; Metzger, R.M. On the growth of highly ordered pores in anodized aluminum oxide. Chem. Mater. 1998, 10, 2470–2480. [Google Scholar] [CrossRef]
- Kushwaha, M. A comparative Study of Different Electrolytes for Obtaining Thick and Well-ordered nano-porous Anodic Aluminium Oxide (AAO) Films. Procedia Mater. Sci. 2014, 5, 1266–1273. [Google Scholar] [CrossRef]
- Leontiev, A.; Roslyakov, I.; Napolskii, K. Complex influence of temperature on oxalic acid anodizing of aluminium. Electrochim. Acta 2019, 319, 88–94. [Google Scholar] [CrossRef]
- Szwachta, G.; Białek, E.; Włodarski, M.; Norek, M. Structural stability and optical properties of 1D photonic crystals based on porous anodic alumina after annealing at different temperatures. Nanotechnology 2022, 33, 455707. [Google Scholar] [CrossRef]
- Asai, N.; Shimizu, T.; Shingubara, S.; Ito, T. Fabrication of highly sensitive QCM sensor using AAO nanoholes and its application in biosensing. Sens. Actuators B Chem. 2018, 276, 534–539. [Google Scholar] [CrossRef]
- Chung, C.; Khor, O.; Syu, C.; Chen, S. Effect of oxalic acid concentration on the magnetically enhanced capacitance and resistance of AAO humidity sensor. Sens. Actuators B Chem. 2015, 210, 69–74. [Google Scholar] [CrossRef]
- Akiya, S.; Kikuchi, T.; Natsui, S.; Sakaguchi, N.; Suzuki, R.O. Self-ordered porous alumina fabricated via phosphonic acid anodizing. Electrochim. Acta 2016, 190, 471–479. [Google Scholar] [CrossRef]
- Pavesi, L. Porous silicon dielectric multilayers and microcavities. Riv. Nuovo Cim. (1978–1999) 1997, 20, 1–76. [Google Scholar] [CrossRef]
- Sadasivan, V.; Richter, C.; Menon, L.; Williams, P. Electrochemical self-assembly of porous alumina templates. AIChE J. 2005, 51, 649–655. [Google Scholar] [CrossRef]
- Jagminienė, A.; Valinčius, G.; Riaukaitė, A.; Jagminas, A. The influence of the alumina barrier-layer thickness on the subsequent AC growth of copper nanowires. J. Cryst. Growth 2005, 274, 622–631. [Google Scholar] [CrossRef]
- Nielsch, K.; Choi, J.; Schwirn, K.; Wehrspohn, R.; Gösele, U. Self-Ordering Regimes of Porous Alumina: The 10% Porosity Rule. Nano Lett. 2002, 2, 677–680. [Google Scholar] [CrossRef]
- Peng, Q.; Xie, X.; Xu, Q.; Lan, T.; Sun, C.; Zhang, L.; Dong, M. The effect of the current pulse amplitude on the nanopore structures of 3D-AAO films. Microporous Mesoporous Mater. 2020, 309, 110575. [Google Scholar] [CrossRef]
- Montero-Rama, M.; Viterisi, A.; Eckstein, C.; Ferré-Borrull, J.; Marsal, L. In-situ removal of thick barrier layer in nanoporous anodic alumina by constant current Re-anodization. Surf. Coat. Technol. 2019, 380, 125039. [Google Scholar] [CrossRef]
- Tang, H.; Zhou, Z.; Jiao, S.; Zhang, Y.; Li, S.; Zhang, D.; Zhang, J.; Liu, J.; Zhao, D. Radiative cooling of solar cells with scalable and high-performance nanoporous anodic aluminum oxide. Sol. Energy Mater. Sol. Cells 2022, 235, 111498. [Google Scholar] [CrossRef]
- Ho, W.-J.; Cheng, P.-Y.; Hsiao, K.-Y. Plasmonic silicon solar cell based on silver nanoparticles using ultra-thin anodic aluminum oxide template. Appl. Surf. Sci. 2015, 354, 25–30. [Google Scholar] [CrossRef]
- Jiao, F.; Huang, Q.; Ren, W.; Zhou, W.; Qi, F.; Zheng, Y.; Xie, J. Enhanced performance for solar cells with moth-eye structure fabricated by UV nanoimprint lithography. Microelectron. Eng. 2013, 103, 126–130. [Google Scholar] [CrossRef]
