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Abstract: The use of renewable energies, such as Photovoltaic (PV) solar power, is necessary to meet
the growing energy consumption. PV solar power generation has intrinsic characteristics related to
the climatic variables that cause intermittence during the generation process, promoting instabilities
and insecurity in the electrical system. One of the solutions for this problem uses methods for the
Prediction of Solar Photovoltaic Power Generation (PSPPG). In this context, the aim of this study is to
develop and compare the prediction accuracy of solar irradiance between Artificial Neural Network
(ANN) and Long-Term Short Memory (LSTM) network models, from a comprehensive analysis that
simultaneously considers two distinct sets of exogenous meteorological input variables and three
short-term prediction horizons (1, 15 and 60 min), in a controlled experimental environment. The
results indicate that there is a significant difference (p < 0.001) in the prediction accuracy between
the ANN and LSTM models, with better overall prediction accuracy skill for the LSTM models
(MAPE = 19.5%), except for the 60 min prediction horizon. Furthermore, the accuracy difference
between the ANN and LSTM models decreased as the prediction horizon increased, and no significant
influence was observed on the accuracy of the prediction with both sets of evaluated meteorological
input variables.

Keywords: solar irradiance forecasting; artificial neural networks; long-term short memory; machine
learning; deep learning

1. Introduction

The energy sector segment has an important role for the maintenance of life and the
economy. Specifically in Brazil, renewable sources account for 82.7% of the energy matrix,
with hydroelectric generation alone being responsible for 60.9% of this total [1]. However,
in order to supply the growth of energy consumption that has been occurring in the country,
and to decrease the use of non-renewable energy, investments in the photovoltaic sector
have broken records and, according to the Brazilian Photovoltaic Solar Energy Association
(ABSOLAR), Brazil was predicted to reach the historic mark of 10 Gigawatts (GW) of
operational power from the photovoltaic solar source in 2021 [2]. Globally, the solar
photovoltaic generation represented 60% of all renewable energy added in 2021 [3].

Photovoltaic (PV) solar energy depends primarily on solar irradiance, i.e., the incidence
of solar rays on photovoltaic cell panels. However, this energy production process is subject
to oscillations of variables that are not controllable, such as the climatic conditions of the
location, winds, clouds, temperatures, intensity and duration of solar irradiance, among
others. These oscillations in energy generation promote intermittencies in the power
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generated by photovoltaic systems [4], and this can result in power flow inversion with
variations in voltage and frequency in the transmission system [5].

Considering the problems caused by intermittencies arising from the solar photo-
voltaic generation energy process, the research topic of Prediction of Solar Photovoltaic
Power Generation (PSPPG) has been widely studied in the scientific literature in the last
decade [6–11], with few studies observed in Brazil and Latin American countries, possibly
due to the very recent investment in this type of energy matrix [12]. The proposition of
methods and devices for PSPPG enables the development of solutions to mitigate the
variation in solar energy production within acceptable limits, as well as to compensate for
power variability during the PV generation process, and to anticipate energy production
and market demand [6]. One of the solutions to solve the generation intermittency problem
is the use of intelligent systems and/or battery energy storage to operate a reserve [13–15].
However, this approach requires forecast information about future power generation, which
is used as input to enable safe and efficient generation within acceptable limits in electric
and photovoltaic systems. This makes the study of PSPPG methods relevant, mainly due
to the increase in photovoltaic solar energy generation in the global energy matrix.

Among the several classes of methods applied to PSPPG [11], Artificial Intelligence
(AI) has shown the best results, being widely studied nowadays through Machine Learning
(ML) algorithms [16,17] and, more recently, Deep Learning (DL) algorithms [18,19]. The
literature review described in [11] analyzed the prediction accuracy of 1705 scientific
studies about PSPPG methods. This study has significant and important contributions
regarding a model’s accuracy, prediction horizons and classes of prediction methods.
However, it is found that these comparative accuracy studies are usually conducted with
different datasets and experimental setups, such as different input variables, origin of data,
prediction horizons and model structure and configurations. These comparative analyses
regarding input variables, models, horizons and prediction accuracy are relevant in PSPPG
to evaluate the use of applications of photovoltaic energy generation in solar plants and
photovoltaic modules, considering their characteristics, such as the availability, or not, of
locally captured exogenous meteorological variables (e.g., temperature, humidity, etc.).

In this context, considering that ML and DL models are the ones that show high
prediction accuracy in PSPPG [11,12], the main objective of this study is to evaluate and
compare the accuracy of two prediction models of the artificial intelligence applied in
PSPPG: the Machine Learning (ML) model most applied in PSPPG through Artificial
Neural Networks (ANNs) [20] and Deep Learning (DL) models with Long-Short Term
Memory (LSTM) networks [21], which are a type of Recurrent Neural Network (RNN) [22].
To analyze which of these prediction models is most suitable for the short-term PSPPG,
this study aims to present, simultaneously, a statistical analysis of the influence of different
meteorological variables and prediction horizons in the accuracy of these models. This also
compounds the originality of this study and allows the design and development of PSPPG
devices based on ANNs and LSTMs with the use of different types and quantities of input
meteorological variables.

