Solar Irradiance Forecasting to Short-Term PV Power: Accuracy Comparison of ANN and LSTM Models
Abstract
:1. Introduction
1.1. Background and Related Works
Horizon | Forecasting Methods | Data Time Step | Error Metric | Input Variables | Output Variable | Dataset | Pub. Year | Ref. | |
---|---|---|---|---|---|---|---|---|---|
1 h | MLR, BRT, ANN, LSTM | 1 h | RMSE | PV power | PV power | Two sites’ databases with one year’s data: 70% for training and 30% for test | 2017 | [48] | |
1 h, 1 day | ANN, ELM, LSTM, | 1 h | MAPE, RMSE, MAE | Irradiance, temperature, humidity, wind speed, PV power generated, day of year | PV power | One year’s data: 6 November 2016 to 28 October 2017. Ten-fold cross validation | 2018 | [49] | |
1 h, 1 day | ANN, ARIMA, BPNN, SVR, RNN, LSTM | 1 h | R2, RMSE, MAE | GHI, clear-sky GHI, cloud type, dew point, temperature, precipitable water, relative humidity, solarzenith angle, wind speed, wind direction | GHI | Three databases from different locations, five years’ data: 4 for training and 1 for test | 2019 | [34] | |
10 min, 30 min, 1 h | MLP, RNN | 10 min. 30 min. 1 h | R2, RMSE, cvRMSE, nMBE | Hour, dry bulb air temperature | GHI | One week’s data: 22 May to 29 May 2016 | 2020 | [50] | |
1 h | ANN, WPD-LSTM, LSTM, GRU, RNN | 5 min | MBE, MAPE, RMSE | PV power, GHI, DHI, temperature, wind speed, relative humidity | PV power | One dataset with two years’ data: 1 June 2014 to 31 May 2015 used for training and 1 June 2015 to 12 June 2016 for test | 2020 | [51] | |
1 h | ANN RNN, RF, SVM, LSTM, LSTM-MLP | 1 h | RMSE, nRMSE, MAE, MBE, r | Wind speed, atmospheric pressure, precipitation, relative air humidity, air temperature | GHI | One dataset with four years’ data: three years for training and one year for test | 2020 | [52] | |
10 min to 4 h | Persistence, MLP, LSTM, LS-SVR, GPR | 10 min. | nRMSE, DMAE, CWC | GHI | GHI | Two years’ data: one year’s data for training and one year’s data for test | 2021 | [53] | |
10 min | Persistence, MLP, LSTM CNN, SCNN-LSTM | 10 min. | r, fs, nRMSE, nMBE, nMAE | DNI, solar zenith angle, relative humidity, air mass | DNI | Two years’ data: ten months for training, two for validation and 12 months for test | 2021 | [54] | |
1 min, 15 min, 1 h | Persistence, ANN, LSTM | 1 min 15 min 1 h | RMSE nRMSE, MAPE, R² | (Complete Set) Air temperature, relative humidity, atmospheric pressure, wind speed, wind direction, maximum wind speed, precipitation (rain), month, hour, minute | (Reduced Set) Air temperature wind speed, wind direction month, hour, minute | GHI | Three years’ data: two years for training and one year’s data for test | 2022 | This work |
2. Materials and Method
2.1. Dataset Description
2.2. Evaluated Models
2.3. Experimental Configuration and Execution
2.4. Materials, Tools and Technologies
3. Experimental Results and Discussion
3.1. Forecasting Accuracy Results
3.2. Analysis and Discussion
3.2.1. Prediction Model Accuracy
3.2.2. Prediction Horizon
3.2.3. Sets of Input Variables
4. Conclusions
- A.
- The prediction performances between the two groups of ANN and LTSM models are significantly different (p < 0.001). LSTM models showed better average accuracy in predictions, with MAPE 1.63% lower compared to ANN models. This difference exhibits higher amplitude for the smallest prediction horizons evaluated. Therefore, the LSTM networks evaluated in this study are better suited for short-term predictions, especially when considering the smallest prediction horizons evaluated. It should be noted that the aim of the study is to compare ANN and LSTM models with similar structure and, thus, to measure the ability of LSTMs to memorize the temporal dependencies of long-term data in the PSPPG context.
- B.
