A Perspective on the Overarching Role of Hydrogen, Ammonia, and Methanol Carbon-Neutral Fuels towards Net Zero Emission in the Next Three Decades
Abstract
:1. Introduction
2. Role and Prospects of Carbon-Neutral Fuels in the Future Energy System
2.1. Green Hydrogen
2.2. Green Ammonia
2.3. Renewable Methanol
3. Application of Carbon-Neutral Fuels (Power, Transport, Heat)
4. Challenges, Future Perspectives, and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Avtar, R.; Tripathi, S.; Aggarwal, A.K.; Kumar, P. Population–Urbanization–Energy Nexus: A Review. Resources 2019, 8, 136. [Google Scholar] [CrossRef] [Green Version]
- Sarkodie, S.A.; Owusu, P.A.; Leirvik, T. Global Effect of Urban Sprawl, Industrialization, Trade and Economic Development on Carbon Dioxide Emissions. Environ. Res. Lett. 2020, 15, 034049. [Google Scholar] [CrossRef]
- IISD. International Institute for Sustainable Development: World Population to Reach 9.9 Billion by 2050; International Institute for Sustainable Development: Winnipeg, MB, Canada, 2020. [Google Scholar]
- Rabaey, K.; Ragauskas, A.J. Editorial Overview: Energy Biotechnology. Curr. Opin. Biotechnol. 2014, 27, v–vi. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Global Monitoring Laboratory; Earth System Research Laboratories. Trends in Atmospheric Carbon Dioxide. 2022. Available online: https://gml.noaa.gov/ccgg/trends/ (accessed on 15 October 2022).
- Tilman, D.; Balzer, C.; Hill, J.; Befort, B.L. Global Food Demand and the Sustainable Intensification of Agriculture. Proc. Natl. Acad. Sci. USA 2011, 108, 20260–20264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, F.; Harindintwali, J.D.; Yuan, Z.; Wang, M.; Wang, F.; Li, S.; Yin, Z.; Huang, L.; Fu, Y.; Li, L.; et al. Technologies and Perspectives for Achieving Carbon Neutrality. Innovation 2021, 2, 100180. [Google Scholar] [CrossRef]
- UNFCCC. Adoption of the Paris Agreement; UNFCCC: Rio de Janeiro, Brazil, 2015. [Google Scholar]
- Rogelj, J.; den Elzen, M.; Höhne, N.; Fransen, T.; Fekete, H.; Winkler, H.; Schaeffer, R.; Sha, F.; Riahi, K.; Meinshausen, M. Paris Agreement Climate Proposals Need a Boost to Keep Warming Well below 2 °C. Nature 2016, 534, 631–639. [Google Scholar] [CrossRef] [Green Version]
- Geng, Y.; Zhu, R.; Maimaituerxun, M. Bibliometric Review of Carbon Neutrality with CiteSpace: Evolution, Trends, and Framework. Environ. Sci. Pollut. Res. 2022, 29, 76668–76686. [Google Scholar] [CrossRef]
- United Nations. UN and Climate Change; United Nations: New York, NY, USA, 2022. [Google Scholar]
- Ampah, J.D.; Jin, C.; Agyekum, E.B.; Afrane, S.; Geng, Z.; Adun, H.; Yusuf, A.A.; Liu, H.; Bamisile, O. Performance Analysis and Socio-Enviro-Economic Feasibility Study of a New Hybrid Energy System-Based Decarbonization Approach for Coal Mine Sites. Sci. Total Environ. 2023, 854, 158820. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Tian, Z.; Guo, J. A Review of the Theoretical Research and Practical Progress of Carbon Neutrality. Sustain. Oper. Comput. 2022, 3, 54–66. [Google Scholar] [CrossRef]
- Jin, C.; Sun, T.; Xu, T.; Jiang, X.; Wang, M.; Zhang, Z.; Wu, Y.; Zhang, X.; Liu, H. Influence of Glycerol on Methanol Fuel Characteristics and Engine Combustion Performance. Energies 2022, 15, 6585. [Google Scholar] [CrossRef]
