Heat Recovery from a Wastewater Treatment Process—Case Study
Abstract
:1. Introduction
2. Methodology
2.1. Facility/System Description
2.2. Meteorological Data
2.3. Measurement Data of Wastewater Treatment Process Parameters
2.4. Calculation Model
3. Results and Discussion
3.1. Evaluation of the Heat Recovery Potential
3.2. Analysis of Selected Solution Alternatives
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hervás-Blasco, E.; Navarro-Peris, E.; Corberán, J.M. Closing the residential energy loop: Grey-water heat recovery system for domestic hot water production based on heat pumps. Energy Build. 2020, 216, 109962. [Google Scholar] [CrossRef]
- McNabola, A.; Shields, K. Efficient drain water heat recovery in horizontal domestic shower drains. Energy Build. 2013, 59, 44–49. [Google Scholar] [CrossRef]
- Torras, S.; Oliet, C.; Rigola, J.; Oliva, A. Drain water heat recovery storage-type unit for residential housing. Appl. Therm. Eng. 2016, 103, 670–683. [Google Scholar] [CrossRef] [Green Version]
- Farman Ali, S.; Gillich, A. The potential of the heat recovery from urban sewage wastewater for use in residential and commercial buildings. In Proceedings of the Cibse Ashrae Technical Symposium, Glasgow, UK, 16–17 April 2020. [Google Scholar]
- Li, H.; He, W.; Feng, G.; Qin, Y. Design of New Type Waste Gas/Wastewater Dual—Source Heat Pump Energy Cascade Recovery System in Campus Bath. Procedia Eng. 2017, 205, 3328–3333. [Google Scholar] [CrossRef]
- Baek, N.C.; Shin, U.C.; Yoon, J.H. A study on the design and analysis of a heat pump heating system using wastewater as a heat source. Sol. Energy 2005, 78, 427–440. [Google Scholar] [CrossRef]
- Hepbasli, A.; Biyik, E.; Ekren, O.; Gunerhan, H.; Araz, M. A key review of wastewater source heat pump (WWSHP) systems. Energy Convers. Manag. 2014, 88, 700–722. [Google Scholar] [CrossRef]
- Kahraman, A.; Çelebi, A. Investigation of the Performance of a Heat Pump Using Waste Water as a Heat Source. Energies 2009, 2, 697–713. [Google Scholar] [CrossRef]
- Meggers, F.; Leibundgut, H. The potential of wastewater heat and exergy: Decentralized high-temperature recovery with a heat pump. Energy Build. 2011, 43, 879–886. [Google Scholar] [CrossRef]
- Đurđević, D.; Balić, D.; Franković, B. Wastewater heat utilization through heat pumps: The case study of City of Rijeka. J. Clean. Prod. 2019, 231, 207–213. [Google Scholar] [CrossRef]
- Zhao, X.L.; Fu, L.; Zhang, S.G.; Jiang, Y.; Lai, Z.L. Study of the performance of an urban original source heat pump system. Energy Convers. Manag. 2010, 51, 765–770. [Google Scholar] [CrossRef]
- Wehbi, Z.; Taher, R.; Faraj, J.; Ramadan, M.; Castelain, C.; Khaled, M. A short review of recent studies on wastewater heat recovery systems: Types and applications. Energy Rep. 2022, 8 (Suppl. S9), 896–907. [Google Scholar] [CrossRef]
- Bohra, V.; Ahamad, K.U.; Kela, A.; Vaghela, G.; Sharma, A.; Deka, B.J. Chapter 2—Energy and resources recovery from wastewater treatment systems. In Clean Energy and Resource Recovery; An, A., Tyagi, V., Kumar, M., Cetecioglu, Z., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 17–36. [Google Scholar] [CrossRef]
- Reiners, T.; Gross, M.; Altieri, L.; Wagner, H.-J.; Bertsch, V. Heat pump efficiency in fifth generation ultra-low temperature district heating networks using a wastewater heat source. Energy 2021, 236, 121318. [Google Scholar] [CrossRef]
- Postrioti, L.; Baldinelli, G.; Bianchi, F.; Buitoni, G.; Di Maria, F.; Asdrubali, F. An experimental setup for the analysis of an energy recovery system from wastewater for heat pumps in civil buildings. Appl. Therm. Eng. 2016, 102, 961–971. [Google Scholar] [CrossRef]