In the proposed evaluation, a single database (dataset), two distinct sets of input
variables and three short-term prediction horizons were adopted, allowing prediction
accuracy comparisons from a homogeneous and controlled experimental environment.
Thus, the following specific objectives were defined for this study: (1) to compare the
overall prediction accuracy of the ANN and LSTM models with similar configuration
structure in a homogeneous and controlled experimental environment; (2) to evaluate the
accuracy among ANN and LSTM models in three short-term prediction horizons (1, 15 and
30 min) and (3) to investigate the influence of using distinct exogenous input variables in
the prediction performance of ANN and LSTM models. In order to facilitate the comparison
of the ANN and LSTM models developed in this study with the literature, the accuracy of a
baseline model [23] applied in time series prediction, including in PPSPG [24], is presented
as a reference model.
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It is highlighted that the motivation for this study originated from previous studies [25–27]
and by the fact that, to date, no research has been identified in the scientific literature
comparing ANN and LSTM models in the PSPPG context, specifically considering the
following simultaneous characteristics of controlled experimental configuration, a single
dataset with exogenous meteorological input variables and three short-term prediction
horizons. Although works have compared these models in other application areas, no
study evaluating both models with the exogenous meteorological and solar irradiance data
used in this study was observed in the literature.

Therefore, in this sense additional information about the relevance, originality and
motivation of this study is described in the next section, including the essential concepts
about PSPPG and the main scientific papers related to this study. Section 2 describes
the experimental evaluation method and the ANN and LSTM models adopted in this
study. Section 3 shows the results, analysis and comparative statistics and, finally, Section 4
presents the conclusions, the contributions to the PSPPG literature and future work.

1.1. Background and Related Works

The methods for PSPPG can be classified into two modes: indirect prediction, which
indirectly uses the solar irradiance to predict the photovoltaic generated power, and direct
prediction, which tries to directly predict the future power generation of the photovoltaic
system or plant [6]. The indirect PSPPG method is widely used because it uses solar
irradiance, which is often available and captured by pyranometers, and is also being
applied in several other study areas. In addition, solar irradiance has high correlation
values with the PV power generated (correlation coefficient (R2) > 0.98) [9].

Another classification of prediction methods is related to the source of the input data.
While prediction methods with endogenous data use current or historical Time Series
(TS), methods with exogenous data originate from local or remote measurements, which
include total sky images, temperature, solar irradiation, humidity, cloud and wind data
and others [6]. Finally, the last important concept in PSPPG consists in the existence of
several prediction horizons that vary between seconds, minutes, hours, days, etc. The
selection of the horizon depends on its application, ranging from real-time intermittency
monitoring for use of power smoothing systems, to planning and operation of power
generation and consumption demand [6,28]. It is important to emphasize that there is no
literature consensus on the exact delimitation or classification of the prediction horizons
in PSPPG [6,9]. Therefore, in this study’s context a short-term prediction horizon with the
prediction intervals of 1, 15 and 60 min was adopted.

A variety of prediction method classes have been studied in PSPPG over the last
decade [12,29], with an increase in accuracy rates over time [11]. Examples of these classes
are persistence, statistical, cloud motion and tracking, numeric weather prediction, Machine
Learning (ML), Deep Learning (DL) and hybrid models [9,11,19,30]. Besides these classes,
new approaches based on meta-heuristics [31] have been proposed for the prediction of
(indirect) solar irradiance in PSPPG. The PSPPG review in [11] evaluated the prediction
accuracy of 1705 studies organized into these classes of methods and identified that machine
learning-based models [16,17,32] showed the best prediction accuracies.

Historically, the most used ML method in PSPPG is Artificial Neural Networks
(ANNs) [11,12,17], mainly for providing a self-adaptive and generalized approach for
non-linear data, being widely used in time series prediction [11,33]. In [34], it is shown that
ANN and MLP cannot solve the problem of unstable PV power in cloudy conditions, and
LSTM outperformed other evaluated methods. However, only the prediction horizon of
1 h ahead was considered in the study.

The goods results of ML methods [11] may have motivated the increasing application
of DL methods in PSPPG [18,19,30,35], which constitute the state of the art of artificial
intelligence [36] and are facilitated by technological advances in computational power,
such as the use of Graphics Processing Units (GPUs). Deep learning as an advancement
of ANNs, making the structure more complex and deep, enhanced the ability to solve
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complicated problems [37]. Deep learning is a term that is currently quite common in the
literature, but it is not new [36].

Since 2017, a growth has been observed in publications with Deep Learning (DL)
models in PSPPG [18,19,30], with emphasis on the application of Long Short-Term Mem-
ory (LSTM) networks [22,38,39], Convolutional Neural Networks (CNNs) [40–42] and
combinations of these models [43–47]. A review reported in [18] demonstrates that deep
learning-based models are currently suitable for indirect (solar irradiance) and direct (photo-
voltaic power generated) predictions. They also reported that the meteorological variables
(exogenous) most used with DL methods are temperature, humidity, wind speed and direc-
tion. However, there are fewer studies applying exogenous input variables as compared to
endogenous ones [19]. More recently, it was reported that the DL models employed most
frequently in PSPPG are LSTM, RNN and Deep Neural Networks (DNNs) [30,35].

The PSPPG scientific reviews, in general, analyze a set of selected papers by a selection
criterion, mainly regarding the prediction accuracy of the proposed methods [10,11,17,19],
among other features. For this reason, the accuracy of these methods is, sometimes, com-
pared regardless of the type and amount of input data, with different datasets, experimental
execution environments or prediction horizons.

Considering that ANNs have historically been the most used in short-term PSPPG
and currently LSTMs are being widely applied for their ability to capture patterns in the
data with their long-term temporal memory, we have not observed comparative studies
of these two methods including: (i) several types of exogenous meteorological input data
(from a database); (ii) similar structures of ANN and LSTM models; (iii) three equal short-
term prediction horizons and (iv) a homogeneous and controlled experimental evaluation
method. Thus, the results of this study promote contributions to PSPPG by providing details
on the prediction accuracy profile of ANN and LSTM models regarding the simultaneous
use of different endogenous weather input variables and the use of both models for the
three different short-term horizons.

