Economic Efficiency of Solar and Rainwater Systems—A Case Study
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion and Conclusions
- Theoretically possible amount of energy falling per day on the differently inclined and south-facing area;
- The mean intensity of solar radiation falling on various inclined south-facing flat surfaces;
- Average monthly relative lightness;
- Average monthly temperature in time of sunlight;
- Level of atmospheric pollution.
- The solar system used for hot water heating with an average guest occupancy of 110 guests/day, accepting the use of the accommodation capacity during three months of the year at 80%, is after seven years;
- The rainwater system, which can replace only approx. 60% of the average water consumption by guests due to the area of the roof from which rainwater can be collected, the return on investment is only after 15 years;
- The investment cost and the return on investment may vary in different countries, but they are similar in EU countries for both the solar and rainwater systems, based on available studies.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Gabániová, Ľ.; Čulková, K.; Seňová, A. Comparison of business environment in the chosen regions. BOHR Int. J. Financ. Mark. Res. 2022, 1, 82–86. [Google Scholar]
- Ko, Y.C.; Fujita, H.; Li, T. An evidential analysis of Altman Z-score for financial predictions: Case study on solar energy companies. Appl. Soft Comput. 2017, 52, 748–759. [Google Scholar] [CrossRef]
- Šimková, Z.; Očenášová, M.; Tudoš, D.; Róth, B. The political frame of the European Union for mining of non-energetic raw materials. Acta Montan. Slovaca 2019, 24, 35–43. [Google Scholar]
- Kozubíková, L.; Homolka, L.; Kristalas, D. The effect of business environment and entrepreneurs’ gender on perception of financial risk in the SMEs sector. J. Compet. 2017, 9, 36–50. [Google Scholar] [CrossRef] [Green Version]
- Puzder, M.; Pavlik, T.; Molokáč, M.; Hlavňová, B.; Vaverečka, N.; Samaneh, I.B.A. Cost-ratio model proposal and consequential evaluation of model solutions of manufacturing process in mining company. Acta Montan. Slovaca 2017, 22, 270–277. [Google Scholar]
- Mazzarol, T. Research review: A review of the latest research in the field of small business and entrepreneurship. Financial management in SMEs. Enterp. Res. 2014, 21, 2–13. [Google Scholar] [CrossRef]
- Čech, V.; Gregorová, B.; Krokusová, J.; Košová, V.; Hronček, P.; Molokáč, M.; Hlaváčová, J. Environmentally degraded mining areas of eastern Slovakia as a potential object of geotourism. Sustainability 2020, 12, 6029. [Google Scholar] [CrossRef]
- Virglerova, Z.; Dobes, K.; Vojtovic, S. The perception of the state’s influence on its business environment in the SMEs from Czech Republic. Rev. Adm. Si Manage. Public 2016, 14, 78–96. [Google Scholar]
- Taušová, M.; Tauš, P.; Domaracká, L. Sustainable development according to resource productivity in the EU environmental policy context. Energies 2022, 15, 4291. [Google Scholar] [CrossRef]
- Akhmadeev, B.; Manakhov, S. Effective and sustainable cooperation between start-ups, ven-ture investors, and corporations. J. Secur. Sustain. Issues 2015, 5, 269–284. [Google Scholar]
- Kinkade-Levario, H. Design for Water: Rainwater Harvesting, Stormwater Catchment and Alternate Water Use; New society publishers: Gabriola Island, BC, USA, 2007. [Google Scholar]
- Rybár, P.; Molokáč, M.; Hvizdák, L.; Khouri, S. Creation centres of mining tourism. In Production Management and Engineering Sciences: Proceedings of the International Conference on Engineering Science and Production Management, Tatranská Štrba, Slovakia, 16–17 April 2015; CRC Press: Boca Raton, FL, USA, 2015; pp. 253–257. [Google Scholar]