- The ANN and LSTM models’ accuracy was evaluated in the three prediction horizons of 1, 15 and 60 min. Both models showed similar behavior, with R² values tending to decrease as the prediction horizon increases. Although this result is known in the PSPPG literature [11], this study provides additional information about the accuracy of ANN and LSTM models at the horizons evaluated. The statistical analysis of accuracy at the prediction horizons indicated a significant difference (p < 0.001) in the nRMSE, except for the ANN and LSTM accuracy predictions at the 60 min horizon, where the hypothesis test showed no significant difference. Therefore, it is concluded that the choice of the LSTM model, evaluated in this study, is adequate and provides better accuracy at the 1 and 15 min horizons. The results indicate that the LSTM model, in this study, was not able to adequately capture the variability and patterns of the existing data at the 60 min horizon. This may possibly be due to the simplicity of the LSTM structure used or the limited amount of training data. Furthermore, a denser and complex layer structure may enhance the ability of LSTMs to capture solar irradiance patterns at horizons of 60 min or more.
- C.
- Each ANN and LSTM model was evaluated with two different sets of input exogenous variables: Complete Input Set and Reduced Input Set. The statistical result indicated no significant difference in accuracy between the evaluated input variables sets. Therefore, the use of more exogenous meteorological variables did not significantly influence the prediction accuracy of the models evaluated. In other words, the ANN and LSTM models using the Reduced Input Set (with three meteorological variables) demonstrated the same prediction accuracy as compared to the seven exogenous variables in the Complete Input Set. This information is particularly relevant in the prediction system design, because there are additional costs in the acquisition of sensors to capture meteorological information and, with this study, it is possible to choose, or not, their use.
- D.
- The study results concerning short-term PSPPG with ANN and LSTM models suggest that prediction systems can be designed without the need for installation and maintenance of solar irradiance sensors, permitting cost reduction.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Nomenclature
ANN | Artificial Neural Network |
BRT | Bagged Regression Trees |
CNN | Convolutional Neural Networks |
cvRMSE | Coefficient of Variation–Root Mean Square Error |
CWC | Coverage Width-Based Criterion |
BPNN | Back Propagation Neural Network |
WPD-LSTM | Wavelet Packet-Decomposition Long Short-Term Memory |
DL | Deep Learning |
DMAE | Dynamic Mean Absolute Error |
GHI | Global Horizontal Irradiance |
GPR | Gaussian Process Regression |
SCNN-LSTM | Siamese Convolutional Neural Network–Long Short-Term Memory |
ELM | Extreme Learning Machine |
GW | Gigawatt |
IRENA | International Renewable Energy Agency |
LS-SVR | Least-Squares Support Vector Regression |
LSTM | Long Short-Term Memory |
MBE | Mean Bias Error |
ML | Machine Learning |
MLR | Multiple Linear Regression |
nRMSE | Normalized Root Mean Square Error |
PSPPG | Prediction of Photovoltaic Solar Energy Generation |
PV | Photovoltaic |
R2 | Coefficient of Determination |
RMSE | Root Mean Square Error |
r | Correlation Coefficient |
fs | Forecast Skill |
References
- ANEEL. Sistema de Informações de Geração da ANEEL-SIGA. Available online: https://bit.ly/2IGf4Q0 (accessed on 27 October 2021).
- ABSOLAR. Energia Solar Atinge Marca Histórica e Brasil Entra Para Grupo dos 15 Países Com Maior Geração. Available online: https://www.absolar.org.br/noticia/energia-solar-atinge-marca-historica-e-brasil-entra-para-grupo-dos-15-paises-com-maior-geracao/ (accessed on 27 October 2021).
- IEA. Renewables 2021-Analysis and Forecast to 2026. Available online: https://www.iea.org/reports/renewables-2021 (accessed on 10 January 2022).