Regarding the literature studies that jointly compare ANN and RNN or LSTM models,
Table 1 summarizes main features of these works in the PSPPG context, including the
specific features that distinguish this study from others. It must be noted which literature
shown in Table 1 was selected according to the criterion of presenting comparisons of
accuracy between ANN and LSTM or RNN models, considering the short-term PSPPG
context. In [48,49], it was found that LSTM networks have the ability to capture the temporal
changes of the generated power or solar irradiance due to the existence of its long-term
temporal memory, and thus improve the accuracy predictions. However, these studies
considered only the 1 h prediction horizon and no meteorological data were used [48]. The
interesting study in [34] evaluated the accuracy of ANN, LSTM and other prediction models
in complex weather conditions, especially on cloudy and mixed days, the determination
coefficient (R2) obtained is about 0.85 and LSTM is still very effective in improving RNN
and is more accurate than other models [34]. However, the study analyzed the models’
accuracy at the prediction horizon of 1 h ahead, and the current study presents an additional
analysis with the prediction horizons of 1 and 15 min.

In the study in [50], the results showed better prediction accuracy for the RNNs
(nMBE = 47% and RMSE = 26%) when compared to ANN MLP-type. Nevertheless, al-
though it considered three distinct prediction horizons, it did not analyze the accuracy of
the LSTM model. Therefore, the present study fills this gap with a comprehensive analysis
of the prediction of both models at short-term horizons. It is worth noting here that RNNs
are a generalization of LSTMs, and do not have the LSTM ability to handle problems where
there are long-term data dependencies well [21].
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Table 1. Literature studies with simultaneous comparison between ANN and RNN or LSTM models.

Horizon Forecasting Methods Data Time Step Error Metric Input Variables Output Variable Dataset Pub. Year Ref.

1 h MLR, BRT,
ANN, LSTM 1 h RMSE PV power PV power Two sites’ databases with one year’s data: 70%

for training and 30% for test 2017 [48]

1 h,
1 day ANN, ELM, LSTM, 1 h MAPE, RMSE,

MAE
Irradiance, temperature, humidity, wind speed, PV

power generated, day of year PV power One year’s data: 6 November 2016
to 28 October 2017. Ten-fold cross validation 2018 [49]

1 h,
1 day

ANN, ARIMA, BPNN,
SVR, RNN, LSTM 1 h R2, RMSE,

MAE

GHI, clear-sky GHI, cloud type, dew point,
temperature, precipitable water, relative humidity,

solarzenith angle, wind speed, wind direction
GHI Three databases from different locations, five

years’ data: 4 for training and 1 for test 2019 [34]

10 min,
30 min,

1 h

MLP,
RNN

10 min.
30 min.

1 h

R2,
RMSE,

cvRMSE,
nMBE

Hour, dry bulb air temperature GHI One week’s data: 22 May to 29 May 2016 2020 [50]

1 h ANN, WPD-LSTM,
LSTM, GRU, RNN 5 min MBE, MAPE,

RMSE
PV power, GHI, DHI, temperature, wind speed,

relative humidity PV power
One dataset with two years’ data: 1 June 2014

to 31 May 2015 used for training and
1 June 2015 to 12 June 2016 for test

2020 [51]

1 h
ANN

RNN, RF, SVM, LSTM,
LSTM-MLP

1 h
RMSE,

nRMSE, MAE,
MBE, r

Wind speed, atmospheric pressure, precipitation,
relative air humidity, air temperature GHI One dataset with four years’ data: three years

for training and one year for test 2020 [52]

10 min to 4 h Persistence, MLP,
LSTM, LS-SVR, GPR 10 min. nRMSE, DMAE,

CWC GHI GHI Two years’ data: one year’s data for training
and one year’s data for test 2021 [53]

10 min
Persistence, MLP,

LSTM
CNN, SCNN-LSTM

10 min. r, fs, nRMSE,
nMBE, nMAE DNI, solar zenith angle, relative humidity, air mass DNI Two years’ data: ten months for training, two

for validation and 12 months for test 2021 [54]

1 min,
15 min,

1 h

Persistence, ANN,
LSTM

1 min
15 min

1 h

RMSE
nRMSE, MAPE,

R2

(Complete Set)
Air temperature,
relative humidity,

atmospheric pressure,
wind speed,

wind direction,
maximum wind speed,

precipitation (rain),
month, hour, minute

(Reduced Set)
Air temperature

wind speed,
wind direction

month, hour, minute

GHI Three years’ data: two years for training and
one year’s data for test 2022 This work

The complete abbreviation definitions are provided at the end of this study.
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Another two studies described in [51,52] proposed hybrid models and evaluated accu-
racy of photovoltaic potential prediction with other methods, including ANN and LSTM.
However, these studies considered only a single 1 h prediction horizon, and both irradi-
ances (GHI and DNI) were also used as input to the prediction method presented in [51].
More recently, several ML methods were evaluated and it was found that Multi-Layer
Perceptron (MLP)-type ANNs demonstrate lower accuracy than LSTMs [53]. However,
they considered only the use of the endogenous variable Global Horizontal Irradiance
(GHI), and no exogenous meteorological variables were employed in the evaluated models.

Another recent study proposed and evaluated the hybrid SCNN-LSTM method for
the prediction horizon 10 min ahead [54]. Although it is not the focus of the present
investigation to use total sky images, the authors compared the accuracy of the proposed
method with several other methods that include ANN and LSTM. It is relevant to note
that in the study described in [54], although a single horizon (10 min) is considered, the
prediction accuracies of ANN and LSTM models exhibit quite similar values, and it is not
possible to state which model is more suitable for the prediction horizon analyzed. As
an example, nRMSE = 29.92% for ANN and nRMSE = 29.69% for LSTM were obtained
on cloudy days [54]. This study, besides considering a single prediction horizon, uses the
Direct Normal Irradiance (DNI) as a target, which is less common information in PSPPG.

