Characterization of Municipal Solid Waste and Assessment of Its Potential for Refuse-Derived Fuel (RDF) Valorization
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of Study Locations
2.2. Characterization
2.3. Refuse-Derived Fuel Potential from the Residual Fractions
3. Results and Discussion
3.1. Characterization
3.2. Refuse-Derived Fuel from Residual Fractions
3.3. Chemical Analysis
3.4. RDF Classification
3.5. Potential Energy Supply
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kumar, A.; Samadder, S.R. A Review on Technological Options of Waste to Energy for Effective Management of Municipal Solid Waste. Waste Manag. 2017, 69, 407–422. [Google Scholar] [CrossRef] [PubMed]
- Gendebien, A.; Leavens, A.; Blackmore, K.; Godley, A.; Lewin, K.; Whiting, K.J.; Davis, R.; Giegrich, J.; Fehrenback, H.; Gromke, U.; et al. Refuse Derived Fuel, Current Practice and Perspectives. Available online: https://www.undrr.org/organization/european-commission-directorate-general-environment (accessed on 1 April 2020).
- Montejo, C.; Costa, C.; Ramos, P.; Márquez, M.D.C. Analysis and Comparison of Municipal Solid Waste and Reject Fraction as Fuels for Incineration Plants. Appl. Therm. Eng. 2011, 31, 2135–2140. [Google Scholar] [CrossRef] [Green Version]
- Ma, W.; Hoffmann, G.; Schirmer, M.; Chen, G.; Rotter, V.S. Chlorine Characterization and Thermal Behavior in MSW and RDF. J. Hazard. Mater. 2010, 178, 489–498. [Google Scholar] [CrossRef] [PubMed]
- Azam, M.; Jahromy, S.S.; Raza, W.; Jordan, C.; Harasek, M.; Winter, F. Comparison of the Combustion Characteristics and Kinetic Study of Coal, Municipal Solid Waste, and Refuse-Derived Fuel: Model-Fitting Methods. Energy Sci. Eng. 2019, 7, 2646–2657. [Google Scholar] [CrossRef] [Green Version]
- Sarquah, K.; Narra, S.; Beck, G.; Awafo, E.A. Bibliometric Analysis; Characteristics and Trends of Refuse Derived Fuel Research. Sustainability 2022, 14, 1994. [Google Scholar] [CrossRef]
- The European Cement Association. Markets for Solid F RECOVERED FUEL Data and Assessments on Markets for SRF; CEMBUREAU: Brussels, Belgium, 2015. [Google Scholar]
- Lechtenberg, D. RDF from Municipal Solid Wastes. Available online: https://www.youtube.com/watch?v=MwT3IepTFag (accessed on 5 April 2021).
- Abalo, E.M.; Peprah, P.; Nyonyo, J.; Ampomah-Sarpong, R.; Agyemang-Duah, W. A Review of the Triple Gains of Waste and the Way Forward for Ghana. J. Renew. Energy 2018, 2018, 9737683. [Google Scholar] [CrossRef]
- Mariwah, S. The Sanitation and Waste Management Conundrum in Ghana: The Case for High Level Prioritization and Fiscal Incentives. In Proceedings of the IMANI ESPA Webinar, CapeCoast, Ghana, 11 June 2020. [Google Scholar]
- Mutz, D.; Hengevoss, D.; Hugi, C.; Gross, T. Waste-to-Energy Options in Municipal Solid Waste Management–A Guide for Decision Makers in Developing and Emerging Countries. Dtsch. Gesellschaft Int. Zs. GmbH 2017, 1–58. [Google Scholar] [CrossRef]
- Oduro-Appiah, K.; Scheinberg, A.; Mensah, A.; Afful, A.; Boadu, H.K.; de Vries, N. Assessment of the Municipal Solid Waste Management System in Accra, Ghana: A ‘Wasteaware’ Benchmark Indicator Approach. Waste Manag. Res. 2017, 35, 1149–1158. [Google Scholar] [CrossRef]
- Environmental Protection Agency. Ghana’s Fourth National Greenhouse Gas Inventory Report to the United Nations Framework Convention on Climate Change; Environmental Protection Agency: Accra, Ghana, 2019. [Google Scholar]
- Energy Commission. 2022 National Energy Statistics: Energy Statistics and Balances; Energy Commission: Accra, Ghana, 2022; ISBN 0302813764. [Google Scholar]
- Chinyama, M.P.M. Alternative Fuels in Cement Manufacturing. 1998. Available online: www.intechopen.com (accessed on 16 February 2022).