- Lappalainen, K.; Valkealahti, S. Photovoltaic mismatch losses caused by moving clouds. Sol. Energy 2017, 158, 455–461. [Google Scholar] [CrossRef]
- Lucchese, F.C.; Anselmini, F.; Martins, C.C.; Sperandio, M. Análise do Impacto da Geração Distribuida Fotovoltaica na Rede Elétrica da Universidade Federal de Santa Maria. In Proceedings of the VII Congresso Brasileiro de Energia Solar, Gramado, RS, Brazil, 17–20 April 2018; pp. 1–10. [Google Scholar]
- Antonanzas, J.; Osorio, N.; Escobar, R.; Urraca, R.; Martinez-de-Pison, F.J.; Antonanzas-Torres, F. Review of photovoltaic power forecasting. Sol. Energy 2016, 136, 78–111. [Google Scholar] [CrossRef]
- Li, P.; Zhou, K.; Yang, S. Photovoltaic Power Forecasting: Models and Methods. In Proceedings of the 2nd IEEE Conference on Energy Internet and Energy System Integration, EI2 2018-Proceedings, Beijing, China, 20–22 October 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1–6. [Google Scholar]
- Yang, D.; Kleissl, J.; Gueymard, C.A.; Pedro, H.T.C.; Coimbra, C.F.M. History and trends in solar irradiance and PV power forecasting: A preliminary assessment and review using text mining. Sol. Energy 2018, 168, 60–101. [Google Scholar] [CrossRef]
- Das, U.K.; Tey, K.S.; Seyedmahmoudian, M.; Mekhilef, S.; Idris, M.Y.I.; Van Deventer, W.; Horan, B.; Stojcevski, A. Forecasting of photovoltaic power generation and model optimization: A review. Renew. Sustain. Energy Rev. 2018, 81, 912–928. [Google Scholar] [CrossRef]
- Sobri, S.; Koohi-Kamali, S.; Rahim, N.A. Solar photovoltaic generation forecasting methods: A review. Energy Convers. Manag. 2018, 156, 459–497. [Google Scholar] [CrossRef]
- Blaga, R.; Sabadus, A.; Stefu, N.; Dughir, C.; Paulescu, M.; Badescu, V. A current perspective on the accuracy of incoming solar energy forecasting. Prog. Energy Combust. Sci. 2019, 70, 119–144. [Google Scholar] [CrossRef]
- Maciel, J.N.; Javier Gimenez Ledesma, J.; Hideo Ando Junior, O. Forecasting Solar Power Output Generation: A Systematic Review with the Proknow-C. IEEE Lat. Am. Trans. 2021, 19, 612–624. [Google Scholar] [CrossRef]
- Jayadevan, V.T.; Rodriguez, J.J.; Lonij, V.P.A.; Cronin, A.D. Forecasting solar power intermittency using ground-based cloud imaging. In Proceedings of the World Renewable Energy Forum, WREF 2012, Including World Renewable Energy Congress XII and Colorado Renewable Energy Society (CRES) Annual Conferen, Department of Electrical and Computer Engineering, University of Arizona, Tucson, AZ, USA, 13–17 May 2012; Volume 3, pp. 2100–2106. [Google Scholar]
- Diaz, V.S. Avaliação de Desempenho das Estratégias de Controle Para Suavização da Potência Ativa de Sistemas Fotovoltaicos com Armazenamento de Energia. Master’s Dissertation, Universidade Estadual do Oeste do Paraná (UNIOESTE), Foz do Iguaçu, Brazil, 2019. [Google Scholar]
- Liu, Z.; Mohammadzadeh, A.; Turabieh, H.; Mafarja, M.; Band, S.S.; Mosavi, A. A New Online Learned Interval Type-3 Fuzzy Control System for Solar Energy Management Systems. IEEE Access 2021, 9, 10498–10508. [Google Scholar] [CrossRef]
- Obando, E.D.; Carvajal, S.X.; Pineda Agudelo, J. Solar Radiation Prediction Using Machine Learning Techniques: A Review. IEEE Lat. Am. Trans. 2019, 17, 684–697. [Google Scholar] [CrossRef]
- Voyant, C.; Notton, G.; Kalogirou, S.; Nivet, M.L.; Paoli, C.; Motte, F.; Fouilloy, A. Machine learning methods for solar radiation forecasting: A review. Renew. Energy 2017, 105, 569–582. [Google Scholar] [CrossRef]