- Wen, M.; Liu, H.; Cui, Y.; Ming, Z.; Feng, L.; Yao, M. Optical Diagnostics of Methanol Active-Thermal Atmosphere Combustion in Compression Ignition Engine. Fuel 2023, 332, 126036. [Google Scholar] [CrossRef]
- Jin, C.; Liu, X.; Sun, T.; Ampah, J.D.; Geng, Z.; Ji, J.; Wang, G.; Liu, H. Preparation and Performance Improvement of Methanol and Palm Oil/Palm Kernel Oil Blended Fuel. Fuel Process. Technol. 2021, 223, 106996. [Google Scholar] [CrossRef]
- Agyekum, E.B.; Nutakor, C.; Agwa, A.M.; Kamel, S. A Critical Review of Renewable Hydrogen Production Methods: Factors Affecting Their Scale-Up and Its Role in Future Energy Generation. Membranes 2022, 12, 173. [Google Scholar] [CrossRef]
- Holladay, J.D.; Hu, J.; King, D.L.; Wang, Y. An Overview of Hydrogen Production Technologies. Catal. Today 2009, 139, 244–260. [Google Scholar] [CrossRef]
- Nikolaidis, P.; Poullikkas, A. A Comparative Overview of Hydrogen Production Processes. Renew. Sustain. Energy Rev. 2017, 67, 597–611. [Google Scholar] [CrossRef]
- Aziz, M.; Wijayanta, A.T.; Nandiyanto, A.B.D. Ammonia as Effective Hydrogen Storage: A Review on Production, Storage and Utilization. Energies 2020, 13, 3062. [Google Scholar] [CrossRef]
- Chehade, G.; Dincer, I. Progress in Green Ammonia Production as Potential Carbon-Free Fuel. Fuel 2021, 299, 120845. [Google Scholar] [CrossRef]
- Ghavam, S.; Vahdati, M.; Wilson, I.A.G.; Styring, P. Sustainable Ammonia Production Processes. Front. Energy Res. 2021, 9, 580808. [Google Scholar] [CrossRef]
- Dalena, F.; Senatore, A.; Marino, A.; Gordano, A.; Basile, M.; Basile, A. Methanol Production and Applications: An Overview. In Methanol; Elsevier: Amsterdam, The Netherlands, 2018; pp. 3–28. ISBN 978-0-444-63903-5. [Google Scholar]
- Roode-Gutzmer, Q.I.; Kaiser, D.; Bertau, M. Renewable Methanol Synthesis. ChemBioEng Rev. 2019, 6, 209–236. [Google Scholar] [CrossRef]
- Shamsul, N.S.; Kamarudin, S.K.; Rahman, N.A.; Kofli, N.T. An Overview on the Production of Bio-Methanol as Potential Renewable Energy. Renew. Sustain. Energy Rev. 2014, 33, 578–588. [Google Scholar] [CrossRef]
- IEA. Hydrogen; IEA: Paris, France, 2022. [Google Scholar]
- Atchison, J. IEA’s Latest Global Hydrogen Review Includes Fuel Ammonia; IEA: Paris, France, 2021. [Google Scholar]
- International Energy Agency. The Future of Hydrogen: Seizing Today’s Opportunities; OECD: Paris, France, 2019; ISBN 978-92-64-41873-8. [Google Scholar]
- IRENA. World Energy Transition Outlook 1.5 °C Pathway; IRENA: Bonn, Germany, 2021. [Google Scholar]
- Scott, M. Green Hydrogen, The Fuel Of The Future, Set For 50-Fold Expansion. 2020. Available online: https://www.forbes.com/sites/mikescott/2020/12/14/green-hydrogen-the-fuel-of-the-future-set-for-50-fold-expansion/ (accessed on 7 November 2022).
- Cho, R. Why We Need Green Hydrogen; Columbia Climate School: New York, NY, USA, 2021. [Google Scholar]
- BloombergNEF. New Energy Outlook 2021; Bloomberg New Energy Finance: London, UK, 2021. [Google Scholar]
- Energy Transitions Commission (ETC). Making the Hydrogen Economy Possible: Accelerating Clean Hydrogen in an Electrified Economy; Energy Transitions Commission: London, UK, 2021. [Google Scholar]
- Hydrogen Council. Hydrogen for Net Zero. 2021. Available online: https://hydrogencouncil.com/en/hydrogen-for-net-zero/ (accessed on 3 November 2022).