- Dawson-Ahmoah, G. Local Cement Industry Is Suffering. Available online: https://www.modernghana.com/news/1070633/article-local-cement-industry-is-suffering.html (accessed on 20 April 2021).
- Arthur, E.; Dorfiah, P.; Hilbert, I.; Kyere, V.N. Waste Tyre Management Baseline Study for Ghana. Sustain. Recycl. Ind. 2020. Available online: https://www.sustainable-recycling.org/wp-content/uploads/2020/10/SRI_2020_WasteTyres-Ghana.pdf (accessed on 16 February 2022).
- Agyapong, K.A. Waste Management Options in Ghana, Future Strategy. Available online: https://imaniafrica.org/2018/04/12/waste-management-options-ghana-future-strategy/ (accessed on 16 March 2021).
- Barnor, B.; Ahunu, L.; Ohene Adu, R. Power Generation from Municipal Solid Waste in Ghana. SSRN Electron. J. 2018, 94–102. [Google Scholar] [CrossRef]
- Bowan, P.A.; Kayaga, S.; Cotton, A.; Fisher, J. Municipal Solid Waste Disposal Operational Performance in Wa Municipality, Ghana. J. Health Pollut. 2019, 9, 190903. [Google Scholar] [CrossRef] [PubMed]
- Afrane, S.; Dankwa, J.; Jin, C.; Liu, H.; Mensah, E. Techno-Economic Feasibility of Waste-to-Energy Technologies for Investment in Ghana: A Multicriteria Assessment Based on Fuzzy TOPSIS Approach. J. Clean. Prod. 2021, 318, 128515. [Google Scholar] [CrossRef]
- Istrate, I.R.; Medina-Martos, E.; Galvez-Martos, J.L.; Dufour, J. Assessment of the Energy Recovery Potential of Municipal Solid Waste under Future Scenarios. Appl. Energy 2021, 293, 116915. [Google Scholar] [CrossRef]
- Sbrolini Tiburcio, R.; Malpeli Junior, M.; Tófano de Campos Leite, J.; Minoru Yamaji, F.; Pereira Neto, A.M. Physicochemical and Thermophysical Characterization of Rejected Waste and Evaluation of Their Use as Refuse-Derived Fuel. Fuel 2021, 293, 120359. [Google Scholar] [CrossRef]
- Gallardo, A.; Carlos, M.; Bovea, M.D.; Colomer, F.J.; Albarrán, F. Analysis of Refuse-Derived Fuel from the Municipal Solid Waste Reject Fraction and Its Compliance with Quality Standards. J. Clean. Prod. 2014, 83, 118–125. [Google Scholar] [CrossRef] [Green Version]
- Ghana Statistical Service. 2021 Population and Housing Census; Ghana Statistical Service: Accra, Ghana, 2021. [Google Scholar]
- ASTM D5231-92(2016); Standard Test Method for Determination of the Composition of Unprocessed Municipal Solid Waste. ASTM International: Philadelphia, PA, USA, 2016.
- Nithikul, J.; Karthikeyan, O.P.; Visvanathan, C. Reject Management from a Mechanical Biological Treatment Plant in Bangkok, Thailand. Resour. Conserv. Recycl. 2011, 55, 417–422. [Google Scholar] [CrossRef]
- Analyticon Instruments GmbH MicroNIR Spektrometer. Available online: https://www.analyticon.eu/en/micronir-1700-es.html (accessed on 7 November 2022).