- Wang, H.; Lei, Z.; Zhang, X.; Zhou, B.; Peng, J. A review of deep learning for renewable energy forecasting. Energy Convers. Manag. 2019, 198, 111799. [Google Scholar] [CrossRef]
- Rajagukguk, R.A.; Ramadhan, R.A.A.; Lee, H.J. A review on deep learning models for forecasting time series data of solar irradiance and photovoltaic power. Energies 2020, 13, 6623. [Google Scholar] [CrossRef]
- Russell, S.; Norvig, P. Artificial Intelligence: A Modern Approach, 3rd ed.; Pearson Education India: Delhi, India, 2015. [Google Scholar]
- Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef] [PubMed]
- Sherstinsky, A. Fundamentals of Recurrent Neural Network (RNN) and Long Short-Term Memory (LSTM) network. Phys. D Nonlinear Phenom. 2020, 404, 132306. [Google Scholar] [CrossRef] [Green Version]
- Taylor, S.J.; Letham, B. Forecasting at Scale. Am. Stat. 2018, 72, 37–45. [Google Scholar] [CrossRef]
- Bendiek, P.; Taha, A.; Abbasi, Q.H.; Barakat, B. Solar Irradiance Forecasting Using a Data-Driven Algorithm and Contextual Optimisation. Appl. Sci. 2021, 12, 134. [Google Scholar] [CrossRef]
- Maciel, J.N.; Wentz, V.H.; Ledesma, J.J.G.; Ando Junior, O.H. Analysis of Artificial Neural Networks for Forecasting Photovoltaic Energy Generation with Solar Irradiance. Brazilian Arch. Biol. Technol. 2021, 64. [Google Scholar] [CrossRef]
- Wentz, V.H.; Maciel, J.N.; Kapp, M.N.; Ledesma, J.J.G.; Ando Junior, O.H.; Junior, O.H.A. Comparação de Modelos de Redes Neurais Artificiais para a Predição da Irradiância Solar na Geração de Energia Fotovoltaica. In Proceedings of the Anais do I Congresso Brasileiro Interdisciplinar em Ciência e Tecnologia, Even3 Publicações, Online, 4 September 2020; p. 8. [Google Scholar]
- Serrano Ardila, V.M.; Maciel, J.N.; Ledesma, J.J.G.; Ando Junior, O.H. Fuzzy Time Series Methods Applied to (In)Direct Short-Term Photovoltaic Power Forecasting. Energies 2022, 15, 845. [Google Scholar] [CrossRef]
- Zafar, R.; Vu, B.H.; Husein, M.; Chung, I.-Y. Day-Ahead Solar Irradiance Forecasting Using Hybrid Recurrent Neural Network with Weather Classification for Power System Scheduling. Appl. Sci. 2021, 11, 6738. [Google Scholar] [CrossRef]
- Sreekumar, S.; Bhakar, R. Solar Power Prediction Models: Classification Based on Time Horizon, Input, Output and Application. In Proceedings of the International Conference on Inventive Research in Computing Applications, ICIRCA 2018, Coimbatore, India, 11–12 July 2018; pp. 67–71. [Google Scholar]
- Kumari, P.; Toshniwal, D. Deep learning models for solar irradiance forecasting: A comprehensive review. J. Clean. Prod. 2021, 318, 128566. [Google Scholar] [CrossRef]
- Moayedi, H.; Mosavi, A. An Innovative Metaheuristic Strategy for Solar Energy Management through a Neural Networks Framework. Energies 2021, 14, 1196. [Google Scholar] [CrossRef]
- Kotsiantis, S.B.; Zaharakis, I.D.; Pintelas, P.E. Machine learning: A review of classification and combining techniques. Artif. Intell. Rev. 2006, 26, 159–190. [Google Scholar] [CrossRef]
- Zhang, G.P. Neural Networks for Time-Series Forecasting. In Handbook of Natural Computing; Rozenberg, G., Bäck, T., Kok, J.N., Eds.; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Yu, Y.; Cao, J.; Zhu, J. An LSTM Short-Term Solar Irradiance Forecasting Under Complicated Weather Conditions. IEEE Access 2019, 7, 145651–145666. [Google Scholar] [CrossRef]
- Tina, G.M.; Ventura, C.; Ferlito, S.; De Vito, S. A State-of-Art-Review on Machine-Learning Based Methods for PV. Appl. Sci. 2021, 11, 7550. [Google Scholar] [CrossRef]
