A Preliminary Study on Identifying Biomimetic Entities for Generating Novel Wave Energy Converters
Abstract
:1. Introduction
2. Current Methodologies
- (1)
- Obtaining biological entities and cases using the functional model
- (2)
- Obtaining biological entities and cases using natural language process
- (3)
- Obtaining biological entities and cases using biomimicry taxonomies
3. Novel Methodology
3.1. Extracting Useful Engineering Terminologies
3.1.1. Functions of WECs
3.1.2. Structure of WECs
3.1.3. Methods of Power Extraction of WECs
3.2. Obtaining the Candidate Biological Terminologies
3.3. Filtering the Candidate Biological Terminologies
3.4. Retrieving the Biomimetic Entities by the Biological Terminologies
4. Steps of Generating Design Ideas
4.1. Extracting the Useful Engineering Terminologies
4.2. Obtaining the Candidate Biological Terminologies
4.3. Filtering the Candidate Biological Terminologies
4.4. Retrieving the Biomimetic Entities
4.5. Generating Design Ideas
4.6. Validation of Design Idea
5. Discussions
6. Concluding Remarks
- (1)
- By using WordNet, a large number of candidate biological terminologies can be generated.
- (2)
- Using manual filtering and the filtering tools of AskNature, candidate biological terminologies can be acquired.
- (3)
- Using the engineers’ understanding of the candidate biological terminologies to remove any deviations in the filtering process.
- (4)
- In the case of a large number of filtered biological terminologies, it is necessary to develop a computer-aided tool for filtering the candidate biological terminologies, including selection of the appropriate biological terminology, in order to obtain an ideal biological entity.
- (5)
- Selecting a candidate biological terminology with a small amount of information that can be retrieved may be a shortcut to obtaining a novel biological entity for this new design process.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ning, D.; Zhao, X.; Göteman, M.; Kang, H. Hydrodynamic performance of a pile-restrained WEC-type floating breakwater: An experimental study. Renew. Energy 2016, 95, 531–541. [Google Scholar] [CrossRef]
- Kara, F. Hydrodynamic performances of wave energy converter arrays in front of a vertical wall. Ocean Eng. 2021, 235, 109459. [Google Scholar] [CrossRef]
- Sheng, W. Power performance of BBDB OWC wave energy converters. Renew. Energy 2019, 132, 709–722. [Google Scholar] [CrossRef]
- Akimoto, H.; Tanaka, K. Conceptual study of a drag type water turbine for electricity generation from wave power. In Proceedings of the 12th International Symposium on Fluid Control, Measurement and Visualization, Nara, Japan, 18–23 November 2013. [Google Scholar]
- Falcão, A.; Gato, L.; Nunes, E. A novel radial self-rectifying air turbine for use in wave energy converters. Part 2. Results from model testing. Renew. Energy 2013, 53, 159–164. [Google Scholar] [CrossRef]
- Aggidis, G.A.; Taylor, C.J. Overview of wave energy converter devices and the development of a new multi-axis laboratory prototype. IFAC-Pap. Line 2017, 50, 15651–15656. [Google Scholar] [CrossRef]
- Noad, I.F.; Porter, R. Optimisation of arrays of flap type oscillating wave surge converters. Appl. Ocean. Res. 2015, 50, 237–253. [Google Scholar] [CrossRef]
- Sogeti-Hightech. Sea Heart Convertor. Available online: https://www.sogeti-hightech.fr/en/sea-heart-convertor/ (accessed on 30 August 2019).
- Whittaker, T.; Folley, M. Nearshore oscillating wave surge converters and the development of Oyster. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2012, 370, 345–364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yemm, R.; Pizer, D.; Retzler, C.; Henderson, R. Pelamis: Experience from concept to connection. Philos. Trans. R. Soc. London. Ser. A Math. Phys. Eng. Sci. 2012, 370, 365–380. [Google Scholar] [CrossRef] [Green Version]
- Wave Dragon. Available online: http://www.wavedragon.net (accessed on 30 August 2019).