- Harraz, F.A.; El-Sheikh, S.M.; Sakka, T.; Ogata, Y.H. Cylindrical pore arrays in silicon with intermediate nano-sizes: A template for nanofabrication and multilayer applications. Electrochim. Acta 2008, 53, 6444–6451. [Google Scholar] [CrossRef]
- Vincent, G. Optical properties of porous silicon superlattices. Appl. Phys. Lett. 1994, 64, 2367–2369. [Google Scholar] [CrossRef]
- Frohnhoff, S.; Berger, M.G. Porous silicon superlattices. Adv. Mater. 1994, 6, 963–965. [Google Scholar] [CrossRef]
- Tsybeskov, L.; Vandyshev, J.V.; Fauchet, P. Blue emission in porous silicon: Oxygen-related photoluminescence. Phys. Rev. B 1994, 49, 7821. [Google Scholar] [CrossRef]
- Setzu, S.; Létant, S.; Solsona, P.; Romestain, R.; Vial, J. Improvement of the luminescence in p-type as-prepared or dye impregnated porous silicon microcavities. J. Lumin. 1998, 80, 129–132. [Google Scholar] [CrossRef]
- Krüger, M.; Marso, M.; Berger, M.; Thönissen, M.; Billat, S.; Loo, R.; Reetz, W.; Lüth, H.; Hilbrich, S.; Arens-Fischer, R. Color-sensitive photodetector based on porous silicon superlattices. Thin Solid Film. 1997, 297, 241–244. [Google Scholar] [CrossRef]
- Bovard, B.G. Rugate filter theory: An overview. Appl. Opt. 1993, 32, 5427–5442. [Google Scholar] [CrossRef] [PubMed]
- Sailor, M.J. Color me sensitive: Amplification and discrimination in photonic silicon nanostructures. ACS Nano 2007, 1, 248–252. [Google Scholar] [CrossRef]
- Canham, L.T. Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers. Appl. Phys. Lett. 1990, 57, 1046–1048. [Google Scholar] [CrossRef]
- Herino, R.; Bomchil, G.; Barla, K.; Bertrand, C.; Ginoux, J.L. Porosity and pore size distributions of porous silicon layers. J. Electrochem. Soc. 1987, 134, 1994. [Google Scholar] [CrossRef]
- Chiba, Y.; Islam, A.; Watanabe, Y.; Komiya, R.; Koide, N.; Han, L. Dye-sensitized solar cells with conversion efficiency of 11.1%. Jpn. J. Appl. Phys. 2006, 45, L638. [Google Scholar] [CrossRef]
- Wang, G.; Wang, J.; An, Y.; Wang, C. Anodization fabrication of 3D TiO2 photonic crystals and their application for chemical sensors. Superlattices Microstruct. 2016, 100, 290–295. [Google Scholar] [CrossRef]
- Liu, K.; Wang, G.; Meng, M.; Chen, S.; Li, J.; Sun, X.; Yuan, H.; Sun, L.; Qin, N. TiO2 nanotube photonic crystal fabricated by two-step anodization method for enhanced photoelectrochemical water splitting. Mater. Lett. 2017, 207, 96–99. [Google Scholar] [CrossRef]
- Ermolaev, G.A.; Kushnir, S.E.; Sapoletova, N.A.; Napolskii, K.S. Titania photonic crystals with precise photonic band gap position via anodizing with voltage versus optical path length modulation. Nanomaterials 2019, 9, 651. [Google Scholar] [CrossRef]
- Rahman, M.M.; Garcia-Caurel, E.; Santos, A.; Marsal, L.F.; Pallarès, J.; Ferré-Borrull, J. Effect of the anodization voltage on the pore-widening rate of nanoporous anodic alumina. Nanoscale Res. Lett. 2012, 7, 474. [Google Scholar] [CrossRef]
- da Silva Bonifacio, L. Structural Color and Odors: Towards a Photonic Crystal Nose Platform; University of Toronto: Toronto, ON, Canada, 2010. [Google Scholar]
- Starkey, T.; Vukusic, P. Light manipulation principles in biological photonic systems. Nanophotonics 2013, 2, 289–307. [Google Scholar] [CrossRef]