- Kotu, V.; Deshpande, B. Deep Learning; MIT Press: Cambridge, MA, USA, 2019. [Google Scholar]
- Gamboa, J.C.B. Deep Learning for Time-Series Analysis. Computing Research Repository (CoRR). arXiv 2017, arXiv:1701.01887. [Google Scholar]
- Konstantinou, M.; Peratikou, S.; Charalambides, A.G. Solar Photovoltaic Forecasting of Power Output Using LSTM Networks. Atmosphere 2021, 12, 124. [Google Scholar] [CrossRef]
- Halpern-Wight, N.; Konstantinou, M.; Charalambides, A.G.; Reinders, A. Training and Testing of a Single-Layer LSTM Network for Near-Future Solar Forecasting. Appl. Sci. 2020, 10, 5873. [Google Scholar] [CrossRef]
- Huang, C.J.; Kuo, P.H. Multiple-Input Deep Convolutional Neural Network Model for Short-Term Photovoltaic Power Forecasting. IEEE Access 2019, 7, 74822–74834. [Google Scholar] [CrossRef]
- Wen, H.; Du, Y.; Chen, X.; Lim, E.; Wen, H.; Jiang, L.; Xiang, W. Deep Learning Based Multistep Solar Forecasting for PV Ramp-Rate Control Using Sky Images. IEEE Trans. Ind. Inform. 2021, 17, 1397–1406. [Google Scholar] [CrossRef]
- Malof, J.M.; Collins, L.M.; Bradbury, K. A deep convolutional neural network, with pre-training, for solar photovoltaic array detection in aerial imagery. Int. Geosci. Remote Sens. Symp. 2017, 2017, 874–877. [Google Scholar] [CrossRef]
- Wojtkiewicz, J.; Hosseini, M.; Gottumukkala, R.; Chambers, T.L. Hour-Ahead Solar Irradiance Forecasting Using Multivariate Gated Recurrent Units. Energies 2019, 12, 4055. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Feng, B.; Hua, Q.S.; Sun, L. Short-term solar power forecasting: A combined long short-term memory and gaussian process regression method. Sustainability 2021, 13, 3665. [Google Scholar] [CrossRef]
- Suresh, V.; Janik, P.; Rezmer, J.; Leonowicz, Z. Forecasting solar PV output using convolutional neural networks with a sliding window algorithm. Energies 2020, 13, 723. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.; Yu, Y.; Zhang, Z.; Li, J.; Zhen, Z.; Li, K. Wavelet decomposition and convolutional LSTM networks based improved deep learning model for solar irradiance forecasting. Appl. Sci. 2018, 8, 1286. [Google Scholar] [CrossRef] [Green Version]
- Tovar, M.; Robles, M.; Rashid, F. PV Power Prediction, Using CNN-LSTM Hybrid Neural Network Model. Case of Study: Temixco-Morelos, México. Energies 2020, 13, 6512. [Google Scholar] [CrossRef]
- Abdel-Nasser, M.; Mahmoud, K. Accurate photovoltaic power forecasting models using deep LSTM-RNN. Neural Comput. Appl. 2017, 31, 2727–2740. [Google Scholar] [CrossRef]
- He, H.; Hu, R.; Zhang, Y.; Zhang, Y.; Jiao, R. A Power Forecasting Approach for PV Plant based on Irradiance Index and LSTM. In Proceedings of the 2018 37th Chinese Control Conference (CCC), Wuhan, China, 25–27 July 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 9404–9409. [Google Scholar]
- Pang, Z.; Niu, F.; O’Neill, Z. Solar radiation prediction using recurrent neural network and artificial neural network: A case study with comparisons. Renew. Energy 2020, 156, 279–289. [Google Scholar] [CrossRef]
- Li, P.; Zhou, K.; Lu, X.; Yang, S. A hybrid deep learning model for short-term PV power forecasting. Appl. Energy 2020, 259, 114216. [Google Scholar] [CrossRef]
- Huang, X.; Zhang, C.; Li, Q.; Tai, Y.; Gao, B.; Shi, J. A Comparison of Hour-Ahead Solar Irradiance Forecasting Models Based on LSTM Network. Math. Probl. Eng. 2020, 2020, 4251517. [Google Scholar] [CrossRef]
- Gbémou, S.; Eynard, J.; Thil, S.; Guillot, E.; Grieu, S. A Comparative Study of Machine Learning-Based Methods for Global Horizontal Irradiance Forecasting. Energies 2021, 14, 3192. [Google Scholar] [CrossRef]