- Alsheyab, M.A.T.; Schingnitz, D.; Al-Shawabkeh, A.F.; Kusch, S. Analysis of the Potential Use of Major Refuse-Derived Fuels in Jordan as Supplementary Fuel. J. Air Waste Manage. Assoc. 2013, 63, 902–908. [Google Scholar] [CrossRef] [Green Version]
- Sakri, A.; Aouabed, A.; Nassour, A.; Nelles, M. Refuse-Derived Fuel Potential Production for Co-Combustion in the Cement Industry in Algeria. Waste Manag. Res. 2021, 39, 1174–1184. [Google Scholar] [CrossRef]
- Hemidat, S.; Saidan, M.; Al-Zu’bi, S.; Irshidat, M.; Nassour, A.; Nelles, M. Potential Utilization of RDF as an Alternative Fuel to Be Used in Cement Industry in Jordan. Sustainability 2019, 11, 5819. [Google Scholar] [CrossRef] [Green Version]
- Aliaghaei, F.; Pazoki, M.; Farsad, F.; Tajfar, I. Evaluating of Refuse Derived Fuel (RDF) Production from Municipal Solid Waste (Case Study: Qazvin Province). Environ. Energy Econ. Res. 2020, 4, 97–109. [Google Scholar] [CrossRef]
- Rotter, V.S.; Lehmann, A.; Marzi, T.; Möhle, E.; Schingnitz, D.; Hoffmann, G. New Techniques for the Characterization of Refuse-Derived Fuels and Solid Recovered Fuels. Waste Manag. Res. 2011, 29, 229–236. [Google Scholar] [CrossRef]
- Sasu, D.D. Volume of Coal Consumed in Ghana from 2012 to 2019. Available online: https://www.statista.com/statistics/1237847/consumption-of-coal-in-ghana/ (accessed on 2 May 2022).
- Kulikov, M. What Is Price of Coal in Ghana Today? Available online: https://coal-price.com/chart/ghana.html#:~:text=The minimum price for 1 ton of coal,is 226 What is coal use in Ghana (accessed on 5 May 2022).
- Grzesik, K.; Malinowski, M. Life Cycle Assessment of Mechanical–Biological Treatment of Mixed Municipal Waste. Environ. Eng. Sci. 2017, 34, 207–220. [Google Scholar] [CrossRef]
- EIA Coal. Available online: https://www.eia.gov/coal/production/quarterly/co2_article/co2.html (accessed on 3 July 2022).
- Umer Ali, M. A Techno-Economic Analysis of Alternative Fuels in Cement Industry in Pakistan. Int. J. Eng. Work. 2021, 8, 191–196. [Google Scholar] [CrossRef]
- Shi, Y.; Wang, Y.; Yue, Y.; Zhao, J.; Maraseni, T.; Qian, G. Unbalanced Status and Multidimensional Influences of Municipal Solid Waste Management in Africa. Chemosphere 2021, 281, 130884. [Google Scholar] [CrossRef] [PubMed]
- Ungureanu, N.; Nitu, M.; Vladut, V.; Dinca, M.; Zabava, S.; Voicea, I.; Caba, I. Considerations on the Incineration of Municipal Solid Waste. In Proceedings of the 6th International Conference on Thermal Equipment, Renewable Energy and Rural Development (TE-RE-RD), Moieciu de Sus, Romania, 8–10 June 2017; pp. 283–288. [Google Scholar]
- Miezah, K.; Obiri-Danso, K.; Kádár, Z.; Fei-Baffoe, B.; Mensah, M.Y. Municipal Solid Waste Characterization and Quantification as a Measure towards Effective Waste Management in Ghana. Waste Manag. 2015, 46, 15–27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rockson, G.; Dagadu, P.K.; Acheampong, I.B.; Mensah, M.; Sackey, L.N.A. Characterization of Waste at the Final Disposal Sites of Five Major Cities in Ghana. In Proceedings of the Thirteenth International Waste Management and Landfill Symposium, Cagliari, Italy, 3–7 October 2011. [Google Scholar]
- Mensah, M.; Nugloze, D. REPORT ON THE CHARACTERIZATION & FUEL PROPERTIES OF OTI. 2018. Available online: http://kma.gov.gh/kma/ (accessed on 16 February 2022).
- Mensah, M.; Padi, R. REPORT ON THE FUEL PROPERTIES OF KPONE LANDFILL. 2017. Available online: https://eap.com.gh/ (accessed on 16 February 2022).