- Zhang, Y.; Fu, Q.; Ge, J. Photonic sensing of organic solvents through geometric study of dynamic reflection spectrum. Nat. Commun. 2015, 6, 7510. [Google Scholar] [CrossRef]
- Yang, D.; Tian, H.; Ji, Y. Nanoscale photonic crystal sensor arrays on monolithic substrates using side-coupled resonant cavity arrays. Opt. Express 2011, 19, 20023–20034. [Google Scholar] [CrossRef]
- Zhang, Y.-N.; Zhao, Y.; Lv, R.-Q. A review for optical sensors based on photonic crystal cavities. Sens. Actuators A Phys. 2015, 233, 374–389. [Google Scholar] [CrossRef]
- Martín-Palma, R.; Torres-Costa, V.; Pantano, C. Distributed Bragg reflectors based on chalcogenide glasses for chemical optical sensing. J. Phys. D Appl. Phys. 2009, 42, 055109. [Google Scholar] [CrossRef]
- Lee, W.; Kim, J.-C. Highly ordered porous alumina with tailor-made pore structures fabricated by pulse anodization. Nanotechnology 2010, 21, 485304. [Google Scholar] [CrossRef]
- Chung, C.-K.; Zhou, R.; Liu, T.-Y.; Chang, W. Hybrid pulse anodization for the fabrication of porous anodic alumina films from commercial purity (99%) aluminum at room temperature. Nanotechnology 2009, 20, 055301. [Google Scholar] [CrossRef]
- Białek, E.; Włodarski, M.; Norek, M. Influence of anodization temperature on geometrical and optical properties of porous anodic alumina (PAA)-based photonic structures. Materials 2020, 13, 3185. [Google Scholar] [CrossRef]
- Byrnes, J. Unexploded Ordnance Detection and Mitigation; Springer Science & Business Media: New York, NY, USA, 2008. [Google Scholar]
- Svyakhovskiy, S.E.; Maydykovsky, A.I.; Murzina, T.V. Mesoporous silicon photonic structures with thousands of periods. J. Appl. Phys. 2012, 112, 013106. [Google Scholar] [CrossRef]
- Shang, G.L.; Zhang, Y.; Fei, G.T.; Su, Y.; De Zhang, L. Energy-lose induced unidirectional light propagation in porous alumina photonic crystal. Ann. Phys. 2016, 528, 288–294. [Google Scholar] [CrossRef]
- Choudhari, K.; Kulkarni, S.D.; Unnikrishnan, V.; Sinha, R.K.; Santhosh, C.; George, S.D. Optical characterizations of nanoporous anodic alumina for thickness measurements using interference oscillations. Nano-Struct. Nano-Objects 2019, 19, 100354. [Google Scholar] [CrossRef]
- Ferro, L.M.; Lemos, S.G.; Ferreira, M.; Trivinho-Strixino, F. Use of multivariate analysis on Fabry-Pérot interference spectra of nanoporous anodic alumina (NAA) for optical sensors purposes. Sens. Actuators B Chem. 2017, 248, 718–723. [Google Scholar] [CrossRef]
- Ouyang, H.; Christophersen, M.; Viard, R.; Miller, B.L.; Fauchet, P.M. Macroporous silicon microcavities for macromolecule detection. Adv. Funct. Mater. 2005, 15, 1851–1859. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, Y.; Kumeria, T.; Ding, F.; Evdokiou, A.; Losic, D.; Santos, A. Facile Synthesis of Optical Microcavities by a Rationally Designed Anodization Approach: Tailoring Photonic Signals by Nanopore Structure. ACS Appl. Mater. Interfaces 2015, 7, 9879–9888. [Google Scholar] [CrossRef]
- Bae, K.; Lee, J.; Kang, G.; Yoo, D.-S.; Lee, C.-W.; Kim, K. Refractometric and colorimetric index sensing by a plasmon-coupled hybrid AAO nanotemplate. RSC Adv. 2015, 5, 103052–103059. [Google Scholar] [CrossRef]
- Santos, A.; Law, C.S.; Lei, D.W.C.; Pereira, T.; Losic, D. Fine tuning of optical signals in nanoporous anodic alumina photonic crystals by apodized sinusoidal pulse anodisation. Nanoscale 2016, 8, 18360–18375. [Google Scholar] [CrossRef]