- Zhu, T.; Guo, Y.; Li, Z.; Wang, C. Solar Radiation Prediction Based on Convolution Neural Network and Long Short-Term Memory. Energies 2021, 14, 8498. [Google Scholar] [CrossRef]
- Cha, J.; Kim, M.K.; Lee, S.; Kim, K.S. Investigation of applicability of impact factors to estimate solar irradiance: Comparative analysis using machine learning algorithms. Appl. Sci. 2021, 11, 8533. [Google Scholar] [CrossRef]
- Chu, Y.; Urquhart, B.; Gohari, S.M.I.; Pedro, H.T.C.; Kleissl, J.; Coimbra, C.F.M. Short-term reforecasting of power output from a 48 MWe solar PV plant. Sol. Energy 2015, 112, 68–77. [Google Scholar] [CrossRef]
- Pedro, H.T.C.; Larson, D.P.; Coimbra, C.F.M. A comprehensive dataset for the accelerated development and benchmarking of solar forecasting methods. J. Renew. Sustain. Energy 2019, 11, 036102. [Google Scholar] [CrossRef] [Green Version]
- Rezende, S.O. Sistemas Inteligentes, 1st ed.; Manole: São Paulo, Brazil, 2003; Volume 2013, ISBN 9788520416839. [Google Scholar]
- Claywell, R.; Nadai, L.; Felde, I.; Ardabili, S.; Mosavi, A. Adaptive Neuro-Fuzzy Inference System and a Multilayer Perceptron Model Trained with Grey Wolf Optimizer for Predicting Solar Diffuse Fraction. Entropy 2020, 22, 1192. [Google Scholar] [CrossRef]
- Yu, Y.; Si, X.; Hu, C.; Zhang, J. A Review of Recurrent Neural Networks: LSTM Cells and Network Architectures. Neural Comput. 2019, 31, 1235–1270. [Google Scholar] [CrossRef] [PubMed]
- Haviv, D.; Rivkind, A.; Barak, O. Understanding and Controlling Memory in Recurrent Neural Networks. In Proceedings of the 36th International Conference on Machine Learning, ICML, Long Beach, CA, USA, 10–15 June 2019; pp. 4733–4741. [Google Scholar]
- Lee, D.; Kim, K. Recurrent neural network-based hourly prediction of photovoltaic power output using meteorological information. Energies 2019, 12, 215. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A Simple Way to Prevent Neural Networks from Overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958. [Google Scholar]
- Gueymard, C.A. A review of validation methodologies and statistical performance indicators for modeled solar radiation data: Towards a better bankability of solar projects. Renew. Sustain. Energy Rev. 2014, 39, 1024–1034. [Google Scholar] [CrossRef]
- Mining, E. Python Machine Learning: Understand Python Libraries (Keras, NumPy, Scikit-Lear, TensorFlow) for Implementing Machine Learning Models in Order to Build Intelligent Systems; Amazon Digital Services LLC-KDP Print US: Brentford, UK, 2019; ISBN 9781671257900. [Google Scholar]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Dürr, O.; Sick, B.; Murina, E. Probabilistic Deep Learning: With Python, Keras and Tensorflow Probability; Manning Publications: Shelter Island, NY, USA, 2020; ISBN 9781617296079. [Google Scholar]
- Bisong, E. Google Colaboratory. In Building Machine Learning and Deep Learning Models on Google Cloud Platform; Apress: Berkeley, CA, USA, 2019; pp. 59–64. [Google Scholar]
- JASP Team JASP (Version 0.16) [Computer Software]. Available online: https://jasp-stats.org/ (accessed on 7 January 2022).
- Goss-Sampson, M.A. Statistical Analysis in JASP 0.12: A Guide for Students; University of Greenwich: London, UK, 2020. [Google Scholar]
- Morettin, P.A.; de Bussab, W.O. Estatística Básica, 9th ed.; Saraivauni: São Paulo, Brazil, 2017; ISBN 978-8547220228. [Google Scholar]