Finally, a recent and interesting study complementary to short-term forecasting eval-
uated, with several ML and DP algorithms, the influence of exogenous meteorological
variables on solar irradiance [55]. The results showed that temperature and cloud amount
are determinant impact factors affecting solar irradiance. Finally, considering the character-
istics of studies comparing the accuracy between ANN and LSTM models for short-term
prediction, detailed in Table 1, there is a lack of a complete study that uses different
exogenous meteorological input variables, some of them being determinants of solar irradi-
ance [55], and also including different short-term prediction horizons that influence the
model’s accuracy [25,56].

Therefore, in this context, it is important to have a comparative study based on
statistical analysis to compare ANN and LSTM models under controlled experimental
conditions, with different prediction horizons and evaluating the influence of distinct
meteorological input variables. Two sets of meteorological and exogenous variables and
three prediction horizons were adopted (1, 15 and 60 min), making it possible to measure
the performance and suitability of ANN and LSTM models in the PSPPG context for short-
term predictions. Thus, this study’s contributions and originality are due to, according
to Table 1, the absence of previous works directly comparing similar structures of ANN
and LSTM models with the same exogenous meteorological data and three short-term
prediction horizons from a controlled experimental environment. Therefore, the next
section presents the theoretical concepts, materials and experimental method of this study.

2. Materials and Method

This study’s experiments were conducted in a controlled experimental environment
to provide an adequate comparative analysis of the ANN and LSTM models’ prediction
accuracy. Using a single training and testing dataset, the method was designed to evaluate
the predictions of these models at three different short-term horizons (1, 15 and 60 min),
two sets of input variables and two different models (ANN and LSTM). The next sections
detail the dataset, the input variables, the architecture of the ANN and LSTM models and
the experimental protocol of this study. Finally, the tools and technologies used in the
development of this study are described.

2.1. Dataset Description

The database (or dataset) is an important component for building and evaluating
machine learning models [20]. This study employed the dataset described in [57], com-
posed of endogenous and exogenous data regarding meteorological information, solar
irradiation and local sky images. This information corresponds to the full three-year period
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(2014–2016) and is standardized and quality-controlled, with samples collected and avail-
able at the 1 min time scale. Table 2 presents the variables employed in the ANN and LSTM
models evaluated in this study, as well as the number of samples used in each prediction
horizon analyzed.

Table 2. Folsom dataset variables and details used in this study.

Variables

Number of Samples

Horizont
Prediction

Training
23 Months

Validation
1 Month

Test
12 Months

Air temperature, relative humidity, atmospheric
pressure, wind speed, wind direction, maximum

wind speed, precipitation (rain), month, hour,
minute, Global Horizontal Irradiance (GHI)

1 min 958.559 873.53 505.781

15 min 958.559 873.53 33.720

60 min 958.559 873.53 8.431

The data and information presented in Table 2 were captured in Folsom City, California,
United States of America, and are available in [57].

2.2. Evaluated Models

In this section, we describe the main concepts about ANN and LSTM models and
the structures of these networks which were adopted and evaluated in this study. In
order to understand the Machine Learning (ML) process with an ANN, it is necessary
to understand how it works. An ANN works similarly to the neurons of the human
brain, capable of solving approximation, classification, standardization, optimization and
prediction problems [58]. Figure 1 schematically presents (a) an artificial neuron, where x1,
x2, . . . , xn correspond to the inputs. For each input xi there is a weight wi in input of neuron.
The sum of the inputs xi balanced by the weight wi, resulting in the linear output u, where
u = ∑i wixi. The activation output y of the neuron is obtained by applying a function f to
the linear output u, denoted by y = f (u). The f function is known as the activation function
and can assume several non-linear forms [58].
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structure applied in this study.

Figure 1b depicts the example of an ANN composed of 5 inputs and a single hidden
layer with 4 neurons and two outputs (y1 and y2). However, considering the results of the
research previously published in [22,23] where the accuracies of ANN models in PSPPG
were evaluated, this study employed the ANN model whose structure is depicted in
Figure 1c. Therefore, the ANN model used in this study is composed of n inputs, two
hidden layers with 30 neurons each and a single output neuron y, corresponding to the
GHI variable. It is important to highlight that n can assume, in this study, two values
(6 or 10) corresponding to the quantity of input variables, as shown in Table 2. In this
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study, Multi-Layer Perceptron (MLP)-type ANNs with the activation function ReLU and
the backpropagation training algorithm [20] were employed, as shown in Figure 1c.

It should be pointed out that the prediction accuracy of ANN models can still be
studied and can be increased with the use of hybrid and optimized methods, such as
using the hybrid Adaptive Network-Based Fuzzy Inference System (ANFIS), or a hybrid
Multi-Layer Perceptron with Grey Wolf Optimizer (MLP-GWO) [59]. However, this study
focuses on simple MLP-type ANN models.

Alternatively, the increase in computational power has enabled the use of deep
learning algorithms and Recurrent Neural Networks (RNNs) in many areas, including
PSPPG [22]. RNNs are a class of ANNs known to have “memory”, i.e., a cyclic feedback
connection in which the output returns to the previous layer, as depicted in Figure 2a.
ANNs specialize in sequential data such as text, video and time series due to their internal
memory, being able to “remember” relevant dynamic patterns about the input data, except
when the gap between these patterns is very large [60]. For this reason, the concept of the
Long Short-Term Memory (LSTM)-type RNN was introduced in 1997 [21], and it is widely
used for presenting interesting results due to its good ability to deal with the problem of
long-term data dependency [60], which increases the prediction accuracy [61].
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PSPPG [22]. RNNs are a class of ANNs known to have “memory,” i.e., a cyclic feedback 
connection in which the output returns to the previous layer, as depicted in Figure 2a. 
ANNs specialize in sequential data such as text, video and time series due to their internal 
memory, being able to “remember” relevant dynamic patterns about the input data, 
except when the gap between these patterns is very large [60]. For this reason, the concept 
of the Long Short-Term Memory (LSTM)-type RNN was introduced in 1997 [21], and it is 
widely used for presenting interesting results due to its good ability to deal with the 
problem of long-term data dependency [60], which increases the prediction accuracy [61]. 