- Santos, A.; Law, C.S.; Pereira, T.; Losic, D. Nanoporous hard data: Optical encoding of information within nanoporous anodic alumina photonic crystals. Nanoscale 2016, 8, 8091–8100. [Google Scholar] [CrossRef]
- Szwachta, G.; Januszewska, B.; Włodarski, M.; Norek, M. From gradient-index to step-index filters: A switch between the two types of photonic crystals induced by the amplitude and period of sinusoidal function applied during high-temperature anodisation of aluminium. Appl. Surf. Sci. 2023, 607, 155031. [Google Scholar] [CrossRef]
- Santos, A.; Pereira, T.; Law, C.S.; Losic, D. Rational engineering of nanoporous anodic alumina optical bandpass filters. Nanoscale 2016, 8, 14846–14857. [Google Scholar] [CrossRef]
- Kumeria, T.; Rahman, M.M.; Santos, A.; Ferre-Borrull, J.; Marsal, L.F.; Losic, D. Structural and optical nanoengineering of nanoporous anodic alumina rugate filters for real-time and label-free biosensing applications. Anal. Chem. 2014, 86, 1837–1844. [Google Scholar] [CrossRef]
- Kumeria, T.; Rahman, M.M.; Santos, A.; Ferré-Borrull, J.; Marsal, L.F.; Losic, D. Nanoporous anodic alumina rugate filters for sensing of ionic mercury: Toward environmental point-of-analysis systems. ACS Appl. Mater. Interfaces 2014, 6, 12971–12978. [Google Scholar] [CrossRef]
- Nemati, M.; Santos, A.; Law, C.S.; Losic, D. Assessment of binding affinity between drugs and human serum albumin using nanoporous anodic alumina photonic crystals. Anal. Chem. 2016, 88, 5971–5980. [Google Scholar] [CrossRef]
- Santos, A.; Yoo, J.H.; Rohatgi, C.V.; Kumeria, T.; Wang, Y.; Losic, D. Realisation and advanced engineering of true optical rugate filters based on nanoporous anodic alumina by sinusoidal pulse anodisation. Nanoscale 2016, 8, 1360–1373. [Google Scholar] [CrossRef]
- Guo, M.; Xie, K.; Wang, Y.; Zhou, L.; Huang, H. Aperiodic TiO2 nanotube photonic crystal: Full-visible-spectrum solar light harvesting in photovoltaic devices. Sci. Rep. 2014, 4, 1–6. [Google Scholar] [CrossRef]
- Wu, W.; Zhang, Z. Defect-engineered TiO2 nanotube photonic crystals for the fabrication of near-infrared photoelectrochemical sensor. J. Mater. Chem. B 2017, 5, 4883–4889. [Google Scholar] [CrossRef]
- Wang, J.; Sailor, M.J.; Chang, B.-Y. Fabrication of a Lateral Gradient Rugate in Porous Silicon for a Miniature Spectrometer Application. ChemElectroChem 2019, 6, 5967–5972. [Google Scholar] [CrossRef]
- Sharma, P.; Sun, X.; Parish, G.; Keating, A. Optimising porous silicon electrical properties for thermal sensing applications. Microporous Mesoporous Mater. 2021, 312, 110767. [Google Scholar] [CrossRef]
- Caroselli, R.; Sánchez, D.M.; Alcántara, S.P.; Quilez, F.P.; Morán, L.T.; García-Rupérez, J. Real-Time and In-Flow Sensing Using a High Sensitivity Porous Silicon Microcavity-Based Sensor. Sensors 2017, 17, 2813. [Google Scholar] [CrossRef]
Preparation Method | Electrolyte | Formed Structure | Descriptions | Ref. |
---|---|---|---|---|
Periodic-pulse anodization | 0.5 wt% NH4 | TNT PCs | Acted as a sensor where the air in the pores of the PCs was replaced by liquids with a greater RI. The photonic band gap for the PCs that were analyte soaked moved to a longer wavelength as a result. | [165] |
Two-step periodic-pulse anodization | 0.3 M H2SO4 | AAO–DBR | Acted as a chemical sensor where the analyte’s infiltration and RI were detected by the wavelength and intensity of the reflected light. | [28] |