- Nobre, C.; Vilarinho, C.; Alves, O.; Mendes, B.; Gonçalves, M. Upgrading of Refuse Derived Fuel through Torrefaction and Carbonization: Evaluation of RDF Char Fuel Properties. Energy 2019, 181, 66–76. [Google Scholar] [CrossRef]
- Dagadu, P.K.; Nunoo, F.K.E. Towards Municipal Solid Waste Source Separation at the Household Level in Accra, Ghana. Int. J. Environ. Waste Manag. 2011, 7, 411–422. [Google Scholar] [CrossRef]
- Oduro-Kwarteng, S.; Anarfi, K.P.; Essandoh, H.M.K. Source Separation and Recycling Potential of Municipal Solid Waste in Ghana. Manag. Environ. Qual. Int. J. 2016, 27, 210–226. [Google Scholar] [CrossRef]
- Dumbili, E.; Henderson, L. The Challenge of Plastic Pollution in Nigeria; Elsevier: Amsterdam, The Netherlands, 2020; ISBN 9780128178805. [Google Scholar]
- Sharma, B.; Shekhar, S.; Sharma, S.; Jain, P. The Paradigm in Conversion of Plastic Waste into Value Added Materials. Clean. Eng. Technol. 2021, 4, 100254. [Google Scholar] [CrossRef]
- Addae, G.; Oduro-Kwarteng, S.; Fei-Baffoe, B.; Rockson, M.A.D.; Ribeiro, J.X.F.; Antwi, E. Market Waste Composition Analysis and Resource Recovery Potential in Kumasi, Ghana. J. Air Waste Manag. Assoc. 2021, 71, 1529–1544. [Google Scholar] [CrossRef]
- Kuleape, R.; Cobbina, S.J.; Dampare, S.B.; Duwiejuah, A.B.; Amoako, E.E.; Asare, W. Assessment of the Energy Recovery Potentials of Solid Waste Generated in Akosombo, Ghana. African J. Environ. Sci. Technol. 2014, 8, 297–305. [Google Scholar] [CrossRef]
- Ma, W.; Wenga, T.; Frandsen, F.J.; Yan, B.; Chen, G. The Fate of Chlorine during MSW Incineration: Vaporization, Transformation, Deposition, Corrosion and Remedies. Prog. Energy Combust. Sci. 2020, 76, 100789. [Google Scholar] [CrossRef]
- Maj, I.; Kalisz, S.; Wejkowski, R.; Pronobis, M.; Gołombek, K. High-Temperature Corrosion in a Multifuel Circulating Fluidized Bed (CFB) Boiler Co-Firing Refuse Derived Fuel (RDF) and Hard Coal. Fuel 2022, 324, 124749. [Google Scholar] [CrossRef]
- Hensley, M.; Gu, S.; Ben, E. A Comprehensive Review of Biomass Resources and Biofuels Potential in Ghana. Renew. Sustain. Energy Rev. 2011, 15, 404–415. [Google Scholar] [CrossRef]
- Nelson, N.; Darkwa, J.; Calautit, J.; Worall, M.; Mokaya, R.; Adjei, E.; Kemausuor, F.; Ahiekpor, J. Potential of Bioenergy in Rural Ghana. Sustainability 2021, 13, 381. [Google Scholar] [CrossRef]
- Kimambo, O.N.; Subramanian, P. Energy Efficient Refuse Derived Fuel (RDF) from Municipal Solid Waste Rejects: A Case for Coimbatore. Int. J. Environ. 2014, 3, 205–215. [Google Scholar] [CrossRef] [Green Version]