- Croston, G.E. Starting green: From Business Plan to Profits: An Ecopreneu’s Toolkit for Starting A Green Business; Entrepreneur Press: Irvine, CA, USA, 2009. [Google Scholar]
- Korcsmáros, E.; Mura, L.; Šimonová, M. Identification of small and medium-sized enterprises development in Slovakia. J. Appl. Econ. Sci. 2017, 12, 1702–1712. [Google Scholar]
- Pavolová, H.; Bakalár, T.; Kyšeľa, K.; Klimek, M.; Hajduová, Z.; Zawada, M. The analysis of investment into industries based on portfolio managers. Acta Montan. Slovaca 2021, 26, 161–170. [Google Scholar]
- Renner, A. Does Carbon-Conscious Behavior Drive Firm Performance? An Event Study on the Global 500 Companies; Gabler Verlag: Wiesbaden, Germany, 2011. [Google Scholar]
- Mura, L.; Daňová, M.; Vavrek, R.; Dúbravská, M. Economic freedom—Classification of its level and impact on the economic security. AD ALTA-J. Interdiscip. Res. 2017, 7, 154–157. [Google Scholar]
- Brodziński, Z.; Brodzińska, K.; Szadziun, M. Photovoltaic Farms—Economic Efficiency of Investments in North-East Poland. Energies 2021, 14, 2087. [Google Scholar] [CrossRef]
- Gillingham, K. Economic efficiency of solar hot water policy in New Zealand. Energy Policy 2009, 37, 3336–3347. [Google Scholar] [CrossRef]
- Gulaliyev, M.G.; Mustafayev, E.R.; Mehdiyeva, G.Y. Assessment of Solar Energy Potential and Its Ecological-Economic Efficiency: Azerbaijan Case. Sustainability 2020, 12, 1116. [Google Scholar] [CrossRef] [Green Version]
- Lima, J.B.A.; Prado, R.T.A.; Taborianski, V.M. Optimization of tank and flat-plate collector of solar water heating system for single-family households to assure economic efficiency through the TRNSYS program. Renew. Energy 2006, 31, 1581–1595. [Google Scholar] [CrossRef]
- Huyen, C.T.T.; Phap, V.M.; Nga, N.T. Study on Performance and Economic Efficiency of Solar Power on Agricultural Land: A case study in Central Region, Vietnam. Int. J. Renew. Energy Res. 2021, 11, 842–850. [Google Scholar]
- Kodirov, D.; Tursunov, O.; Ahmedov, A.; Khakimov, R.; Rakhmataliev, M. Economic efficiency in the use of solar energy: A case study of Agriculture in Uzbekistan. IOP Conf. Ser. Earth Environ. Sci. 2020, 614, 012031. [Google Scholar] [CrossRef]
- Uniiat, L. Economic efficiency of using solar energy in the agroindustrial business. EUREKA: Soc. Humanit. 2018, 2, 9–18. [Google Scholar] [CrossRef] [Green Version]
- Kabir, K.; Gilani, S.M.; Rehmanc, G.; Sabahat, S.H.; Popp, J.; Shehzad Hassan, M.A.; Oláh, J. Energy-aware caching and collaboration for green communication systems. Acta Montan. Slovaca 2021, 26, 47–59. [Google Scholar]
- Ali, L.M.A.; Ali, Q.A.; Klačková, I.; Issa, H.A.; Yakimovich, B.A.; Kuvshimov, V. Developing a thermal design for steam power plants by using concentrating solar power technologies for a clean environment. Acta Montan. Slovaca 2021, 26, 773–783. [Google Scholar]
- Campisi, D.; Gitto, S.; Morea, D. An Evaluation of Energy and Economic Efficiency in Residential Buildings Sector: A Multi-criteria Analisys on an Italian Case Study. Int. J. Energy Econ. Policy 2018, 8, 185–196. [Google Scholar]
- Srinivasan, V.; Gorelick, S.M.; Goulder, L. Sustainable urban water supply in south India: Desalination, efficiency improvement, or rainwater harvesting? Water Resour. Res. 2010, 46, W10504. [Google Scholar] [CrossRef] [Green Version]
- Pavolová, H.; Bakalár, T.; Kudelas, D.; Puškárová, P. Environmental and economic assessment of rainwater application in households. J. Clean. Prod. 2019, 209, 1119–1125. [Google Scholar] [CrossRef]