- IEA. Net Zero by 2050, A Roadmap for the Global Energy Sector; International Energy Agency: Paris, France, 2021. [Google Scholar]
- IRENA. Geopolitics of the Energy Transformation The Hydrogen Factor; IRENA: Bonn, Germany, 2022. [Google Scholar]
- Ampah, J.D.; Jin, C.; Rizwanul Fattah, I.M.; Appiah-Otoo, I.; Afrane, S.; Geng, Z.; Yusuf, A.A.; Li, T.; Mahlia, T.M.I.; Liu, H. Investigating the Evolutionary Trends and Key Enablers of Hydrogen Production Technologies: A Patent-Life Cycle and Econometric Analysis. Int. J. Hydrogen Energy 2022, S0360319922033912. [Google Scholar] [CrossRef]
- Ampah, J.D.; Yusuf, A.A.; Afrane, S.; Jin, C.; Liu, H. Reviewing Two Decades of Cleaner Alternative Marine Fuels: Towards IMO’s Decarbonization of the Maritime Transport Sector. J. Clean. Prod. 2021, 320, 128871. [Google Scholar] [CrossRef]
- World Economic Forum. Zero Carbon by 2050 Is Possible. Here’s What We Need to Do; World Economic Forum: Cologny, Switzerland, 2019. [Google Scholar]
- Strategic Sustainability Consulting. Getting to Net-Zero for Hard-to-Abate Sectors. 2021. Available online: http://www.sustainabilityconsulting.com/blog/2021/6/1/getting-to-net-zero-for-hard-to-abate-sectors (accessed on 11 November 2022).
- IEA. Global Hydrogen Review 2021; IEA: Paris, France, 2021. [Google Scholar]
- IEA. Ammonia Technology Roadmap; IEA: Paris, France, 2021. [Google Scholar]
- Lee, B.; Winter, L.R.; Lee, H.; Lim, D.; Lim, H.; Elimelech, M. Pathways to a Green Ammonia Future. ACS Energy Lett. 2022, 7, 3032–3038. [Google Scholar] [CrossRef]
- Faria, J.A. Renaissance of Ammonia Synthesis for Sustainable Production of Energy and Fertilizers. Curr. Opin. Green Sustain. Chem. 2021, 29, 100466. [Google Scholar] [CrossRef]
- Gielen, D.; Boshell, F.; Castellanos, G.; Rouwenhorst, K.; Brown, T. Renewable Ammonia’s Role in Reducing Dependence on Gas; Energy Post: Amsterdam, The Netherlands, 2022. [Google Scholar]
- Methanol Institute. Renewable Methanol. 2022. Available online: https://www.methanol.org/renewable/ (accessed on 27 October 2022).
- IRENA; Methanol Institute. Innovation Outlook: Renewable Methanol; IRENA: Bonn, Germany, 2021. [Google Scholar]
- Jin, C.; Ampah, J.D.; Afrane, S.; Yin, Z.; Liu, X.; Sun, T.; Geng, Z.; Ikram, M.; Liu, H. Low-Carbon Alcohol Fuels for Decarbonizing the Road Transportation Industry: A Bibliometric Analysis 2000–2021. Envirion. Sci. Pollut. Res. 2022, 29, 5577–5604. [Google Scholar] [CrossRef]
- Zhang, Z.; Wen, M.; Cui, Y.; Ming, Z.; Wang, T.; Zhang, C.; Ampah, J.D.; Jin, C.; Huang, H.; Liu, H. Effects of Methanol Application on Carbon Emissions and Pollutant Emissions Using a Passenger Vehicle. Processes 2022, 10, 525. [Google Scholar] [CrossRef]
- Zhao, K. A Brief Review of China’s Methanol Vehicle Pilot and Policy. 2019. Available online: https://www.methanol.org/wp-content/uploads/2019/03/A-Brief-Review-of-Chinas-Methanol-Vehicle-Pilot-and-Policy-20-March-2019.pdf (accessed on 28 October 2022).