 
Figure 2. LSTM model: (a) an RNN with two recurrent cells, (b) an LSTM cell structure with forget
gate and (c) the LSTM structure adopted in this study (for clarity, the temporal recurrent and enrolled
structure is not shown).

A number of architectural variations of LSTM cells and networks have been proposed
and applied in the literature [60]. The internal schematic diagram of an LSTM cell used
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in this study is shown in Figure 2b. Considering that W represents a weight and t is the
current time, we have:

ft = σ
(

W f hht−1 + W f xxt + b f

)
,

it = σ(Wihht−1 + Wixxt + bi),

ĉt = tanh(Wĉhht−1 + Wĉxxt + bĉ),

ct = ft.ct−1 + it. ĉt,

ot = σ(Wohht−1 + Woxxt + bo),ht = ot .tanhct.

(1)

In the equations presented in (1), xt is current input, x represents the scaling of
information, + is the added information, σ is the sigmoid function, tanh is the hyperbolic
tangent function, ht−1 is the output of the last LSTM cell, ct is the new updated memory,
ht is the current output and ft, it, ot are the forget, input and output gates, respectively.
Additional details of these equations (1) can be found in [60].

The main idea focuses on the state of the memory cell flowing through time t¸ with
data being received from the previous cell and passed on to the next cell. The first step of
processing occurs with the function ht−1 which is the output of the previous time and xt
which is the current value. These two pieces of information are submitted to a sigmoid
function at the forget gate ( ft) to decide what will be discarded. When the ft value is 1,
the information is kept, and discarded when it is 0. The next step is to decide what will be
stored, using the hyperbolic tangent function (tanh), to then add or delete the input gate (it)
and forget gate ( ft) values of the cell. In the output gate (ot), the data are received through
the sigmoid function and it is decided what is important through the hyperbolic tangent
function, returning the value in the output ht [60,62].

Finally, Figure 2c presents the architectural diagram of the LSTM network evaluated
in this study. For clarity, details of the recursion structure/temporal memory of the LSTM
cells have been omitted. The LSTM model has an input layer with n variables, where n
can assume the value 6 (Reduced Input Set) or 10 (Complete Input Set), as described in
Tables 1 and 3. Then, there are two hidden layers with 30 LSTM cells each, which are
interconnected by a dropout layer (15%) that randomly disables connections and prevents
overfitting to the data during the training process [63]. At the end, we have the predicted
output layer of the model with a neuron corresponding to the GHI for prediction horizon
t + 1. To facilitate the reproducibility of this study, the main hyperparameter values used
in the ANN and LSTM models are presented in Table 4. Dataset split used in three-fold
(3-fold) cross-validation for each ANN and LSTM model is presented in Table 5.

Table 3. Experimental configuration of the ANN models, variables and predictions horizons.

Experimental Configuration for ANN and LSTM Models

Complete Input Set (10 Inputs) Reduced Input Set (6 Inputs)

Input Set Variables

Air temperature
Relative humidity

Atmospheric pressure
Wind speed

Wind direction
Maximum wind speed

Precipitation (rain)
Month, hour, minute

Air temperature
Wind speed

Wind direction
Month, hour, minute

Output Variable Global Horizontal Irradiance (GHI) Global Horizontal Irradiance (GHI)

Prediction Horizons (minutes) 1, 15 and 60 1, 15 and 60

ANN Structure Model Figure 1c and Table 4 Figure 1c and Table 4

LSTM Structure Model Figure 2c and Table 4 Figure 2c and Table 4
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Table 4. Configuration parameters of the ANN and LSTM models of this study.

ANN LSTM

Parameter Value Parameter Value

Activation function ReLU Activation function TanH

Dropout 0.15 Dropout 0.15

Epochs 1000 Epochs 1000

Learn rate 0.001 Learn rate 0.001

Total neurons 60 Total cells 60

Hidden layers (HLs) 2 Hidden layers (HLs) 2

Neurons in each HL 30 Cells in each HL 30

Table 5. Dataset split used in three-fold (3-fold) cross-validation for each ANN and LSTM model.

Fold/Year 2014 2015 2016 Validation Month

Fold 1 Test Train Train * December/2016

Fold 2 Train * Test Train December/2014

Fold 3 Train Train * Test December/2015
* Train data except December.

Table 4 exhibits the values for the activation function, dropout, epoch number, learn
rate, layer numbers, neurons and LSTM cells used in this study. It is important to note that
the structure and parameter values used in the ANN model were defined based on previous
studies [25,26]. With the intention of performing the comparative analysis between ANN
and LSTM models, the settings of the number of hidden layers, cells and parameters of
LSTM models were defined similarly to the previously mentioned ANN models.

2.3. Experimental Configuration and Execution

The experimental setup of this study was designed to evaluate the prediction accu-
racy between the ANN (Figure 1c) and LSTM (Figure 2c) models, which are supervised
learning algorithms and require prior iterative training to obtain the optimal weights and
biases [20,21]. The overview of the experimental method, components, flow and execution
steps is presented in Figure 3.