- Chaplin, J.R.; Heller, V.; Farley, F.J.M.; Hearn, G.E.; Rainey, R.C.T. Laboratory testing the Anaconda. Philos. Trans. R. Soc. London. Ser. A Math. Phys. Eng. Sci. 2012, 370, 403–424. [Google Scholar] [CrossRef] [PubMed]
- BPS. BioWAVE. Available online: http://bps.energy/biowave (accessed on 30 August 2019).
- Ecomerit Technologies. Centipod. Available online: http://www.ecomerittech.com/centipod.php (accessed on 30 August 2019).
- AeroVironment. Marine Energy Systems. Available online: http://www.avinc.com/innovative-solutions/clean-energy-water (accessed on 30 August 2019).
- Katiyar, N.K.; Goel, G.; Hawi, S. Nature-inspired materials: Emerging trends and prospects. NPG Asia Mater. 2021, 13, 1–16. [Google Scholar] [CrossRef]
- du Plessis, A.; Broeckhoven, C.; Yadroitsava, I.; Yadroitsev, I.; Hands, C.H.; Kunju, R.; Bhate, D. Beautiful and Functional: A Review of Biomimetic Design in Additive Manufacturing. Addit. Manuf. 2019, 27, 408–427. [Google Scholar] [CrossRef]
- Ling, S.; Qin, Z.; Huang, W.; Cao, S.; Kaplan, D.L.; Buehler, M.J. Design and function of biomimetic multilayer water purification membranes. Sci. Adv. 2017, 3, e1601939. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Honey, K.T.; Pagani, G.A. Bio inspired energy: Biomimicry innovations for energy sustainability. In Complex Systems Summer School Proceedings; Santa Fe Institute: Santa Fe, New Mexico, USA, 2013; pp. 1–4. [Google Scholar]
- Zhang, H.; Aggidis, G.A. Nature rules hidden in the biomimetic wave energy converters. Renew. Sustain. Energy Rev. 2018, 97, 28–37. [Google Scholar] [CrossRef] [Green Version]
- Tan, R.; Liu, W.; Cao, G.; Shi, Y. Creative design inspired by biological knowledge: Technologies and methods. Front. Mech. Eng. 2019, 14, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Festo Corporate. BionicSoftArm. Available online: https://www.festo.com/group/en/cms/13527.htm (accessed on 30 August 2019).
- Goel, A.K.; Rugaber, S.; Vattam, S. Structure, behavior, and function of complex systems: The structure, behavior, and function modeling language. Artif. Intell. Eng. Des. Anal. Manuf. 2009, 23, 23–35. [Google Scholar] [CrossRef]
- Wiltgen, B.; Vattam, S.; Helms, M.; Goel, A.K.; Yen, J. Learning Functional Models of Biological Systems for Biologically Inspired Design. In Proceedings of the 2011 IEEE 11th International Conference on Advanced Learning Technologies, Athens, GA, USA, 6–8 July 2011; IEEE: Piscataway, NJ, USA, 2011; pp. 355–357. [Google Scholar]
- Helms, M. DANE: Design by Analogy to Nature Engine. Available online: http://dilab.cc.gatech.edu/dane/ (accessed on 30 August 2019).