- Dallman, S.; Chaudhry, A.M.; Muleta, M.K.; Lee, J. The Value of Rain: Benefit-Cost Analysis of Rainwater Harvesting Systems. Water Resour. Manage. 2016, 30, 4415–4428. [Google Scholar] [CrossRef]
- Ruso, M.; Akıntuğ, B.; Kentel, E. Optimum tank size for a rainwater harvesting system: Case study for Northern Cyprus. IOP Conf. Ser. Earth Environ. Sci. 2019, 297, 012026. [Google Scholar] [CrossRef] [Green Version]
- Rafiqul Islam, M. Factors influencing economic benefit of rainwater harvesting: An empirical analysis. AQUA Water Infrastruct. Ecosyst. Soc. 2022, corrected proof. [Google Scholar] [CrossRef]
- Czernek, K.; Ochowiak, M.; Janecki, D.; Zawilski, T.; Dudek, L.; Witczak, S.; Krupińska, A.; Matuszak, M.; Włodarczak, S.; Hyrycz, M.; et al. Sedimentation Tanks for Treating Rainwater: CFD Simulations and PIV Experiments. Energies 2021, 14, 7852. [Google Scholar] [CrossRef]
- Mészáros, A. Ekonomická efektívnosť obnoviteľných zdrojov energie. Elektroenergetika 2012, 5, 27–30. [Google Scholar]
- Cehlár, M.; Kyseľová, K. Implements of economic decision making. Acta Montan. Slovaca 2000, 5, 147–150. [Google Scholar]
- Bindzarova Gergelova, M.; Kuzevicova, Z.; Labant, S.; Kuzevic, S.; Bobikova, D.; Mizak, J. Roof’s Potential and Suitability for PV Systems Based on LiDAR: A Case Study of Komárno, Slovakia. Sustainability 2020, 122, 18. [Google Scholar]
- Tažiková, A.; Struková, Z.; Talian, J.; Ficiková, A. Cost analysis for Construction of Photovoltaic Roofing. TEM J. 2020, 9, 1508–1513. [Google Scholar] [CrossRef]
- Perers, B. The solar resource in cold climates. In Photovoltaics in Cold Climates, 1st ed.; Ross, M., Royer, J., Eds.; Routledge: New York, NY, USA, 1999. [Google Scholar]
- Malik, S.A.; Ayop, A.R. Solar energy technology: Knowledge, awareness, and acceptance of B40 households in one district of Malaysia towards government initiatives. Technol. Soc. 2020, 63, 101416. [Google Scholar] [CrossRef]
- Elprotech: Solárne Strešné Systémy. Available online: https://www.elprotech.sk/solarne-systemy-ohrev-tuv-bazeny.php (accessed on 29 August 2022).
- Fáber, A. Slnko k Službám, Možnosti Využitia Slnečnej Energie, 1st ed.; Energetické centrum: Bratislava, Slovakia, 2010. [Google Scholar]
- Babatunde, A.A.; Abbasoglu, S.; Senol, M. Analysis of the impact of dust, tilt angle and orientation on performance of PV Plants. Renew. Sustain. Energy Rev. 2018, 90, 1017–1026. [Google Scholar] [CrossRef]
- Oyewola, O.M.; Patchali, T.E.; Ajide, O.O.; Singh, S.; Matthew, O.J. Global solar radiation predictions in Fiji Islands based on empirical models. Alex. Eng. J. 2022, 61, 8555–8571. [Google Scholar] [CrossRef]
- Bataineh, K.M.; Abbas, M.A. Performance analysis of solar still integrated with internal reflectors and fins. Sol. Energy 2020, 205, 22–36. [Google Scholar] [CrossRef]
- Mustafa, J.; Alqaed, S.; Almehmadi, F.A.; Jamil, B. Development and comparison of parametric models to predict global solar radiation: A case study for the southern region of Saudi Arabia. J. Therm. Anal. Calorim. 2022, 147, 9559–9589. [Google Scholar] [CrossRef]
- Piaskowska-Silarska, M.; Hudy, W.; Noga, H.; Kulinowski, W.; Pytel, K.; Gumula, S. Energy and economic analysis of the relationship between the intensity of solar radiation and air pollution. In Proceedings of the 19th International Carpathian Control Conference (ICCC), Szilvásvárad, Hungary, 28–31 March 2018. [Google Scholar]
- Zscheischler, J.; Westra, S.; van den Hurk, B.J.J.M.; Seneviratne, S.I.; Ward, P.J.; Pitman, A.; AghaKouchak, A.; Bresch, D.N.; Leonard, M.; Wahl, T.; et al. Future climate risk from compound events. Nat. Clim. Chang. 2018, 8, 469–477. [Google Scholar] [CrossRef]
