# Direct Participation of Dynamic Virtual Power Plants in Secondary Frequency Control

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Problem Formulation and Framework of the Approach

#### 2.1. Classic SFC

- Frequency deviation of each SFC area i should go to zero: $\Delta {f}_{i}\stackrel{t\to \infty}{\to}0,$
- The deviation of each tie-lines power exchange between areas should go to zero: $\Delta {P}_{tie}\stackrel{t\to \infty}{\to}0$.

#### 2.2. Indirect Participation of DVPP to Classic SFC

#### 2.3. New Model for Simulation and Control

## 3. New Control for Direct Participation of the DVPP to the SFC

#### 3.1. Direct Participation of the DVPP to the SFC

#### 3.2. Internal DVPP Redispatch

#### 3.3. Simulation Benchmark and Control Strategy for Direct Participation of the DVPP to the SFC

## 4. Simulation Results

#### 4.1. Nominal Scenarios

#### 4.2. Behavior in Case of Disturbances

#### 4.2.1. Influence of Internal Redispatch

#### 4.2.2. Interaction between SFC Zones

#### 4.2.3. Short-Circuit Test

## 5. Conclusions

- They consider a detailed model of the DVPP generators (PMSG machines in the example treated here);
- The grid dynamics model integrates both voltage and frequency dynamics;
- Two SFC zones are considered to incorporate the tie-lines power exchange regulation and to consider dynamic interactions at all levels (frequency/time-domains) between the SFC zones.