- Vattam, S. DANE: Fostering Creativity in and through Biologically Inspired Design. In Proceedings of the 1st International Conference on Design Creativity, Kobe, Japan, 29 November–1 December 2010; pp. 115–122. [Google Scholar]
- Chakrabarti, A.; Sarkar, P.; Leelavathamma, B.; Nataraju, B. A functional representation for aiding biomimetic and artificial inspiration of new ideas. Artif. Intell. Eng. Des. Anal. Manuf. 2005, 19, 113–132. [Google Scholar] [CrossRef] [Green Version]
- Sartori, J.; Pal, U.; Chakrabarti, A. A methodology for supporting “transfer” in biomimetic design. Artif. Intell. Eng. Des. Anal. Manuf. 2010, 24, 483–506. [Google Scholar] [CrossRef] [Green Version]
- Gero, J.S. Design prototypes: A knowledge representation schema for design AI Mag. AI Mag. 1990, 11, 26. [Google Scholar]
- Chiu, I.; Shu, L.H. Biomimetic design through natural language analysis to facilitate cross-domain information retrieval. Artif. Intell. Eng. Des. Anal. Manuf. 2007, 21, 45–59. [Google Scholar] [CrossRef]
- Chiu, I.; Shu, L. Using language as related stimuli for concept generation. Artif. Intell. Eng. Des. Anal. Manuf. 2007, 21, 103–121. [Google Scholar] [CrossRef] [Green Version]
- Cheong, H.; Shu, L.H.; Stone, R.B.; Mcadams, D.A. Translating Terms of the Functional Basis into Biologically Meaningful Words. In Proceedings of the International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Brooklyn, NY, USA, 3–6 August 2008. [Google Scholar]
- Cheong, H.; Chiu, I.; Shu, L.H.; Stone, R.B.; McAdams, D.A. Biologically Meaningful Keywords for Functional Terms of the Functional Basis. J. Mech. Des. 2011, 133, 021007. [Google Scholar] [CrossRef] [Green Version]
- Benyus, J. The Biomimicry Institute—Inspiring Sustainable Innovation. 2006. Available online: https://biomimicry.org/ (accessed on 30 August 2019).
- Biology Online. Available online: http://www.biology-online.org (accessed on 30 August 2019).
- Fraunhofer BIOPS. Available online: http://nature4innovation.com/ (accessed on 30 August 2019).
- Stroble, J.K.; Stone, R.B.; Mcadams, D.A.; Goeke, M.S.; Watkins, S.E. Automated Retrieval of Non-Engineering Domain Solutions to Engineering Problems. In Proceedings of the 19th CIRP Design Conference, Cranfield, Bedfordshire, UK, 30–31 March 2009; pp. 78–85. [Google Scholar]
- Spiliopoulou, E.; Rugaber, S.; Goel, A.; Chen, L.; Wiltgen, B.; Jagannathan, A.K. Intelligent Search for Biologically Inspired Design. In Proceedings of the 20th International Conference on Intelligent User Interfaces Companion, Atlanta, GA, USA, 29 March–1 April 2015. ACM 978-1-4503-3308-5/15/03. [Google Scholar]
- Chen, J.L.; Lee, C.L. Developing Sustainable Innovative Products for the Bottom of the Pyramid by Biomimetic Design Concepts. Procedia CIRP 2017, 61, 629–634. [Google Scholar] [CrossRef]
- Salter, S.H. Wave Power. Nature 1974, 249, 720–724. [Google Scholar] [CrossRef]
- Wello. The Penguin Wave Energy Converter. Available online: http://www.wello.eu/en/penguin (accessed on 30 August 2019).
- OceanMil. Wave Rotor Technology. Available online: https://sites.google.com/site/oceanmilltest/services (accessed on 30 August 2019).
- OWC Wave Energy. LIMPET. Available online: http://owcwaveenergy.weebly.com/wavegen.html (accessed on 30 August 2019).
- Miller, G.A. WordNet: A Lexical Database for English. Commun. ACM 1995, 38, 39–41. [Google Scholar] [CrossRef]
- Nagel, J.K.S.; Stone, R.B.; McAdams, D.A. An Engineering-to-Biology Thesaurus for Engineering Design. In Proceedings of the ASME 2010 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Montreal, QC, Canada, 15–18 August 2010; pp. 117–128. [Google Scholar]
- Mckean, E. The New Oxford American Dictionary; Oxford University Press: Oxford, UK, 2005. [Google Scholar]
- Lawrence, E.; Holmes, S. Henderson’s Dictionary of Biological Terms; Wiley: New York, NY, USA, 1989. [Google Scholar]
- Matrin, E.; Hine, R.S. Oxford Dictionary of Biology; Oxford University Press: Oxford, UK, 2000. [Google Scholar]
- Wikimedia commons. Chelus Fimbriata. Available online: https://upload.wikimedia.org/wikipedia/commons/thumb/7/7f/2009_Chelus_fimbriatus.JPG/500px-2009_Chelus_fimbriatus.JPG (accessed on 21 March 2022).