- Miller, J.D.; Hutchins, M. The impacts of urbanisation and climate change on urban flooding and urban water quality: A review of the evidence concerning the United Kingdom. J. Hydrol. Reg. Stud. 2017, 12, 345–362. [Google Scholar]
- Pille, L.; Säumel, I. The water-sensitive city meets biodiversity: Habitat services of rain water management measures in highly urbanized landscapes. Ecol. Soc. 2021, 26, 23. [Google Scholar] [CrossRef]
- Sun, Y.; Deng, L.; Pan, S.; Chiang, P.; Sable, S.S.; Shah, K.J. Integration of green and gray infrastructures for sponge city: Water and energy nexus. Water-Energy Nexus 2020, 3, 29–40. [Google Scholar] [CrossRef]
- Radonic, L. Becoming with rainwater: A study of hydrosocial relations and subjectivity in a desert city. Econ. Anthropol. 2019, 6, 291–303. [Google Scholar] [CrossRef]
- Godyń, I.; Grela, A.; Stajno, D.; Tokarska, P. Sustainable rainwater management concept in a housing estate with a financial feasibility assessment and motivational rainwater fee system efficiency analysis. Water 2020, 12, 151. [Google Scholar] [CrossRef] [Green Version]
- Fathollahi-Fard, A.M.; Ahmadi, A.; Al-e-Hashem, S.M.J.M. Sustainable closed-loop supply chain network for an integrated water supply and wastewater collection system under uncertainty. J. Environ. Manage. 2020, 275, 111277. [Google Scholar] [CrossRef]
- Voulvoulis, N. Water reuse from a circular economy perspective and potential risks from an unregulated approach. Curr. Opin. Environ. Sci. Health 2018, 2, 32–45. [Google Scholar] [CrossRef]
- Tietenberg, T.; Lewis, L. Environmental and Natural Resource Economics, 11th ed.; Routledge: New York, NY, USA; Abingdon, UK, 2018. [Google Scholar]
- Suhányi, L.; Suhányiová, A.; Korečko, J.; Bednárová, L.; Kádárová, J.; Derkawi, H.; Bačová, K. Relations between the inflow of foreign direct investments and economic indicators in OECD countries. Acta Montan. Slovaca 2021, 26, 810–824. [Google Scholar]
- Antunes, L.N.; Ghisi, E.; Severis, R.M. Environmental assessment of a permeable pavement system used to harvest stormwater for non-potable water uses in a building. Sci. Total Environ. 2020, 746, 141087. [Google Scholar] [CrossRef]
- Shiguang, C.; Hongwei, S.; Song, L.; Qiuli, C. Economical viability analysis of an innovative gravity-driven rainwater harvesting system for a commercial office building. Water Environ. J. 2022, in print, 1–12. [Google Scholar] [CrossRef]
- Sakson, G. Cost analysis of a rainwater harvesting system in Poland. E3S Web Conf. 2018, 45, 78. [Google Scholar] [CrossRef]
- Ebrahimia, P.; Saravi, M.M. Economic Study of the Rainwater Collection System in Drought Conditions. Water Harvest. Res. 2021, 4, 227–237. [Google Scholar]
Component | Number | Unit Price | Total Price |
---|---|---|---|
Flat solar collector TS 500 | 32 pcs | EUR 491.76 | EUR 15,736.32 |
Assembly set | 1 pc | EUR 617.52 | EUR 617.52 |
Support structure for a pair of collectors | 16 pcs | EUR 189.49 | EUR 3031.84 |
Accessories to the supporting structure | 1 pc | EUR 285.92 | EUR 285.92 |
Dilatation stopper | 1 pc | EUR 34.80 | EUR 34.80 |
Single-line pump unit Grundfos | 1 pc | EUR 804.00 | EUR 804.00 |
Two-line pump unit Regusol | 1 pc | EUR 1266.00 | EUR 1266.00 |
Expansion tank | 1 pc | EUR 197.74 | EUR 197.74 |
Stainless steel pipe DN 20 with insulation | 20 m | EUR 14.95 | EUR 299.00 |
Transitions, reduced nipples, double clasp | - | - | EUR 333.08 |
Nuts, gaskets, insulating tapes | - | - | EUR 272.80 |
Regulus R2BC 1000 | 3 pcs | EUR 2210.40 | EUR 6631.20 |
Pressure sensor | 1 pc | EUR 73.14 | EUR 73.14 |
Temperature sensor with regulator | 1 pc | EUR 158.10 | EUR 158.10 |
Heat pump WP2S | 1 pc | EUR 4450.00 | EUR 4450.00 |
Ground collector | 1 pc | EUR 177.60 | EUR 177.60 |