- Chae, K.-J.; Ren, X. Flexible and stable heat energy recovery from municipal wastewater treatment plants using a fixed-inverter hybrid heat pump system. Appl. Energy 2016, 179, 565–574. [Google Scholar] [CrossRef]
- Cipolla, S.S.; Maglionico, M. Heat Recovery from Urban Wastewater: Analysis of the Variability of Flow Rate and Temperature in the Sewer of Bologna, Italy. Energy Procedia 2014, 45, 288–297. [Google Scholar] [CrossRef] [Green Version]
- Liangdong, M.; Tixiu, R.; Tianjiao, Z.; Tianyi, Z.; Jili, Z. Experimental study on effect of operating parameters on performance of serially cascaded wastewater source heat pump. J. Build. Eng. 2020, 32, 101458. [Google Scholar] [CrossRef]
- Cipolla, S.S.; Maglionico, M. Heat recovery from urban wastewater: Analysis of the variability of flow rate and temperature. Energy Build. 2014, 69, 122–130. [Google Scholar] [CrossRef]
- Somogyi, V.; Sebestyén, V.; Domokos, E. Assessment of wastewater heat potential for district heating in Hungary. Energy 2018, 163, 712–721. [Google Scholar] [CrossRef]
- Todorović, D.; Tomić, M.; Bojanić, R.; Bajatović, D.; Anđelković, A.S. A comparative analysis of a heat pump application with grey wastewater source for domestic hot water preparation in hotels. J. Therm. Anal. Calorim. 2020, 141, 559–572. [Google Scholar] [CrossRef]
- Ninikas, K.; Hytiris, N.; Emmanuel, R.; Aaen, B. Recovery and Valorisation of Energy from Wastewater Using a Water Source Heat Pump at the Glasgow Subway: Potential for Similar Underground Environments. Resources 2019, 8, 169. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Jiang, Y.; Gao, B.; Liu, Z.; Liu, J. Thermodynamic analysis on an instantaneous water heating system of shower wastewater source heat pump. J. Water Reuse Desalin. 2018, 8, 404–411. [Google Scholar] [CrossRef] [Green Version]
- Qin, N.; Hao, P.Z. The operation characteristics of sewage source heat pump system and the analysis of its thermal economic benefits. Appl. Therm. Eng. 2017, 124, 1083–1089. [Google Scholar] [CrossRef]
- Neugebauer, G.; Kretschmer, F.; Kollmann, R.; Narodoslawsky, M.; Ertl, T.; Stoeglehner, G. Mapping Thermal Energy Resource Potentials from Wastewater Treatment Plants. Sustainability 2015, 7, 12988–13010. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Ma, L.; Zhang, J. Application of a heat pump system using untreated urban sewage as a heat source. Appl. Therm. Eng. 2014, 62, 747–757. [Google Scholar] [CrossRef]
- Mi, P.; Ma, L.; Zhang, J. Integrated optimization study of hot water supply system with multi-heat-source for the public bath based on PVT heat pump and water source heat pump. Appl. Therm. Eng. 2020, 176, 115146. [Google Scholar] [CrossRef]
- Qiang, W.; Xiaoming, Z.; Xinqi, G.; Xu, C.; Meize, X. Experiments on the characteristics of a sewage water source heat pump system for heat recovery from bath waste. Appl. Therm. Eng. 2022, 204, 117956. [Google Scholar] [CrossRef]
- Gruber-Glatzl, W.; Brunner, C.; Meitz, S.; Schnitzer, H. From the Wastewater Treatment Plant to the Turnstiles of Urban Water and District Heating Networks. Front. Sustain. Cities 2020, 2, 523698. [Google Scholar] [CrossRef]
- Nagpal, H.; Spriet, J.; Krishna Murali, M.; McNabola, A. Heat Recovery from Wastewater—A Review of Available Resource. Water 2021, 13, 1274. [Google Scholar] [CrossRef]
- Shen, C.; Lei, Z.; Wang, Y.; Zhang, C.; Yao, Y. A review on the current research and application of wastewater source heat pumps in China. Therm. Sci. Eng. Prog. 2018, 6, 140–156. [Google Scholar] [CrossRef]