- Unsplash. Tuna. Available online: https://images.unsplash.com/photo-1566177229701-8895c29b9c68?crop=entropy&cs=tinysrgb&fit=max&fm=jpg&ixid=MnwxMjA3fDB8MXxzZWFyY2h8MXx8dHVuYXx8MHx8fHwxNjI2NjcyODEw&ixlib=rb-1.2.1&q=80&w=1080 (accessed on 21 March 2022).
- Wikimedia commons. Sponges. Available online: https://upload.wikimedia.org/wikipedia/commons/thumb/2/20/Aplysina_archeri_(Stove-pipe_Sponge-pink_variation).jpg/450px-Aplysina_archeri_(Stove-pipe_Sponge-pink_variation).jpg (accessed on 21 March 2022).
- Wikimedia commons. Fly. Available online: https://upload.wikimedia.org/wikipedia/commons/thumb/a/a7/Fly_(Diptera)_-_Guelph%2C_Ontario_19.jpg/1280px-Fly_(Diptera)_-_Guelph%2C_Ontario_19.jpg (accessed on 21 March 2022).
- Wikimedia commons. Ground Squirrels. Available online: https://upload.wikimedia.org/wikipedia/commons/thumb/f/fe/Richardson’s_Ground_Squirrel_(Oregon).jpg/800px-Richardson’s_Ground_Squirrel_(Oregon).jpg (accessed on 21 March 2022).
- Wikimedia commons. Issus Coleoptratus. Available online: https://upload.wikimedia.org/wikipedia/commons/thumb/7/74/Planthopper%2C_Issus_coleoptratus%2C_Issidae_-_Flickr_-_gailhampshire.jpg/494px-Planthopper%2C_Issus_coleoptratus%2C_Issidae_-_Flickr_-_gailhampshire.jpg (accessed on 21 March 2022).
- Unsplash. Clam. Available online: https://images.unsplash.com/photo-1598547240827-812a186e0122?ixlib=rb-1.2.1&ixid=MnwxMjA3fDB8MHxwaG90by1wYWdlfHx8fGVufDB8fHx8&auto=format&fit=crop&w=1331&q=80 (accessed on 21 March 2022).
- Wikimedia commons. Sea Anemone. Available online: https://upload.wikimedia.org/wikipedia/commons/thumb/4/47/Sea_anemones_mad.JPG/800px-Sea_anemones_mad.JPG (accessed on 21 March 2022).
- Wikimedia commons. Codariocalyx Motorius. Available online: https://upload.wikimedia.org/wikipedia/commons/thumb/2/2a/Elements_of_the_science_of_botany%2C_as_established_by_Linnaeus%3B_with_examples_to_illustrate_the_classes_and_orders_of_his_system_(1812)_(21254532612).jpg/208px-Elements_of_the_science_of_botany%2C_as_established_by_Linnaeus%3B_with_examples_to_illustrate_the_classes_and_orders_of_his_system_(1812)_(21254532612).jpg (accessed on 21 March 2022).
- Wikimedia commons. Jellyfish. Available online: https://upload.wikimedia.org/wikipedia/commons/thumb/2/27/Moon_jellyfish_at_Gota_Sagher.JPG/1597px-Moon_jellyfish_at_Gota_Sagher.JPG (accessed on 21 March 2022).
- Wikimedia commons. Crinoids. Available online: https://upload.wikimedia.org/wikipedia/commons/thumb/3/38/Colobometridae_-_Cenometra_bella.jpg/500px-Colobometridae_-_Cenometra_bella.jpg (accessed on 21 March 2022).
- Wikimedia commons. Mimosa. Available online: https://tse2-mm.cn.bing.net/th/id/OIP-C.4Q5CTcUrH5zQyfm4lzAKpgHaFj?pid=ImgDet&rs=1 (accessed on 21 March 2022).
- Wikimedia commons. Penguins. Available online: https://upload.wikimedia.org/wikipedia/commons/thumb/8/8e/King_Penguins_walking_on_the_beach_(5848675669).jpg/1200px-King_Penguins_walking_on_the_beach_(5848675669).jpg (accessed on 21 March 2022).