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Conflicts of Interest

## References

- Wang, S.; Tomsovic, K. A Novel Active Power Control Framework for Wind Turbine Generators to Improve Frequency Response. IEEE Trans. Power Syst.
**2018**, 33, 6579–6589. [Google Scholar] [CrossRef] - Díaz-González, F.; Hau, M.; Sumper, A.; Gomis-Bellmunt, O. Participation of wind power plants in system frequency control: Review of grid code requirements and control methods. Renew. Sustain. Energy Rev.
**2014**, 34, 551–564. [Google Scholar] [CrossRef] - Miller, N.W.; Clark, K.; Shao, M. Frequency responsive wind plant controls: Impacts on grid performance. In Proceedings of the 2011 IEEE Power and Energy Society General Meeting, Detroit, MI, USA, 24–28 July 2011. [Google Scholar]
- Singhvi, V.; Pourbeik, P.; Bhatt, N.; Brooks, D.; Zhang, Y.; Gevorgian, V.; Ela, E.; Clark, K. Impact of Wind Active Power Control Strategies on Frequency Response of an Interconnection. In Proceedings of the IEEE Power & Energy Society General Meeting, Vancouver, BC, Canada, 21–25 July 2013. [Google Scholar]
- Murali, S.; Shankar, R. Optimal CC-2DOF(PI)-PDF controller for LFC of restructured multi-area power system with IES-based modified HVDC tie-line and electric vehicles. Eng. Sci. Technol. Int. J.
**2022**, 32, 101058. [Google Scholar] [CrossRef] - Sharma, P.; Mishra, A.; Saxena, A.; Shankar, R. A Novel Hybridized Fuzzy PI-LADRC Based Improved Frequency Regulation for Restructured Power System Integrating Renewable Energy and Electric Vehicles. IEEE Access
**2021**, 9, 7597–7617. [Google Scholar] [CrossRef] - Murali, S.; Shankar, R. Impact of Inertia Emulation Based Modified HVDC Tie-Line for AGC Using Novel Cascaded Fractional Order Controller in Deregulated Hybrid Power System. J. Electr. Eng. Technol.
**2021**, 16, 1219–1239. [Google Scholar] [CrossRef] - Rebours, Y.G.; Kirschen, D.S.; Trotignon, M.; Rossignol, S. Survey of Frequency and Voltage Control Ancillary Services—Part I: Technical Features. IEEE Trans. Power Syst.
**2007**, 22, 350–357. [Google Scholar] [CrossRef] - Marinescu, B.; Gomis-Bellmunt, O.; Dörfler, F.; Schulte, H.; Sigrist, L. Dynamic Virtual Power Plant: A New Concept for Grid Integration of Renewable Energy Sources. arXiv
**2021**, arXiv:2108.00153. [Google Scholar] - Zhang, X.; Chen, Y.; Wang, Y.; Zha, X.; Yue, S.; Cheng, X.; Gao, L. Deloading power coordinated distribution method for frequency regulation by wind farms considering wind speed differences. IEEE Access
**2019**, 7, 122573–122582. [Google Scholar] [CrossRef] - Oshnoei, A.; Khezri, R.; Muyeen, S.M.; Blaabjerg, F. On the Contribution of Wind Farms in Automatic Generation Control: Review and New Control Approach. Appl. Sci.
**2018**, 8, 1848. [Google Scholar] [CrossRef] [Green Version] - Bevrani, H.; Golpîra, H.; Messina, A.R.; Hatziargyriou, N.; Milano, F.; Ise, T. Power system frequency control: An updated review of current solutions and new challenges. Electr. Power Syst. Res.
**2021**, 194, 107114. [Google Scholar] [CrossRef] - Liu, Y.; Jiang, L.; Wu, Q.H.; Zhou, X. Frequency control of DFIG-based wind power penetrated power systems using switching angle controller and AGC. IEEE Trans. Power Syst.
**2017**, 32, 1553–1567. [Google Scholar] [CrossRef] [Green Version] - Pradhan, C.; Bhende, C.N. Frequency sensitivity analysis of load damping coefficient in wind farm-integrated power system. IEEE Trans. Power Syst.
**2017**, 32, 1016–1029. [Google Scholar] - Zhang, Y.; Liu, X.; Yan, Y. Model predictive control for load frequency control with wind turbines. J. Control. Sci. Eng.
**2015**, 2015, 49. [Google Scholar] [CrossRef] - Zhang, Y.; Liu, X.; Qu, B. Distributed model predictive load frequency control of multi-area power system with DFIGs. IEEE/CAA J. Autom. Sin.
**2017**, 4, 125–135. [Google Scholar] [CrossRef] - Nguyen Duc, H.; Nguyen Hong, N. Optimal Reserve and Energy Scheduling for a Virtual Power Plant Considering Reserve Activation Probability. Appl. Sci.
**2021**, 11, 9717. [Google Scholar] [CrossRef] - Iria, J.; Soares, F. Real-time provision of multiple electricity market products by an aggregator of prosumers. Appl. Energy
**2019**, 255, 113792. [Google Scholar] [CrossRef] - Nguyen-Duc, H.; Nguyen-Hong, N. A study on the bidding strategy of the Virtual Power Plant in energy and reserve market. Energy Rep.
**2020**, 6 (Suppl. 2), 622–626. [Google Scholar] [CrossRef] - Iria, J.; Soares, F.; Matos, M. Optimal bidding strategy for an aggregator of prosumers in energy and secondary reserve markets. Appl. Energy
**2019**, 238, 1361–1372. [Google Scholar] [CrossRef] - Oladimeji, O.; Ortega, A.; Sigrist, L.; Sanchez-Martin, P.; Lobato, E.; Rouco, L. Modeling Demand Flexibility of RES-based Virtual Power Plants. arXiv
**2021**, arXiv:2112.03261. [Google Scholar] - Oladimeji, O.; Ortega, A.; Sigrist, L.; Sanchez-Martin, P.; Lobato, E.; Rouco, L. Optimal Participation of Heterogeneous, RES-based Virtual Power Plants in Energy Markets. arXiv
**2021**, arXiv:2112.02200. [Google Scholar] - Marinescu, B.; Kamal, E.; Ngo, H.-T. A System Model-Based Approach for the Control of Power Park Modules for Grid Voltage and Frequency Services. arXiv
**2021**, arXiv:2107.02000. [Google Scholar] - Alhelou, H.H.; Hamedani-Golshan, M.E.; Zamani, R.; Heydarian-Forushani, E.; Siano, P. Challenges and Opportunities of Load Frequency Control in Conventional, Modern and Future Smart Power Systems: A Comprehensive Review. Energies
**2018**, 11, 2497. [Google Scholar] [CrossRef] [Green Version] - Kundur, P. Power Systems Stability and Control; EPRI: Washington, DC, USA, 1994. [Google Scholar]
- Xiong, X.; Ouyang, J.; Jin, J. Calculation of steady-state short-circuit current of wind turbines with doubly fed induction generator. In Proceedings of the IEEE International Conference on Advanced Power System Automation and Protection, Beijing, China, 16–20 October 2011; Volume 3, pp. 1782–1788. [Google Scholar]
- Pathak, N.; Bhatti, T.S.; Verma, A. Accurate modelling of discrete AGC controllers for interconnected power systems. IET Gener. Transm. Distrib.
**2017**, 11, 2102–2114. [Google Scholar] [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Adabi, M.E.; Marinescu, B.
Direct Participation of Dynamic Virtual Power Plants in Secondary Frequency Control. *Energies* **2022**, *15*, 2775.
https://doi.org/10.3390/en15082775

**AMA Style**

Adabi ME, Marinescu B.
Direct Participation of Dynamic Virtual Power Plants in Secondary Frequency Control. *Energies*. 2022; 15(8):2775.
https://doi.org/10.3390/en15082775

**Chicago/Turabian Style**

Adabi, M. Ebrahim, and Bogdan Marinescu.
2022. "Direct Participation of Dynamic Virtual Power Plants in Secondary Frequency Control" *Energies* 15, no. 8: 2775.
https://doi.org/10.3390/en15082775