- Zhang, Q.; Nie, Q.; Liu, F.; Yin, C. Technology and Economic Analysis of Sewage Source Heat Pump Combined Type District Heating Method. Energy Procedia 2017, 142, 1312–1318. [Google Scholar] [CrossRef]
- Shen, C.; Jiang, Y.; Yao, Y.; Deng, S. Experimental performance evaluation of a novel dry-expansion evaporator with defouling function in a wastewater source heat pump. Appl. Energy 2012, 95, 202–209. [Google Scholar] [CrossRef]
- Słyś, D.; Kordana, S. Waste Heat Recovery in Installations and Sewage Systems; KaBe s.c. Publishing House and Book Trade: Krosno, Poland, 2013. [Google Scholar]
- Kretschmer, F.; Hrdy, B.; Neugebauer, G.; Stoeglehner, G. Wastewater Treatment Plants as Local Thermal Power Stations—Modifying Internal Heat Supply for Covering External Heat Demand. Processes 2021, 9, 1981. [Google Scholar] [CrossRef]
- Dymaczewski, Z.; Oleszkiewicz, J.A.; Sozański, M.M. Wastewater Treatment Plant Operator’s Guide; PZITS O/Poznań: Poznań, Poland, 1997. [Google Scholar]
- Sadecka, Z. Basics of Biological Wastewater Treatment; Seidel-Przywecki Sp z o.o.: Warsaw, Poland, 2010. [Google Scholar]
- Elias-Maxil, J.A.; van der Hoek, J.P.; Hofman, J.; Rietveld, L. Energy in the urban water cycle: Actions to reduce the total expenditure of fossil fuels with emphasis on heat reclamation from urban water. Renew. Sustain. Energy Rev. 2014, 30, 808–820. [Google Scholar] [CrossRef] [Green Version]
- Imran, M.; Hasan, S.; Izharul, R.; Farooqi, H.; Basheer, F. Aeration control strategy design based on dissolved oxygen and redox potential profiles for nitrogen and phosphorus removal from sewage in a sequencing batch reactor. J. Water Process Eng. 2022, 50, 103259. [Google Scholar] [CrossRef]
- Zhang, K.; Yang, S.; Luo, H.; Chen, J.; An, X.; Chen, W.; Zhang, X. Enhancement of nitrogen removal and energy recovery from low C/N ratio sewage by multi-electrode electrochemical technology and tidal flow via siphon aeration. Chemosphere 2022, 299, 134376. [Google Scholar] [CrossRef]
- Wendling, A.C.; Oliveira JG, B.; Jenzura, N.T.; Lopes, D.D.; Damianovic MH, R.Z.; Barana, A.C. Structured-bed reactor with intermittent aeration and recirculation (SBRRIA) for treating UASB effluent combined with raw sewage. Int. J. Environ. Sci. Technol. 2022, 1–8. [Google Scholar] [CrossRef]
- Zeng, W.; Guo, Z.; Zhang, H.; Wang, J.; Gao, X.; Shen, Y.; Gadow, S.I. Fuzzy inference-based control and decision system for precise aeration of sewage treatment process. Electron. Lett. 2021, 57, 112–115. [Google Scholar] [CrossRef]
- Badeti, U.; Pathak, N.K.; Volpin, F.; Dorji, U.; Freguia, S.; Shon, H.K.; Phuntsho, S. Impact of source-separation of urine on effluent quality, energy consumption and greenhouse gas emissions of a decentralized wastewater treatment plant. Process Safery Environ. Prot. 2021, 150, 298–304. [Google Scholar] [CrossRef]
- Cecconet, D.; Racek, J.; Callegari, A.; Hlavinek, P. Energy recovery from wastewater: A study on heating and cooling of a multipurpose building with sewage-reclaimed heat energy. Sustainability 2020, 12, 116. [Google Scholar] [CrossRef]
- Kretschmer, F.; Simperler, L.; Ertl, T. Analysing wastewater temperature development in a sewer system as a basis for the evaluation of wastewater heat recovery potentials. Energy Build. 2016, 128, 639–648. [Google Scholar] [CrossRef]
- Advanced Heat Pump Systems Using Urban Waste Heat Sewage Heat. Mitsubishi Heavy Industries Technical Review” Vol. 52, No. 4/2015. Available online: https://www.mhi.co.jp/technology/review/pdf/e524/e524080.pdf (accessed on 9 October 2021).