- Unsplash. Nautilus. Available online: https://images.unsplash.com/photo-1514906438676-20da14bb8dad?ixlib=rb-1.2.1&ixid=MnwxMjA3fDB8MHxwaG90by1wYWdlfHx8fGVufDB8fHx8&auto=format&fit=crop&w=870&q=80 (accessed on 21 March 2022).
- Wikimedia commons. Tumbleweed. Available online: https://upload.wikimedia.org/wikipedia/commons/thumb/2/27/Rapistrum_perenne_sl29.jpg/240px-Rapistrum_perenne_sl29.jpg (accessed on 21 March 2022).
- Unsplash. Albuca spiralis. Available online: https://images.unsplash.com/photo-1587280872148-32e057fb7966?ixlib=rb-1.2.1&ixid=MnwxMjA3fDB8MHxzZWFyY2h8MXx8YWxidWNhJTIwc3BpcmFsaXN8ZW58MHx8MHx8&auto=format&fit=crop&w=500&q=60 (accessed on 21 March 2022).
- Unsplash. Flattie Spider. Available online: https://images.unsplash.com/photo-1581789164386-b3d43c0c5e11?ixlib=rb-1.2.1&ixid=MnwxMjA3fDB8MHxzZWFyY2h8MTU4fHxmbGF0dGllJTIwc3BpZGVyfGVufDB8fDB8fA%3D%3D&auto=format&fit=crop&w=500&q=60 (accessed on 21 March 2022).
- Wikimedia commons. Dragonfly. Available online: https://upload.wikimedia.org/wikipedia/commons/thumb/3/32/Dragonfly_in_autumn_._Cozachyi_island%2C_Kyiv.jpg/1200px-Dragonfly_in_autumn_._Cozachyi_island%2C_Kyiv.jpg (accessed on 21 March 2022).
- Wikimedia commons. Humpback Whale. Available online: https://upload.wikimedia.org/wikipedia/commons/f/f6/Humpback_whale_breaching_off_the_coast_of_Choco%2C_Colombia.jpg (accessed on 21 March 2022).
- Wikimedia commons. Mimic Octopus. Available online: https://upload.wikimedia.org/wikipedia/commons/thumb/a/a2/Polbo_no_paseo_Mar%C3%ADtimo%2C_A_Coruña_(5939722424).jpg/240px-Polbo_no_paseo_Mar%C3%ADtimo%2C_A_Coruña_(5939722424).jpg (accessed on 21 March 2022).
- Unsplash. Puffer fish. Available online: https://images.unsplash.com/photo-1618409869565-b0e4eabaf0fa?ixlib=rb-1.2.1&ixid=MnwxMjA3fDB8MHxwaG90by1wYWdlfHx8fGVufDB8fHx8&auto=format&fit=crop&w=1331&q=80 (accessed on 21 March 2022).
- Julian, V. Biomimetics: Strategies for product design inspired by nature—a mission to the Netherlands and Germany. In Report of a DTI Global Watch Mission; DTI: London, UK, 2007. [Google Scholar]
- Wen, H.I.; Zhang, S.J.; Hapeshi, K.; Wang, X.F. An innovative methodology of product design from nature. J. Bionic Eng. 2008, 5, 75–84. [Google Scholar] [CrossRef]
- Hsiao, H.C.; Chou, W.C. Using biomimetic design in a product design course. World Trans. Eng. Technol. Educ. 2007, 6, 31–35. [Google Scholar]
- Nautilus Live. Big-Eared Octopus. Available online: https://nautiluslive.org (accessed on 18 June 2020).
- Australian Geographic. Feather Stars. Available online: https://www.australiangeographic.com.au/topics/wildlife/2017/08/weird-sea-creatures/ (accessed on 18 June 2020).
- Wanweibaike. Bat Star. Available online: https://en.wanweibaike.com/wiki-Bat%20star (accessed on 18 June 2020).
- Phys Org. Bubble-Rafting Snails. Available online: https://phys.org/news/2011-10-bubble-rafting-snails-eggs.html (accessed on 18 June 2020).