- Lehmann, E.L.; Romano, J.P. Testing Statistical Hypotheses, 3rd ed.; Springer: New York, NY, USA, 2005; ISBN 0-387-98864-5. [Google Scholar]
- Bamisile, O.; Oluwasanmi, A.; Ejiyi, C.; Yimen, N.; Obiora, S.; Huang, Q. Comparison of machine learning and deep learning algorithms for hourly global/diffuse solar radiation predictions. Int. J. Energy Res. 2021, 1–22. [Google Scholar] [CrossRef]
- Zhang, J.; Chi, Y.; Xiao, L. Solar Power Generation Forecast Based on LSTM. In Proceedings of the 2018 IEEE 9th International Conference on Software Engineering and Service Science (ICSESS), Beijing, China, 23–25 November 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1–5. [Google Scholar]
- Pombo, D.V.; Bindner, H.W.; Spataru, S.V.; Sørensen, P.E.; Bacher, P. Increasing the Accuracy of Hourly Multi-Output Solar Power Forecast with Physics-Informed Machine Learning. Sensors 2022, 22, 749. [Google Scholar] [CrossRef] [PubMed]
- Sabri, M.; El Hassouni, M. A Novel Deep Learning Approach for Short Term Photovoltaic Power Forecasting Based on GRU-CNN Model. E3S Web Conf. 2022, 336, 00064. [Google Scholar] [CrossRef]
Variables | Number of Samples | |||
---|---|---|---|---|
Horizont Prediction | Training 23 Months | Validation 1 Month | Test 12 Months | |
Air temperature, relative humidity, atmospheric pressure, wind speed, wind direction, maximum wind speed, precipitation (rain), month, hour, minute, Global Horizontal Irradiance (GHI) | 1 min | 958.559 | 873.53 | 505.781 |
15 min | 958.559 | 873.53 | 33.720 | |
60 min | 958.559 | 873.53 | 8.431 |
Experimental Configuration for ANN and LSTM Models | ||
---|---|---|
Complete Input Set (10 Inputs) | Reduced Input Set (6 Inputs) | |
Input Set Variables | Air temperature Relative humidity Atmospheric pressure Wind speed Wind direction Maximum wind speed Precipitation (rain) Month, hour, minute | Air temperature Wind speed Wind direction Month, hour, minute |
Output Variable | Global Horizontal Irradiance (GHI) | Global Horizontal Irradiance (GHI) |
Prediction Horizons (minutes) | 1, 15 and 60 | 1, 15 and 60 |
ANN Structure Model | Figure 1c and Table 4 | Figure 1c and Table 4 |
LSTM Structure Model | Figure 2c and Table 4 | Figure 2c and Table 4 |
ANN | LSTM | ||
---|---|---|---|
Parameter | Value | Parameter | Value |
Activation function | ReLU | Activation function | TanH |
Dropout | 0.15 | Dropout | 0.15 |
Epochs | 1000 | Epochs | 1000 |
Learn rate | 0.001 | Learn rate | 0.001 |
Total neurons | 60 | Total cells | 60 |
Hidden layers (HLs) | 2 | Hidden layers (HLs) | 2 |
Neurons in each HL | 30 | Cells in each HL | 30 |
Fold/Year | 2014 | 2015 | 2016 | Validation Month |
---|---|---|---|---|
Fold 1 | Test | Train | Train * | December/2016 |
Fold 2 | Train * | Test | Train | December/2014 |
Fold 3 | Train | Train * | Test | December/2015 |
1 min | Model | Metric | Complete Set Input Variables | Reduced Set Input Variables | ||||||||
Fold 1 | Fold 2 | Fold 3 | Mean | SD | Fold 1 | Fold 2 | Fold 3 | Mean | SD | |||
ANN | nRMSE | 0.031 | 0.044 | 0.033 | 0.036 | 0.007 | 0.032 | 0.037 | 0.035 | 0.035 | 0.003 | |
MAPE (%) | 5.029 | 5.632 | 5.407 | 5.356 | 0.305 | 3.604 | 3.797 | 4.698 | 4.033 | 0.584 | ||
R2 | 0.98 | 0.964 | 0.973 | 0.972 | 0.008 | 0.979 | 0.974 | 0.97 | 0.974 | 0.005 | ||
LSTM | nRMSE | 0.02 | 0.021 | 0.018 | 0.020 | 0.002 | 0.02 | 0.021 | 0.018 | 0.020 | 0.002 | |
MAPE (%) | 1.764 | 3.232 | 1.691 | 2.229 | 0.869 | 1.626 | 1.536 | 2.072 | 1.745 | 0.287 | ||
R2 | 0.992 | 0.992 | 0.992 | 0.992 | 0.000 | 0.992 | 0.992 | 0.992 | 0.992 | 0.000 | ||