- Averfalk, H.; Ingvarsson, P.; Persson, U.; Gong, M.; Werner, S. Large heat pumps in Swedish district heating systems. Renew. Sustain. Energy Rev. 2017, 79, 1275–1284. [Google Scholar] [CrossRef]
- Yan, H.; Ding, L.; Sheng, B.; Dong, X.; Zhao, Y.; Zhong, Q.; Gong, W.; Gong, M.; Guo, H.; Shen, J. Performance prediction of HFC, HC, HFO and HCFO working fluids for high temperature water source heat pumps. Appl. Therm. Eng. 2021, 185, 116324. [Google Scholar] [CrossRef]
- Khanlari, A.; Sözen, A.; Sahin, B.; di Nicola, G.; Afshari, F. Experimental investigation on using building shower drain water as a heat source for heat pump systems. Energy Sources Part A Recovery Util. Environ. Eff. 2020, 1–13. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, Z.; Yin, C.; Nie, Q.; Jin, L. Field Test Analysis of a Urban Sewage Source Heat Pump System Performance. Energy Procedia 2017, 143, 131–136. [Google Scholar] [CrossRef]
- Żogała, A.; Darul, H.; Głodniok, M.; Zawartka, P. Wastewater as a source of waste heat—A case study. Inż. Ekol. 2016, 49, 208–212. [Google Scholar] [CrossRef] [Green Version]
- David, A.; Mathiesen, B.V.; Averfalk, H.; Werner, S.; Lund, H. Heat Roadmap Europe: Large-Scale Electric Heat Pumps in District Heating Systems. Energies 2017, 10, 578. [Google Scholar] [CrossRef] [Green Version]
- Song, Y.; Yao, Y.; Ma, Z.; Na, W. Study of Performance of Heat Pump Usage in Sewage Treatment and Fouling Impact on System. In Proceedings of the Sixth International Conference for Enhanced Building Operations, Shenzen, China, 6–9 November 2006. [Google Scholar]
- Regulation of the Polish Minister of Maritime Economy and Inland Navigation of 12 July 2019 on Substances Particularly Harmful to the Aquatic Environment and the Conditions to Be Met When Introducing Sewage into Waters or into the Ground, as well as When Discharging Rainwater or Meltwater into Waters or to Water Devices. (Journal of Laws of the Republic of Poland 2019, Item 1311). Available online: https://isap.sejm.gov.pl/isap.nsf/download.xsp/WDU20190001311/O/D20191311.pdf (accessed on 8 November 2021).
- PGK (Kamień Pomorski, Poland). Technical Documentation of the Mokrawica Wastewater Treatment Plant. Unpublished Documentation.
- Jaworski, R.; Gadaj, P.; Suchorzewska, K.; Watoła, A.; Wojciechowska, K. Study of Conditions and Directions of Spatial Development of the Town and Commune of Kamień Pomorski; Municipal Office in Kamień Pomorski, Town Planning Services: Warszawa, Poland, 2013; Available online: https://mpzp.igeomap.pl/doc/kamienpomorski/kamienpom/00.pdf (accessed on 9 November 2021).
- IMGW Meteorological Data. Available online: https://danepubliczne.imgw.pl/ (accessed on 9 November 2021).