- The Aquarium Wiki. Ramshorn Snail. Available online: http://www.theaquariumwiki.com/wiki/Gyraulus_sp (accessed on 18 June 2020).
- Zhang, H. A Piezoelectric-Electromagnetic Wave Energy Conversion Device Used for Bridge Piers. China No. 201921658634.0, 30 September 2019. [Google Scholar]
- UKRI. Projects to Unlock the Potential of Marine Wave Energy 2021. Available online: https://www.ukri.org/news/projects-to-unlock-the-potential-of-marine-wave-energy/ (accessed on 1 November 2021).
- SmartWave. High Resolution Sea State Simulation with SmartWave 2021. Available online: https://www.offshorewindlibrary.com/smartwave/ (accessed on 15 December 2021).
Bio-WEC Examples | Types of WEC | Mimicked Types | Mimicked Objects | Methods of Power Extraction | Advantages | Disadvantages | Images of bio-WEC |
---|---|---|---|---|---|---|---|
Pelamis [10] | Attenuator | Shape, Motion | Sea Snake | Pitch, Yaw | High conversion efficiency when the wavelength matches the pitch. | Low adaptability, the pitch is fixed, and cannot adjust to sea conditions. | |
Wave Dragon [11] | Overtopping/Terminator | Shape | Dragon | Overtopping | High flexibility, freely up-scale, and adjust to varying wave heights. | Low conversion efficiency; optimization of the power production is required. | |
BioWAVE [13] | Oscillating Wave Surge Converter | Function, Motion | Kelp | Surge | High survivability, protected on the seabed during storm conditions. | Low adaptability; appropriate water depths required to be selected. | |
Centipod [14] | Attenuator | Structure | Centipod | Heave | Low environment impact. | Low cost-effectiveness; the loads and stresses on the structure require reduction. | |
Oyster [9] | Oscillating Wave Surge Converter | Behavior | Oyster | Surge | High survivability. | Low conversion efficiency; need to form cluster arrays and unit field. | |
Sea Heart [8] | Point Absorber | Principle | Human Heart | Heave, Surge | High flexibility; hybridization of marine waves and sea current energy sources. | Low stability; the stability of electrical energy requires solving. | |
Anaconda [12] | Bulge Wave | Shape, Principle | Anaconda& Human Heart | Bulge Wave | High cost-effectiveness owing to simple structure and durable material. | Low conversion efficiency; the parameters and the performance require improvement. | |
Types of Terminologies | Simplified Engineering Terminologies |
---|---|
The functions of WECs | Capture, extract, absorb, store. |
The structure of WECs | Displace, linkage, adjust, rotate, transform. |
Reaction. | |
The methods of power extraction of WECs | Surge, sway, heave, roll, pitch, yaw, oscillating, overtopping, bulge, etc. |
Words with Synset (Semantic) Relation | Deleted Words | ||
---|---|---|---|
Manual Selecting | Website Filtering | ||
Capture | Trance, catch, captivate, charm, fascinate, entrance. | Enamor, becharm, enamor, beguile, bewitch, enchant. | |
Get, catch. | |||
Appropriate, seize. | Conquer. | ||
Extract | Pull, pull out, pull up, take out, draw out, evoke, draw out, press out, etc. | ||
Extract. | Distill, distil. | ||
Express. | Excerpt. | ||
Absorb | Ingest, take in, take over, suck, suck up, draw, take up. | ||
Steep, immerse, engulf, plunge, soak up. | Engross. | ||
Store | Hive away, lay in, put in, stack away, stash away. | Salt away. |
Words with Synset (Semantic) Relation | Deleted Words | ||
---|---|---|---|
Manual Selecting | Website Filtering | ||
Displace | Pre-empt. | ||
Give notice, can, send away, force out, terminate. | Fire, dismiss, give the axe, sack, give the sack. | ||
Move. | |||