- Dianda, P.; Mahidin, M.; Munawar, E. Production and Characterization Refuse Derived Fuel (RDF) from High Organic and Moisture Contents of Municipal Solid Waste (MSW). IOP Conf. Series Mater. Sci. Eng. 2018, 334, 012035. [Google Scholar] [CrossRef]
- WRAP. A Classification Scheme to Define the Quality of Waste Derived Fuels; WRAP: Bristol, UK, 2012; p. 37. [Google Scholar]
- Sommersacher, P.; Brunner, T.; Obernberger, I.; Engineering, P. Fuel Indexes—A Novel Method for the Evaluation of Relevant Combustion Properties of New Biomass Fuels. Energy Fuels 2012, 26, 380–390. [Google Scholar] [CrossRef]
- Lissah, S.Y.; Ayanore, M.A.; Krugu, J.K.; Aberese-Ako, M.; Ruiter, R.A.C. Managing Urban Solid Waste in Ghana: Perspectives and Experiences of Municipal Waste Company Managers and Supervisors in an Urban Municipality. PLoS ONE 2021, 16, e0248392. [Google Scholar] [CrossRef]
Parameter | T1 | T2 | T3 | Average | T4 | T5 | T6 | Average |
---|---|---|---|---|---|---|---|---|
Moisture (%) | 13.27 | 15.56 | 8.11 | 12.31 | 36.15 | 26.16 | 48.53 | 36.95 |
DM (%TS) | 86.73 | 84.44 | 91.89 | 87.69 | 63.85 | 73.84 | 51.47 | 63.05 |
Ash (%, db) | 6.30 | 7.10 | 6.60 | 6.67 | 17.40 | 16.40 | 11.89 | 15.23 |
HHV (MJ/kg) | 31.59 | 30.55 | 32.09 | 31.41 | 21.94 | 25.17 | 21.09 | 22.73 |
LHV (MJ/kg) | 30.24 | 28.66 | 29.57 | 29.49 | 20.77 | 23.75 | 19.73 | 21.42 |
C (%) | 66.20 | 64.00 | 60.90 | 63.70 | 47.30 | 57.50 | 49.70 | 51.50 |
H (%) | 9.80 | 9.20 | 9.00 | 9.33 | 5.70 | 6.90 | 6.60 | 6.40 |
N (%) | 0.34 | 0.65 | 0.88 | 0.62 | 1.00 | 0.42 | 0.82 | 0.75 |
S (%) | 0.10 | 0.11 | 0.13 | 0.11 | 0.14 | 0.09 | 0.19 | 0.14 |
Cl (%) | 0.75 | 0.77 | 0.20 | 0.57 | 1.40 | 0.24 | 1.30 | 0.98 |
Hg (mg/kg) | 0.06 | <0.05 | 0.08 | 0.07 | 0.16 | 0.07 | <0.05 | 0.076 |
Moisture (%) | Ash (%) | LHV (MJ·kg) | S (%) | Cl (%) | Ref | |
---|---|---|---|---|---|---|
This study | 8.11–13.27 | 6.30–7.10 | 28.66–29.49 | 0.10–0.11 | 0.2–0.77 | |
Coal | 1.8 | 18–35.3 | 0.2–11 | [5] | ||
MSW—Ghana | 25–62 | 10.85–19.02 | 18.4–22.9 MJ/kg | - | - | [51] |
Biomass—Ghana | 6.67–30 | 4–17 | 15.32–19.21 MJ/kg | 0.12–0.24 | - | [54,55] |
RDF—Jordan | - | 16.7–19.6 | 15.85–16.70 | - | 0.95–1.03 | [31] |
RDF—Thailand | 6.2–11.5 | 11.8–15.1 | 20.80–29.5 | 0.17–0.20 | 0.58–2.46 | [27] |
RDF—India | 4.98–5.33 | 2.8–9.2 | 18.6–23.9 | 0.27–0.71 | 0.339–0.521 | [56] |
Property/Indices | T1 | T2 | T3 | T4 | T5 | T6 | Limits | Ref |
---|---|---|---|---|---|---|---|---|
Cd (mg/MJ) | 0.05 | 0.13 | 0.01 | 0.02 | 0.02 | 0.02 | ≤0.1–1.0 | [58] |
HM (mg/MJ) | 11.79 | 26.57 | 7.63 | 18.84 | 8.86 | 15.03 | ≤15–30 | [58] |
NOx emission (N%) | 0.34 | 0.65 | 0.88 | 1.00 | 0.42 | 0.82 | ≤0.5–1 | [2] |
HTCR, (2S/Cl) | 0.27 | 0.29 | 1.30 | 0.20 | 0.75 | 0.29 | ≤0.2–0.5 | [59] |
Property | Statistical Measure | This Study | |||||