- Lemmon, E.; Huber, M.L.; Mclinden, M.O. NIST Standard Reference Database Reference Fluid Thermodynamic and Transport Properties-REFPROP, 9.1; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2013. [Google Scholar]
- Schlosser, F.; Jesper, M.; Vogelsang, J.; Walmsley, T.G.; Arpagaus, C.; Hesselbach, J. Large scale heat pumps: Applications, performance, economic feasibility and industrial integration. Renew. Sustain. Energy Rev. 2020, 133, 110219. [Google Scholar] [CrossRef]
- Pitarch, M.; Hervas-Blasco, E.; Navarro-Peris, E.; Corberán, J.M. Exergy analysis on a heat pump working between a heat sink and a heat source of finite heat capacity rate. Int. J. Refrig. 2019, 99, 337–350. [Google Scholar] [CrossRef]
- Selbaş, R.; Kızılkan, Ö.; Şencan, A. Thermoeconomic optimization of subcooled and superheated vapor compression refrigeration cycle. Energy 2006, 31, 2108–2128. [Google Scholar] [CrossRef]
- Hervás-Blasco, E.; Navarro-Peris, E.; Barceló-Ruescas, F.; Corberán, J.M. Improved water to water heat pump design for low-temperature waste heat recovery based on subcooling control. Int. J. Refrig. 2019, 106, 374–383. [Google Scholar] [CrossRef]
City/Country | System Supplier | Arrangement | HP Capacity/COP | Purpose | Year |
---|---|---|---|---|---|
Southeast False Creek, BC, Canada | IWS Sewage SHARC | Raw wastewater, screened, passed to shell and tube heat exchanger | 2.7 MW | Heating + Hot water | 2010 |
Wintower, Winterthur, Switzerland | Huber Technology RoWin | Raw wastewater, screened and passed to a collector with a heat exchanger | 1.5 MW, COP 5–6 | Heating + Hot water + Cooling | 2011 |
Dietikon (Zürich), Switzerland | Huber Technology ThermWin | Raw wastewater, screened and passed to a collector with a heat exchanger | 4.0 MW COP 5,5 | Heating + Hot water NH3 supply 40 °C | 2018 |
Sandvika, Oslo, Norwey | Friotherm AG | 10 °C raw wastewater, screened, passed to shell and tube heat exchanger | 2 × 6.5 MW + 2 × 4.5 MW, COP 3.10 | Heating R 134a supply 68 °C + Cooling | 1998 (2008) |
Sköyen Vest, Oslo, Norwey | Hafslund Fjernvarme AS | 10 °C Raw wastewater, screened, passed to shell and tube heat exchanger | 28 MW, COP 2.8 | Heating R 134a supply 90 °C | 2005 (2008) |
Budapest Military Hospital, Węgry | Thermowatt Ltd. | Raw wastewater screened and passed to a collector with a heat exchanger | 3.8 MW + 3.4 MW, COP 6–7 | Heating/Cooling | 2014 |
Budapest Sewage Works, Hungry | Thermowatt Ltd. | Raw wastewater screened and passed to a collector with a heat exchanger | 1.23 MW, COP 4,5 | Heating/Cooling | 2012 |
Postal office of Muelligen/Schliern, SwitzerlandDH | EWZ utility | 8 to 102C effluent pumped into an evaporator of HP | 5.5 MW | Heating + Cooling, uses NH3, hot water supply 65 °C | 2006 |
Suomenoja Espoo, Finland | Fortum Energi | Effluent pumped into an evaporator of HP | 2 × 20 MW + 2 × 14.5 MW, COP 3.0 | Heating + Hot water | 2014 |
Katri Vala, Helsinki, Finland | Friotherm AG | 10 °C effluent pumped into an evaporator of HP | 3 × 30 MW + 2 × 30 MW, COP 3.5 | Heating + Cooling, uses R 134a, hot water supply 88 °C | 2006 |
Kakola, Turku, Finland | Friotherm AG | 10 °C effluent pumped into an evaporator of HP | 2 × 10 MW + 2 × 30 MW, COP 3.3 | Heating + Cooling, uses R 134a, hot water supply 78 °C | 2006 |
Ryaverket, Gothenburg, Sweden | Gӧteborg Energi | Effluent pumped into an evaporator of HP | 2 × 50 MW + 2 × 30 MW, COP 3 | Heating + Hot water | 2009 |
Hammarby Stockholm, Sweden | Fortum Energi | Effluent pumped into an evaporator of HP | 5 HP producing a total of 131 MW, COP 3.0 | Heating + Hot water | 1986–1991–1997 |