Initially, the input variables (1), the temporal resolution horizons of the predictions
(2) and the ANN and LSTM model configurations (3) are selected. Then, the database
pre-processing [26] and the implementation of the models are performed (4). After that,
in step (5) the models are trained and validated using three-fold (3-fold) cross validation
(Table 5), where twenty-three months are used for training and one month for validation,
avoiding model overfitting. If the error value does not decrease in five epochs, the training
is terminated. In step (6), the model is tested with one year’s complete data considering the
3-fold cross-validation in Table 5. Then, the prediction accuracy of the synthetic models
relative to the original data is calculated and analyzed (7). Finally, the results are presented
and discussed in step (8).
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The experimental evaluation flow (Figure 3) was run two times for each ANN (Figure 1c)
and LSTM (Figure 2c) model considering the two input variables sets (Table 3). All con-
figurations regarding the set of input variables, output variable and prediction horizons
are displayed in Table 3 for each evaluated model. It is important to note that the input
variable sets are distinct: the first set is broader and used all seven available meteorological
variables (Complete Input Set), while the second set (Reduced Input Set) is less extensive
and contains only the three common meteorological variables. In this study, three short-
term prediction horizons (1, 15 and 60 min) were evaluated and the output variable Global
Horizon Irradiance (GHI) was considered.

According to Figure 3 and Table 2, a total of 6 ANN models and 6 LSTM models, with
similar structure and configurations, were defined, developed and analyzed. The predic-
tion accuracy of these models can be evaluated with different statistical measures in the
PSPPG [64]. This study provides and applied the following statistical measures to compare
the developed models: coefficient of determination (R2), Mean Absolute Percentage Error
(MAPE) and Root Mean Square Error (RMSE), detailed in Equations (2)–(4), respectively.

R2 = 1 − ∑N
i=1(pi − oi)

2

∑N
i=1(pi − oi)

, (2)

MAPE =
1
N

N

∑
i=1

∣∣∣∣ pi − oi
oi

∣∣∣∣, (3)

RMSE =

[
1
M

N

∑
i=1

(pi − oi)

] 1
2

, (4)

In these error metrics, N represents the number of data points in the distribution, M
refers to the mean of the observed distribution, pi refers to the ith predicted point and oi
represents the oth observed point [64]. Comparisons of accuracy of models with different
sample sizes can be performed by normalizing the RMSE metric with reference to the mean
µ = 1

M ∑M
i=1 oi of the observed data, where nRMSE = RMSE/µ [11].

2.4. Materials, Tools and Technologies

Nowadays, several computational tools implement machine and deep learning models.
In this work, we used the Python programming language [65], scikit-learn package [66]
and Keras [67], an open-source library which provides programming packages for ANNs
and LSTM which facilitate the manipulation of training, testing and analysis of the models.
The development and execution of ANN models were conducted in the collaborative
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open-source programming environment Google Colab [68]. A virtual machine with the
NVIDIA K80s graphics processing unit with 24 GB memory was employed. Finally, the
analyses of descriptive statistics and hypothesis test of the results were performed with the
help of JASP statistical software [69,70].

3. Experimental Results and Discussion

This study compared the prediction accuracy of ANN and LSTM models with the
configurations, structures, horizons and data described in Figure 3 and Table 3. The adopted
method provided control and homogeneity of the experimental environment, and thus the
comparison of the prediction error distributions (accuracy) of the synthetic models. The
average time for training and testing the models ranged from 20 min to 70 min, according
to the prediction horizon.

The results of the evaluations make it possible to determine which ANN and LSTM
models have significantly better prediction performance in the three different short-term
horizons (1, 15 and 60 min). In addition, it is analyzed if there is a significant influence of
the models’ performance regarding the different sets of exogenous meteorological input
variables. In addition to this information, which is relevant for PSPPG, the absence of solar
irradiance (GHI) in the model inputs can guide the construction of a prediction system
without the need to capture information such as solar irradiance with pyranometers. Thus,
the model accuracy results and the comparative analysis are presented and discussed in
the next sections.

3.1. Forecasting Accuracy Results

This section presents the results from the performed experimental method defined
in Figure 3. The results regarding the prediction accuracy and errors of all ANN, LSTM
and baseline models are summarized in Table 6. The experimental method (Figure 3) was
performed twice for the two input sets with different exogenous meteorological variables:
the Complete Input Set has 10 inputs (seven exogenous) and the Reduced Input Set has six
inputs (three exogenous). For each input set, the prediction accuracies of ANN and LSTM
at the 1, 15 and 60 min horizons were evaluated.

The three statistical metrics (nRMSE, MAPE and R2) are considered to represent the
prediction errors and facilitate the analysis of the distribution error characteristics, including
allowing future comparisons with other studies. The R2 metric expresses the fit of the
predicted model data to the original data, and the closer to 1, the smaller the error and
the higher the accuracy of the predicted model. The normalized RMSE (or nRMSE) is the
most widely used metric because it is sensitive to the variability of large individual errors.
Finally, the MAPE metric quantifies the overall prediction error based on mean percentage
error [64]. For each input set’s configuration and prediction horizon configuration, the
Mean (m) and Standard Deviation (SD) values of each error metric are presented in Table 6.

The statistical comparisons of the prediction accuracy between ANN and LSTM
models (Table 6) were performed with hypothesis tests, which provide tools that allow us
to reject or not reject a determined statistical hypothesis through the evidence provided
by the sample [71]. In this study, using the statistical comparisons between the ANN and
LSTM models, the three prediction horizons and two input variable sets, it was established
that the Null Hypothesis (H0) refers to the statistical equality of the prediction accuracy
between pairs of models. Alternatively, the existence of a significant difference in accuracy
comparisons between pairs of models was established as an Alternative Hypothesis (H1).
It should be mentioned that in this study, all statistical hypothesis tests were conducted
considering a significance level of α = 0.05 (95%) [72].
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Table 6. Model accuracy metrics for all configurations of input set variables and horizon predictions.