Linkage | Gene linkage. | ||
Adjust | Set, correct, align, aline, line up, conform, adapt. | ||
Rotate | Revolve, go around, turn out, splay, spread out. | ||
Circumvolve. | |||
Reaction | Chemical reaction, response. | ||
Transform | Transmute. | Transubstantiate. | |
Metamorphose. | |||
Transform. | Translate. |
Words with Synset (Semantic) Relation | Deleted Words | ||
---|---|---|---|
Manual Selecting | Website Filtering | ||
Surge | Blow up, reflate, soar, soar up, flush, gush, circulate, run off, run down, pour, spill, run out, etc. | ||
Sway | Shake, swag, move back and forth, swing, waver, flitter, etc. | Nutate. | |
Carry. | Persuade. | ||
Heave | Inflate, blow up, heave up, heft, heft up, pant, puff, gasp, etc. | ||
Roll | Turnover, roll out, roll up, wrap, flap, revolve, seethe. | ||
Roll. | Hustle, pluck. | ||
Wander, stray, cast, rove, etc. | Vagabond. | ||
Rock, shake, swag, totter. | Nutate. | ||
Pitch | Toss, incline, cant, tilt. | ||
Move, stretch out, move over, reciprocate, move back and forth, cant over, tilt, waver, linger, turn, etc. | Wrestle, wobble, fidget, dawdle, squinch. | ||
Pitch. | Peddle, monger, vend, etc. | ||
Pitch. | Gear. | ||
Yaw | Swerve, sheer, veer, peel off, etc. | ||
Divert, detour, depart, straggle, etc. | Sidetrack. | ||
Oscillating | Vibrate, waver, dwell on, linger over, etc. | Waffle. | |
Swing, waver, weave, etc. | |||
Over-topping | Overlook, top, ride, lap, focalize, cap, crest, look across, etc. | Overshadow. | |
Bulge | Pouch, protrude, bulk, change shape, deform, flatten out, twist, distort, bend, stretch out, extend, etc. |
Features | Engineering Terminology | Biological Terminology | Key Words | Biological Entities |
---|---|---|---|---|
Functions of WECs | Captures energy | Capture | Bewitch + pray | Chelus fimbriata |
Extract energy | Extract | Draw out + food | Tuna | |
Absorb energy | Absorb | Take in + food | Sponges | |
Suck in + food | Fly | |||
Store energy | Store | Store + food | Ground squirrels | |
Structure of WECs | Displacing element | Displace | Move + mode | Issus coleoptratus |
Linkage element | Linkage | Linkage + mode | Clam | |
Adjusting means | Adjust | Adjust + mode | Sea anemone | |
Rotate part | Rotate | Rotate + mode | Codariocalyx motorius | |
Reaction means | Reaction | Chemical reaction | Jellyfish | |
Transforming means | Transform | Transform + mode | Crinoids | |
Methods of power extraction | Surge | Surge | Inflate + mode | Mimosa |
Sway | Sway | Totter + motion | Penguins | |
Heave | Heave | Heave + motion | Nautilus | |
Roll | Roll | Roll + motion | Tumbleweed | |
Pitch | Pitch | Twist + mode | Albuca spiralis | |
Yaw | Yaw | Slew + motion | Flattie spider | |
Oscillating | Oscillating | Vibrate + mode | Dragonfly | |
Overtopping | Overtopping | Overtopping + mode | Humpback whale | |
Bulge | Bulge | Change shape | Mimic octopus | |
Bag + mode | 5Puffer fish |
Words with Synset (Semantic) Relation | |
---|---|
Surge | Billow, inflate, blow up, reflate, blow up, reflate. |
Soar, soar up, soar upwards, surge, zoom. | |
tide, surge, run, run off, run down, run out, flow, feed, etc. | |
Scend. |
Biological Terminologies | Biological Entities |
---|---|
Billow | Big-eared octopus, feather stars. |
Heave | Nautilus. |
Inflate | Mimosa. |
Tide | Hermit crab, sea anemone, jellyfish, bat star, limpet, sea lettuce. |
Run | Bubble snail. |
Flow | Chelus fimbriata, tuna, sponges, jellyfish. |
Feed | Fly, jellyfish, crinoids. |
Circulate | Sponges. |
Eddy | Dragonfly. |
Whirlpool | Ramshorn snail. |
Waste | Sponges, crinoids. |