Two-step periodic-pseudo-sinusoidal anodization | An aqueous solution of C2H2O4 | AAO–GIF | The obtained results demonstrated that the AAO–GIF structure was sensitive towards changes in the effective RI, which offered a low limit of detection of 0.01 M (i.e., RI of 1.333) and a sensitivity of 4.93 nm M−1 (i.e., 164 nm per RI units). | [190] |
Multi-sinusoidal pulse anodization | 1.1 M H2SO4 | AAO–GIF | The results show that the AAO–GIF is durable, chemically stable, adaptable, and has several special data-storage features, creating new prospects for the development of powerful nanophotonic instruments for a variety of applications, including sensing and photonic tagging. | [187] |
Pulse anodization | 0.5 wt% NH4 | TNT PCs | The coupling of TNT PCs into the photoanode of a dye-sensitized solar cell could achieve nearly full-visible-spectra light harvesting, which could lead to more fruitful practical applications of TNT PCs in high-efficiency photovoltaics, sensors, and optoelectronic devices. | [194] |
Two-step anodization | 0.5 wt% NH4F | TNT PCs | It is suggested to use defect TNT PCs as the photoelectrode and dopamine as the target molecule for the near-infrared light-responsive PEC-analysis platform. | [195] |
Two-step sinusoidal anodization | Aqueous 48% HF | pSi | The resulting structure (pSi film) was oxidized to produce a transparent spectrum filter that could be used with a digital camera (from a smartphone) to construct a tiny spectrometer. | [196] |
Multistep anodization | HF/ethanol electrolyte | pSi–DBR | These investigations focus on the use of pSi films as the sensing element in bolometers, which have the potential to solve the performance and material compatibility concerns associated with current technologies such as amorphous Si and vanadium oxide in the long-wave infrared range. | [197] |
Sinusoidal-pulse anodization | 0.3 M oxalic acid | AAO–GIF | The impact of the applied-pulse amplitude and anodization period on the optical characteristics of the resulting gradient-index PAA was investigated. | [188] |
Periodic anodization | HF/ethanol electrolyte | pSi–microcavity | A pSi microcavity structure was proposed as a sensor for real-time flow-sensing applications. | [198] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abd-Elnaiem, A.M.; Mohamed, Z.E.A.; Elshahat, S.; Almokhtar, M.; Norek, M. Recent Progress in the Fabrication of Photonic Crystals Based on Porous Anodic Materials. Energies 2023, 16, 4032. https://doi.org/10.3390/en16104032
Abd-Elnaiem AM, Mohamed ZEA, Elshahat S, Almokhtar M, Norek M. Recent Progress in the Fabrication of Photonic Crystals Based on Porous Anodic Materials. Energies. 2023; 16(10):4032. https://doi.org/10.3390/en16104032
Chicago/Turabian StyleAbd-Elnaiem, Alaa M., Zain Elabdeen A. Mohamed, Sayed Elshahat, Mohamed Almokhtar, and Małgorzata Norek. 2023. "Recent Progress in the Fabrication of Photonic Crystals Based on Porous Anodic Materials" Energies 16, no. 10: 4032. https://doi.org/10.3390/en16104032
APA StyleAbd-Elnaiem, A. M., Mohamed, Z. E. A., Elshahat, S., Almokhtar, M., & Norek, M. (2023). Recent Progress in the Fabrication of Photonic Crystals Based on Porous Anodic Materials. Energies, 16(10), 4032. https://doi.org/10.3390/en16104032