1 min

Model Metric
Complete Set Input Variables Reduced Set Input Variables

Fold 1 Fold 2 Fold 3 Mean SD Fold 1 Fold 2 Fold 3 Mean SD

ANN

nRMSE 0.031 0.044 0.033 0.036 0.007 0.032 0.037 0.035 0.035 0.003

MAPE (%) 5.029 5.632 5.407 5.356 0.305 3.604 3.797 4.698 4.033 0.584

R2 0.98 0.964 0.973 0.972 0.008 0.979 0.974 0.97 0.974 0.005

LSTM

nRMSE 0.02 0.021 0.018 0.020 0.002 0.02 0.021 0.018 0.020 0.002

MAPE (%) 1.764 3.232 1.691 2.229 0.869 1.626 1.536 2.072 1.745 0.287

R2 0.992 0.992 0.992 0.992 0.000 0.992 0.992 0.992 0.992 0.000

Persist.

nRMSE 0.075 0.076 0.095 0.082 0.009 0.075 0.076 0.095 0.082 0.009

MAPE (%) 21.268 19.705 32.149 24.374 5.535 21.268 19.705 32.149 24.374 5.535

R2 0.869 0.868 0.858 0.865 0.005 0.869 0.868 0.858 0.865 0.005

15 min

Model Metric Fold 1 Fold 2 Fold 3 Mean SD Fold 1 Fold 2 Fold 3 Mean SD

ANN

nRMSE 0.056 0.066 0.06 0.061 0.005 0.056 0.062 0.06 0.059 0.003

MAPE (%) 8.047 9.114 8.892 8.685 0.563 7.185 7.412 8.272 7.623 0.574

R2 0.945 0.93 0.937 0.937 0.008 0.944 0.938 0.935 0.939 0.005

LSTM

nRMSE 0.051 0.055 0.051 0.052 0.002 0.051 0.054 0.051 0.052 0.002

MAPE (%) 5.961 7.374 5.972 6.436 0.813 6.013 6.077 6.436 6.175 0.228

R2 0.954 0.952 0.954 0.953 0.001 0.954 0.953 0.954 0.954 0.001

Persist.

nRMSE 0.075 0.107 0.104 0.095 0.014 0.075 0.107 0.104 0.095 0.014

MAPE (%) 21.284 24.152 31.993 25.810 4.526 21.284 24.152 31.993 25.810 4.526

R2 0.859 0.835 0.807 0.833 0.022 0.859 0.835 0.807 0.833 0.022

60 min

Model Metric Fold 1 Fold 2 Fold 3 Mean SD Fold 1 Fold 2 Fold 3 Mean SD

ANN

nRMSE 0.051 0.055 0.051 0.052 0.002 0.051 0.054 0.051 0.052 0.002

MAPE (%) 17.321 17.640 17.953 17.638 0.316 16.403 16.720 17.139 16.754 0.369

R2 0.954 0.952 0.954 0.953 0.001 0.954 0.953 0.954 0.954 0.001

LSTM

nRMSE 0.095 0.099 0.098 0.097 0.002 0.095 0.097 0.099 0.097 0.002

MAPE (%) 16.323 17.614 16.686 16.874 0.666 16.364 16.613 17.343 16.774 0.509

R2 0.86 0.852 0.856 0.856 0.004 0.86 0.855 0.855 0.857 0.003

Persist.

nRMSE 0.095 0.114 0.116 0.109 0.010 0.095 0.114 0.116 0.109 0.010

MAPE (%) 22.268 25.273 33.802 27.114 4.885 22.268 25.273 33.802 27.114 4.885

R2 0.859 0.801 0.787 0.816 0.031 0.859 0.801 0.787 0.816 0.031
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3.2. Analysis and Discussion

This section presents the analysis and discussion of the results exhibited in Table 6.
These analyses are described in the three next subsections according the specific objectives
of this study (Section 1).

3.2.1. Prediction Model Accuracy

To identify the prediction model with the best overall accuracy, the mean and standard
deviation values of the prediction accuracy were grouped by ANN (Figure 1c) and LSTM
(Figure 2c) and persistence models. The overall average prediction accuracy performance
(MAPE) of all models is displayed in Figure 4. The ANN and LSTM models outperformed
the baseline persistence model. Therefore, the comparative analyses are mainly focused
on both ANN and LSTM models. When comparing all samples for each ANN and LSTM
model, it is observed that, overall, LSTM demonstrated better accuracy compared to ANN,
having a difference in the MAPE average of 19.50%, which was therefore lower for the
LSTM model (Figure 4a).
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Figure 4. Prediction accuracy of ANN and LSTM models: (a) mean overall accuracy for all samples
of each model, and (b) mean model accuracy by prediction horizon.

Another result seen in Figure 4b is that the difference in average predictions between
ANN and LSTM models is greater and more evident for the shorter horizons, i.e., LSTM
outperformed ANN with the average RMSE percentage differences being 136.13%, 29.02%
and 2.18% for the 1, 15 and 60 min horizons, respectively. Note that the smaller the MAPE
value, the better the model’s prediction accuracy.

The statistical comparisons of the predictions between pairs of models were validated
using hypothesis tests. In the analysis between two models groups, ANN and LSTM, the
comparisons of prediction accuracy performance between pairs of models were performed
with MAPE by applying the paired samples t-test [72]. The pairing of the samples for
the two groups (ANN and LSTM) made it possible to perform the accuracy comparisons
considering equal prediction horizons and the same input variable set. Thus, this analysis
aimed to verify the following Null Hypothesis (H0): the prediction accuracy between pairs
of ANN and LSTM models was equal. After applying the test, H0 was rejected (t = 6.02 and
p-value < 0.001), so it is possible to state that there is a significant comparative difference
between the two groups of models. Therefore, it is possible to affirm that although the
absolute difference is small, LSTMs have lower MAPE (19.50%) compared to ANN models.