Persist. | nRMSE | 0.075 | 0.076 | 0.095 | 0.082 | 0.009 | 0.075 | 0.076 | 0.095 | 0.082 | 0.009 | |
MAPE (%) | 21.268 | 19.705 | 32.149 | 24.374 | 5.535 | 21.268 | 19.705 | 32.149 | 24.374 | 5.535 | ||
R2 | 0.869 | 0.868 | 0.858 | 0.865 | 0.005 | 0.869 | 0.868 | 0.858 | 0.865 | 0.005 | ||
15 min | Model | Metric | Fold 1 | Fold 2 | Fold 3 | Mean | SD | Fold 1 | Fold 2 | Fold 3 | Mean | SD |
ANN | nRMSE | 0.056 | 0.066 | 0.06 | 0.061 | 0.005 | 0.056 | 0.062 | 0.06 | 0.059 | 0.003 | |
MAPE (%) | 8.047 | 9.114 | 8.892 | 8.685 | 0.563 | 7.185 | 7.412 | 8.272 | 7.623 | 0.574 | ||
R2 | 0.945 | 0.93 | 0.937 | 0.937 | 0.008 | 0.944 | 0.938 | 0.935 | 0.939 | 0.005 | ||
LSTM | nRMSE | 0.051 | 0.055 | 0.051 | 0.052 | 0.002 | 0.051 | 0.054 | 0.051 | 0.052 | 0.002 | |
MAPE (%) | 5.961 | 7.374 | 5.972 | 6.436 | 0.813 | 6.013 | 6.077 | 6.436 | 6.175 | 0.228 | ||
R2 | 0.954 | 0.952 | 0.954 | 0.953 | 0.001 | 0.954 | 0.953 | 0.954 | 0.954 | 0.001 | ||
Persist. | nRMSE | 0.075 | 0.107 | 0.104 | 0.095 | 0.014 | 0.075 | 0.107 | 0.104 | 0.095 | 0.014 | |
MAPE (%) | 21.284 | 24.152 | 31.993 | 25.810 | 4.526 | 21.284 | 24.152 | 31.993 | 25.810 | 4.526 | ||
R2 | 0.859 | 0.835 | 0.807 | 0.833 | 0.022 | 0.859 | 0.835 | 0.807 | 0.833 | 0.022 | ||
60 min | Model | Metric | Fold 1 | Fold 2 | Fold 3 | Mean | SD | Fold 1 | Fold 2 | Fold 3 | Mean | SD |
ANN | nRMSE | 0.051 | 0.055 | 0.051 | 0.052 | 0.002 | 0.051 | 0.054 | 0.051 | 0.052 | 0.002 | |
MAPE (%) | 17.321 | 17.640 | 17.953 | 17.638 | 0.316 | 16.403 | 16.720 | 17.139 | 16.754 | 0.369 | ||
R2 | 0.954 | 0.952 | 0.954 | 0.953 | 0.001 | 0.954 | 0.953 | 0.954 | 0.954 | 0.001 | ||
LSTM | nRMSE | 0.095 | 0.099 | 0.098 | 0.097 | 0.002 | 0.095 | 0.097 | 0.099 | 0.097 | 0.002 | |
MAPE (%) | 16.323 | 17.614 | 16.686 | 16.874 | 0.666 | 16.364 | 16.613 | 17.343 | 16.774 | 0.509 | ||
R2 | 0.86 | 0.852 | 0.856 | 0.856 | 0.004 | 0.86 | 0.855 | 0.855 | 0.857 | 0.003 | ||
Persist. | nRMSE | 0.095 | 0.114 | 0.116 | 0.109 | 0.010 | 0.095 | 0.114 | 0.116 | 0.109 | 0.010 | |
MAPE (%) | 22.268 | 25.273 | 33.802 | 27.114 | 4.885 | 22.268 | 25.273 | 33.802 | 27.114 | 4.885 | ||
R2 | 0.859 | 0.801 | 0.787 | 0.816 | 0.031 | 0.859 | 0.801 | 0.787 | 0.816 | 0.031 |
Models | ANN | LSTM | |||||
---|---|---|---|---|---|---|---|
Prediction Horizon | 1 | 15 | 60 | 1 | 15 | 60 | |
ANN | 1 | - | * | * | * | * | * |
15 | - | - | * | * | * | * | |
60 | - | - | - | * | * | ||
LSTM | 1 | - | - | - | - | * | * |
15 | - | - | - | - | - | * | |
60 | - | - | - | - | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wentz, V.H.; Maciel, J.N.; Gimenez Ledesma, J.J.; Ando Junior, O.H. Solar Irradiance Forecasting to Short-Term PV Power: Accuracy Comparison of ANN and LSTM Models. Energies 2022, 15, 2457. https://doi.org/10.3390/en15072457
Wentz VH, Maciel JN, Gimenez Ledesma JJ, Ando Junior OH. Solar Irradiance Forecasting to Short-Term PV Power: Accuracy Comparison of ANN and LSTM Models. Energies. 2022; 15(7):2457. https://doi.org/10.3390/en15072457
Chicago/Turabian StyleWentz, Victor Hugo, Joylan Nunes Maciel, Jorge Javier Gimenez Ledesma, and Oswaldo Hideo Ando Junior. 2022. "Solar Irradiance Forecasting to Short-Term PV Power: Accuracy Comparison of ANN and LSTM Models" Energies 15, no. 7: 2457. https://doi.org/10.3390/en15072457
APA StyleWentz, V. H., Maciel, J. N., Gimenez Ledesma, J. J., & Ando Junior, O. H. (2022). Solar Irradiance Forecasting to Short-Term PV Power: Accuracy Comparison of ANN and LSTM Models. Energies, 15(7), 2457. https://doi.org/10.3390/en15072457