Lund, Sweden | Lund Energi | 8 to 16 °C effluent pumped into an evaporator of HP | 1 × 13 MW + 2 × 40 MW, COP 3.3 | Heating + Hot water + Cooling uses R-134a, hot water supply 80 to 90 °C | 1984 (2003) |
Helsingborg, Sweden | - | Sewage water | 1 × 27 MW, COP 3.0 | Heating + Hot water + Cooling | 1996 |
Kalundborg Denmark | Kalundborg Forsyning A/S | 20 °C effluent pumped into an evaporator of HP | 10 MW, | Kalundborg Denmark | 2017 |
Lillestrøm, Norway | - | Sewage water | 4.3 MW COP | Heating + Hot water + Cooling | 2003 |
Harbin, China | - | Recovery heat from sewage treated into the feedwater stream | Cooling capacity—580 kW COP 4.2 Heating capacity 714 kW | Heating of untreated sewage | - |
Grudziądz, Poland | - | Sewage treated | 2 × 82.6 kW COP 4.0 | Heating + Hot water | 2002 |
Dziarny, Poland | - | Sewage from the secondary settling tank | - | drying of sewage sludge | 2006 |
Parameter | Unit | Value |
---|---|---|
Evaporation temperature | °C | raw wastewater temperature −8 K |
Condensation temperature | °C | 55 |
Superheating of vapour at the evaporator outlet | K | 4 |
Subcooling of liquid at the condenser outlet | K | 2 |
Compressor isentropic efficiency | - | 0.7 |
Case | Heat Recovery Location | Vmin (m3/h) | tmin (°C) | ΔT (K) | Qhr (kW) |
---|---|---|---|---|---|
A | Sand box | 33.1 | 9.5 | 1.5 | 57.9 |
B | Aeration chamber | 33.1 | 9.5 | 1.5 | 57.9 |
C | Secondary sedimentation tank | 53.8 | 9.5 | 1.5 | 93.8 |
D | Treated sewage disposal | 44.4 | 9.5 | 1.5 | 77.4 |
Case | Heat Rejection Location | Vmin (m3/h) | tmax (°C) | ΔT (K) | Qhr (kW) |
---|---|---|---|---|---|
A | Sand box/Anaerobic chamber | 33.1 | 19.1 | 5.9 | 228.2 |
B | Aeration chamber | 33.1 | 19.2 | 5.8 | 223.7 |
C | Secondary sedimentation tank | 53.8 | 21.4 | 3.6 | 225.2 |
D | Treated sewage disposal | 44.4 | 21.4 | 3.6 | 185.9 |
Case | Location | Vmin (m3/h) | tmin (°C) | ΔT (K) | Qh (kW) |
---|---|---|---|---|---|
1 | Heating and hot water | - | - | - | 60 |
2 | Sand box | 33.1 | 9.5 | 10.5 | 405 |
3 | Aeration chamber | 33.1 | 9.5 | 10.5 | 405 |
Vmin (m3/h) | tmin (°C) | ΔT (K) | Qc (kW) | ||
4 | Air-conditioning | - | - | - | 120 |
Case | Heat Transfer System | Qh (kW) | th (°C) | tc (°C) | ΔTlift (K) | COP | Qc (kW) |
---|---|---|---|---|---|---|---|
1a | direct | 60 | 50 | 9.5 | 40.5 | 3.94 | 44.8 |
1b | indirect | 60 | 55 | 9.5 | 45.5 | 3.52 | 43.0 |
2a, 3a | direct | 405 | 20 | 9.5 | 10.5 | 8.19 | 355.6 |
2b, 3b | indirect | 405 | 25 | 9.5 | 15.5 | 7.19 | 348.7 |
Qc (kW) | th (°C) | tc (°C) | ΔTlift (K) | COP | Qh (kW) | ||
4a | direct | 120 | 20 | 7 | 13 | 7.67 | 138.0 |
4b | indirect | 120 | 25 | 7 | 18 | 6.75 | 140.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Łokietek, T.; Tuchowski, W.; Leciej-Pirczewska, D.; Głowacka, A. Heat Recovery from a Wastewater Treatment Process—Case Study. Energies 2023, 16, 44. https://doi.org/10.3390/en16010044
Łokietek T, Tuchowski W, Leciej-Pirczewska D, Głowacka A. Heat Recovery from a Wastewater Treatment Process—Case Study. Energies. 2023; 16(1):44. https://doi.org/10.3390/en16010044
Chicago/Turabian StyleŁokietek, Tomasz, Wojciech Tuchowski, Dorota Leciej-Pirczewska, and Anna Głowacka. 2023. "Heat Recovery from a Wastewater Treatment Process—Case Study" Energies 16, no. 1: 44. https://doi.org/10.3390/en16010044
APA StyleŁokietek, T., Tuchowski, W., Leciej-Pirczewska, D., & Głowacka, A. (2023). Heat Recovery from a Wastewater Treatment Process—Case Study. Energies, 16(1), 44. https://doi.org/10.3390/en16010044