---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | |||
NCV (MJ/kg) | Average | ≥25 | ≥20 | ≥15 | ≥10 | ≥3 | 29.49 |
Cl (%) | Average | ≤0.2 | ≤0.6 | ≤1.0 | ≤1.5 | ≤3.0 | 0.57 |
Hg (mg/MJ) | Median | ≤0.02 | ≤0.03 | ≤0.08 | ≤0.15 | ≤0.50 | 0.07 |
80th percentile | ≤0.04 | ≤0.06 | ≤0.16 | ≤0.30 | ≤1.00 | 0.076 |
General | Co-Incineration in Cement Kiln | |||||
---|---|---|---|---|---|---|
Parameter | Italy | UK | Finland | EURITS | Switzerland | This study |
LHV(MJ/kg) | >15 | >18.7 | 13–16 | >15 | 25.1–31.4 | 28.66–30.24 |
Ash (%) | 20 | 12 | 5–10 | 5 | 0.6–0.8 | 6.30–7.10 |
Moisture (%) | <25 | 7–28 | 25–35 | - | <10 | 8.11–15.56 |
S (%) | <0.2–0.5 | 0.4 | <0.5 | 0.1–0.13 | ||
Cl (%) | 0.9 | 0.3–1.2 | <0.15–1.5 | 0.5 | <1 | 0.20–77 |
Hg(mg/kg) | <0.1–0.5 | 0.02 | 0.05–0.08 |
Potential RDF (Kilotons/Year) | Energy (GJ/Year) | Energy (GWh/Year) | Coal Saving (Kilotons/Year) | Cost Saving (Million USD/Year) | CO2 Saving (Kilotons/Year) | % of RDF to Coal Saving | Cost of RDF (Million USD/Year) | Net Savings (Million USD/Year) | |
---|---|---|---|---|---|---|---|---|---|
F1 | 12.2 | 367.4 | 0.10 | 8.50 | 1.44 | 24.22 | 5.12 | 0.29 | 1.15 |
F2 | 22.4 | 661.1 | 0.18 | 15.63 | 2.66 | 44.56 | 9.42 | 0.54 | 2.12 |
F3 | 57.3 | 1643.6 | 0.46 | 40.10 | 6.82 | 114.29 | 24.16 | 1.39 | 5.43 |
Total | 91.85 | 2672.08 | 0.74 | 64.23 | 10.92 | 183.07 | 38.69 | 2.23 | 8.69 |
Drivers | Barriers |
---|---|
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sarquah, K.; Narra, S.; Beck, G.; Bassey, U.; Antwi, E.; Hartmann, M.; Derkyi, N.S.A.; Awafo, E.A.; Nelles, M. Characterization of Municipal Solid Waste and Assessment of Its Potential for Refuse-Derived Fuel (RDF) Valorization. Energies 2023, 16, 200. https://doi.org/10.3390/en16010200
Sarquah K, Narra S, Beck G, Bassey U, Antwi E, Hartmann M, Derkyi NSA, Awafo EA, Nelles M. Characterization of Municipal Solid Waste and Assessment of Its Potential for Refuse-Derived Fuel (RDF) Valorization. Energies. 2023; 16(1):200. https://doi.org/10.3390/en16010200
Chicago/Turabian StyleSarquah, Khadija, Satyanarayana Narra, Gesa Beck, Uduak Bassey, Edward Antwi, Michael Hartmann, Nana Sarfo Agyemang Derkyi, Edward A. Awafo, and Michael Nelles. 2023. "Characterization of Municipal Solid Waste and Assessment of Its Potential for Refuse-Derived Fuel (RDF) Valorization" Energies 16, no. 1: 200. https://doi.org/10.3390/en16010200
APA StyleSarquah, K., Narra, S., Beck, G., Bassey, U., Antwi, E., Hartmann, M., Derkyi, N. S. A., Awafo, E. A., & Nelles, M. (2023). Characterization of Municipal Solid Waste and Assessment of Its Potential for Refuse-Derived Fuel (RDF) Valorization. Energies, 16(1), 200. https://doi.org/10.3390/en16010200