- Ampah, J.D.; Liu, X.; Sun, X.; Pan, X.; Xu, L.; Jin, C.; Sun, T.; Geng, Z.; Afrane, S.; Liu, H. Study on Characteristics of Marine Heavy Fuel Oil and Low Carbon Alcohol Blended Fuels at Different Temperatures. Fuel 2022, 310, 122307. [Google Scholar] [CrossRef]
- Methanex. Methanol-Fueled Vessels Mark One Year of Safe, Reliable, and Efficient Operations; Methanex: Vancouver, BC, Canada, 2017. [Google Scholar]
- Brynolf, S.; Fridell, E.; Andersson, K. Environmental Assessment of Marine Fuels: Liquefied Natural Gas, Liquefied Biogas, Methanol and Bio-Methanol. J. Clean. Prod. 2014, 74, 86–95. [Google Scholar] [CrossRef]
- DNV-GL. Scenario Modelling Shows Possible Decarbonization Pathways; DNV-GL: Bærum, Norway, 2020. [Google Scholar]
- NREL. New Research Collaboration To Advance Megawatt-Scale Hydrogen Fuel Cell Systems; NREL: Golden, CO, USA, 2022. [Google Scholar]
- IEA. Key World Energy Statistics 2020; IEA: Paris, France, 2020. [Google Scholar]
- IEA. Transport Improving the Sustainability of Passenger and Freight Transport; IEA: Paris, France, 2021. [Google Scholar]
- IMO. IMO’s Work to Cut GHG Emissions from Ships; IMO: London, UK, 2021. [Google Scholar]
- Fraunhofer-Gesellschaft. The World’s First High-Temperature Ammonia-Powered Fuel Cell for Shipping; Fraunhofer-Gesellschaft: Munich, Germany, 2021. [Google Scholar]
- Maritime Cleantech. ShipFC-Green Ammonia Energy System; MaritimeCleantech. Available online: https://maritimecleantech.no/project/shipfc-green-ammonia-energy-system/ (accessed on 3 November 2022).
- Bergen Engines. Bergen Engines Launches Ambitious Ammonia Zero Emission Research Project. 2022. Available online: https://www.bergenengines.com/bergen-engines-launches-ambitious-ammonia-zero-emission-research-project/ (accessed on 22 November 2022).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, H.; Ampah, J.D.; Zhao, Y.; Sun, X.; Xu, L.; Jiang, X.; Wang, S. A Perspective on the Overarching Role of Hydrogen, Ammonia, and Methanol Carbon-Neutral Fuels towards Net Zero Emission in the Next Three Decades. Energies 2023, 16, 280. https://doi.org/10.3390/en16010280
Liu H, Ampah JD, Zhao Y, Sun X, Xu L, Jiang X, Wang S. A Perspective on the Overarching Role of Hydrogen, Ammonia, and Methanol Carbon-Neutral Fuels towards Net Zero Emission in the Next Three Decades. Energies. 2023; 16(1):280. https://doi.org/10.3390/en16010280
Chicago/Turabian StyleLiu, Haifeng, Jeffrey Dankwa Ampah, Yang Zhao, Xingyu Sun, Linxun Xu, Xueli Jiang, and Shuaishuai Wang. 2023. "A Perspective on the Overarching Role of Hydrogen, Ammonia, and Methanol Carbon-Neutral Fuels towards Net Zero Emission in the Next Three Decades" Energies 16, no. 1: 280. https://doi.org/10.3390/en16010280
APA StyleLiu, H., Ampah, J. D., Zhao, Y., Sun, X., Xu, L., Jiang, X., & Wang, S. (2023). A Perspective on the Overarching Role of Hydrogen, Ammonia, and Methanol Carbon-Neutral Fuels towards Net Zero Emission in the Next Three Decades. Energies, 16(1), 280. https://doi.org/10.3390/en16010280