Stream | Humpback whale. |
Filter | Humpback whale. |
Drain | Tuna, sponges, clam. |
Index | Biological Entities | Stimuli | Inspiring Factors |
1 | Big-eared octopus [73] | Body | Shape: a circus tent. Motion: inflate, billow. |
2 | Feather stars [74] | Arms | Structure: feathery fringes. Function: swim. |
3 | Nautilus [62] | Shell | Structure: numerous air chambers. Motion: up and down. |
4 | Bat star [75] | Body | Structure: webbing between arms. |
Arm | Shape: triangular. | ||
5 | Bubble-rafting snails [76] | Body | Function: rafting. Principle/Structure: trap air inside quick-setting mucus to make bubbles that glom together and form rafts. |
6 | Tuna [50] | Body | Shape: streamlined. |
Breastplate | Function: keep balance. | ||
Tail | Shape: half-moon shaped. Function: sprint forward quickly. | ||
7 | Crinoids [59] | Water vascular system | Principle: maintains hydraulic pressure. Structure: connected to the body cavity, not to the external seawater. |
8 | Dragonfly [66] | Wings | Shape: long and narrow. Function: vibrate. Behavior: vibrate wings 30 to 50 times per second. |
Wing eye | Function: eliminate the hazard of the flutter and make safe under high-frequency vibration. | ||
9 | Ramshorn snail [77] | Shell | Shape: planispiral coiled shells. |
10 | Humpback whale [67] | Mouth | Structure: special ligament structure between the upper and lower. Function: open. Behavior: open the mouth at an angle of 90 degrees. |
Features | Information | |||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | |
Motion(M) | Inflate | Billow | Up and down | |||
Shape(S) | Circus tent | Triangular | Streamlined | Half-moon shaped | Long and narrow | Planispiral coiled shells |
Structure(T) | Feathery fringes | Unfolded | Webbing between arms | Connected to the body cavity | The ligament between the upper and lower | Bubbles glommed together |
WEC Installation position(I) | Ocean surface | Under the ocean surface | Seabed | Onshore | ||
WEC Energy conversion method(E) | Air pressure energy-electrical energy | Hydraulic energy-electrical energy | Electromagnetic induction | Piezoelectric effect | Photoelectric effect | Thermoelectric effect |
Features | Number of Biological Terminologies | Total Number of Biological Terminologies | |
---|---|---|---|
Functions of WECs | Capture | 10 | 45 |
Extract | 13 | ||
Absorb | 17 | ||
Store | 5 | ||
Structure of WECs | Displace | 6 | 29 |
Linkage | 1 | ||
Adjust | 12 | ||
Rotate | 5 | ||
Reaction | 2 | ||
Transform | 3 | ||
Methods of power extraction | Surge | 38 | 437 |
Sway | 14 | ||
Heave | 15 | ||
Roll | 28 | ||
Pitch | 203 | ||
Yaw | 18 | ||
Oscillating | 20 | ||
Overtopping | 36 | ||
Bulge | 45 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Sheng, W.; Zha, Z.; Aggidis, G. A Preliminary Study on Identifying Biomimetic Entities for Generating Novel Wave Energy Converters. Energies 2022, 15, 2485. https://doi.org/10.3390/en15072485
Zhang H, Sheng W, Zha Z, Aggidis G. A Preliminary Study on Identifying Biomimetic Entities for Generating Novel Wave Energy Converters. Energies. 2022; 15(7):2485. https://doi.org/10.3390/en15072485
Chicago/Turabian StyleZhang, Hui, Wanan Sheng, Zhimin Zha, and George Aggidis. 2022. "A Preliminary Study on Identifying Biomimetic Entities for Generating Novel Wave Energy Converters" Energies 15, no. 7: 2485. https://doi.org/10.3390/en15072485
APA StyleZhang, H., Sheng, W., Zha, Z., & Aggidis, G. (2022). A Preliminary Study on Identifying Biomimetic Entities for Generating Novel Wave Energy Converters. Energies, 15(7), 2485. https://doi.org/10.3390/en15072485