Heat transfer fluid Thesol (240 l) | 1 pc | EUR 943.92 | EUR 943.92 |
Additional components and parts | - | EUR 150.00 | |
SUM OF SYSTEM COMPONENTS TOTAL | EUR 35,462.98 | ||
-discount on the total value of the components (15%) | EUR 5319.48 | ||
SUM OF COMPONENTS, INCLUDING DISCOUNT | EUR 30,143.50 | ||
+ price of complete assembly and cartage of the solar system (25% of the price including discount) | EUR 7535.88 | ||
SOLAR SYSTEM TOTAL | EUR 37,679.38 |
Year | Costs, EUR | Revenues, EUR | Interest Rate, % | Return, EUR | Savings, EUR |
---|---|---|---|---|---|
0 | −37,679.38 | 0.00 | 0 | −37,679.38 | −37,679.38 |
1 | 0 | 5240.88 | 0.03 | 5088.23 | −32,591.15 |
2 | 0 | 5476.72 | 0.03 | 5162.33 | −27,428.81 |
3 | 0 | 5723.17 | 0.03 | 5237.51 | −22,191.30 |
4 | 0 | 5980.71 | 0.03 | 5313.79 | −16,877.51 |
5 | 0 | 6249.85 | 0.03 | 5391.17 | −11,486.34 |
6 | 0 | 6531.09 | 0.03 | 5469.69 | −6016.65 |
7 | −943.92 | 6824.99 | 0.03 | 5549.34 | −467.31 |
8 | 0 | 7132.11 | 0.03 | 4885.02 | 4417.70 |
9 | 0 | 7453.06 | 0.03 | 5712.15 | 10,129.85 |
10 | 0 | 7788.45 | 0.03 | 5795.34 | 15,925.19 |
Months in a Year | Capacity | Water Consumption, L/day | ||
---|---|---|---|---|
Toilets | Laundry Room | Housekeeping | ||
01–05 | 30% | 925.2 | 130 | 111.6 |
06–08 | 80% | 2467.8 | 325 | 296.1 |
09–12 | 30% | 925.2 | 130 | 111.6 |
Summary calculations depending on the use of accommodation capacity, L/year | ||||
01–05 | 30% | 138,780 | 19,500 | 16,740 |
06–08 | 80% | 222,102 | 29,250 | 26,649 |
09–12 | 30% | 138,780 | 19,500 | 16,740 |
Predicted need for rainwater (Sum) | 499,662 | 68,250 | 60,129 |
Components | Price, EUR |
---|---|
Underground storage tank CARAT S—XXL | 8300 |
Filter device (set) | 260 |
Technical set for water refilling ECO PLUS | 1190 |
Self-suction pump SPERONI RSM 50 | 300 |
inlet pipes and protective discharge valve | 135 |
assembly work and cartage | 350 |
Total costs | 10,535 |
Year | Costs, EUR | Revenues, EUR | Interest Rate, % | Return, EUR | Savings, EUR |
---|---|---|---|---|---|
0 | −10,535 | 0.00 | 0 | −10,535 | −10,535 |
1 | −49 | 587.52 | 0.03 | 522.84 | −10,012.16 |
2 | −49 | 625.71 | 0.03 | 543.6 | −9468.56 |
3 | −49 | 666.38 | 0.03 | 564.99 | −8903.57 |
4 | −49 | 709.70 | 0.03 | 587.02 | −8316.55 |
5 | −49 | 755.82 | 0.03 | 609.71 | −7706.84 |
6 | −49 | 804.95 | 0.03 | 633.1 | −7073.74 |
7 | −49 | 857.28 | 0.03 | 657.20 | −6416.54 |
8 | −49 | 913.00 | 0.03 | 682.05 | −5734.49 |
9 | −49 | 972.34 | 0.03 | 707.67 | −5026.82 |
10 | −49 | 1035.55 | 0.03 | 734.08 | −4292.74 |
11 | −49 | 1102.86 | 0.03 | 761.33 | −3531.41 |
12 | −49 | 1174.54 | 0.03 | 789.43 | −2741.98 |
13 | −49 | 1250.89 | 0.03 | 818.43 | −1923.55 |
14 | −49 | 1332.19 | 0.03 | 848.34 | −1075.21 |
15 | −49 | 1418.79 | 0.03 | 879.21 | −196.00 |
16 | −49 | 1511.01 | 0.03 | 911.08 | 715.08 |
17 | −49 | 1609.22 | 0.03 | 943.96 | 1659.04 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bednárová, L.; Pavolová, H.; Šimková, Z.; Bakalár, T. Economic Efficiency of Solar and Rainwater Systems—A Case Study. Energies 2023, 16, 504. https://doi.org/10.3390/en16010504
Bednárová L, Pavolová H, Šimková Z, Bakalár T. Economic Efficiency of Solar and Rainwater Systems—A Case Study. Energies. 2023; 16(1):504. https://doi.org/10.3390/en16010504
Chicago/Turabian StyleBednárová, Lucia, Henrieta Pavolová, Zuzana Šimková, and Tomáš Bakalár. 2023. "Economic Efficiency of Solar and Rainwater Systems—A Case Study" Energies 16, no. 1: 504. https://doi.org/10.3390/en16010504
APA StyleBednárová, L., Pavolová, H., Šimková, Z., & Bakalár, T. (2023). Economic Efficiency of Solar and Rainwater Systems—A Case Study. Energies, 16(1), 504. https://doi.org/10.3390/en16010504