The present study used the ANN structure (neurons and layers) with higher accuracy
reported in [22]. This same structure was employed as the basis for defining the simple
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LSTM model evaluated in this study. This approach was adopted in order to allow com-
parison of the appropriate accuracy of both models with similar structures, inputs and
prediction horizons. Therefore, this study did not seek to optimize the LSTM model, or its
parameters, to obtain the best prediction accuracy rates, but rather to compare ANN and
LSTM models with similar structures and configurations. The difference between these
evaluated models consists in the recurrence capacity (memory) of LSTM, which enables
the memorization of patterns and dependencies in data with long-term memory [45]. This
characteristic of LSTM is relevant when choosing one of these models, because LSTM
models have better performance and also demand more computational resources than
ANN models.

3.2.2. Prediction Horizon

The mean accuracy of the ANN and LSTM models for each prediction horizon can be
observed by means of the coefficient of determination (R2) (Figure 5). The ANN and LSTM
models present similar results, with the accuracy decreasing as the prediction horizon
increases (Figure 5a). Furthermore, the regression lines of the ANN and LSTM models
show that the difference in accuracy between the two models decreases as the horizon
increases, that is, there is a greater absolute difference between the models for the 1 min
horizon. This result was similarly observed in the two input variable sets presented in
Figure 5b.
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Figure 5. Prediction accuracy by prediction horizon of all ANN and LSTM models: (a) mean R2

accuracy and linear fit of models by prediction horizon and (b) R2 accuracy by input set and horizon
prediction.

In order to validate the results and comparisons between all pairs of models and
prediction horizons, it was established as a Null Hypothesis (H0) that the performances of
ANN and LSTM models are equal, in terms of accuracy, considering the nRMSE metric.
Therefore, the repeated measures ANOVA statistical test [72] was employed to validate H0.
It should be noted that the repeated measures ANOVA statistical test was applied because
the means are composed of the results of three-fold (3-fold) cross-validation.

Considering the nRMSE accuracy performance of the models for the three prediction
horizons, H0 was rejected (F(2, 15) = 1180.12 and p-value < 0.001). Then, the Bonferroni
post-test [72] was applied to identify the differences between groups of the models and
horizons. Table 7 presents the statistical differences observed in the nRMSE comparisons
for all pairs of ANN and LSTM models and prediction horizons.
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Table 7. Statistical difference in prediction accuracy (nRMSE) by model and horizon.

Models ANN LSTM

Prediction Horizon 1 15 60 1 15 60

ANN

1 - * * * * *

15 - - * * * *

60 - - - * *

LSTM

1 - - - - * *

15 - - - - - *

60 - - - - - -
* Denotes that there is a significant difference (p < 0.001) at the 95% significance level.

Therefore, based on the hypothesis test in Table 7, it can be stated that the ANN and
LSTM models performed predictions without significant difference only at the 60 min
horizon. This is also observed in the slightly lower R2 absolute value of the LSTM model
at the 60 min horizon (Figure 5b). The decrease in prediction accuracy as the prediction
horizon increases is a known result from the PSPPG literature [11,25,27]. However, this
study quantifies and statistically validates this result. Moreover, an additional result
identified here is the decrease in the accuracy absolute difference between the ANN and
LSTM models as the prediction horizon increases (Figure 5a).

Although LTSM-based models have the capability to memorize patterns and can
manage the problem of long-term data dependencies relatively well [60], it is found that
their accuracy was significantly higher than in ANN models only at horizons of 1 and
15 min. Possibly, the structure of the LSTM used did not enable the model to adequately
capture data patterns at the greatest horizon analyzed (60 min). In this horizon, the models
need to capture patterns and dependence among the data for a period three times greater
than in the 15 min horizon. Therefore, the LSTM models with the structure employed in
this study, even having the capacity of long-term memory, were not capable of performing
more accurate predictions than the ANNs in 60 min horizon prediction. This result is
particularly interesting in the construction of prediction systems, since at longer horizons
the LSTM has similar accuracy to ANN models. Thus, to take advantage of the LSTM’s
ability, it is necessary to define and use denser layers and a complex LSTM structure.

3.2.3. Sets of Input Variables

The prediction performance of ANN and LSTM models was evaluated using two
different sets of input meteorological variables: Complete Input Set with 10 variables (seven
exogenous) and Reduced Input Set with six variables (three exogenous), as can be seen
in Table 3. The present analysis sought to verify the influence of using these two input
sets with different meteorological variables on the models’ accuracy. In this sense, it was
established as the Null Hypothesis (H0) that the prediction performances (nRMSE accuracy)
of the models are equal for both sets of input data: Complete Input Set and Reduced Input
Set. Thus, the ANOVA with repeated measures statistical test was applied considering the
two sets of input variables and the ANN and LSTM models.

The hypothesis test results demonstrated that H0 cannot be rejected (F(1,16) = 0.002
and p-value = 0.967). Therefore, it is possible to affirm that there is no significant difference
in the accuracies between ANN and LSTM models considering both sets of input variables
(Complete Input Set and Reduced Input Set). The mean value of nRMSE and standard
deviation for each model and set of input variables are represented in Figure 6, where
similar values are observed between ANN and LSTM models. Similarly, this can be seen
for the R2 values shown in Figure 5b. Although the LSTM has a lower mean absolute value
of nRMSE than the ANN, this small difference is not significant.
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Figure 6. Prediction accuracy between Complete Input Set and Reduced Input Set by model.

Based on the results of this analysis, it can be stated that ANN and LSTM models have
the same performance in prediction accuracy (nRMSE) with 10 (Complete Input Set) or six
(Reduced Input Set) input variables. More specifically, this analysis regarding the use of two
different sets of exogenous weather input variables is important for PSPPG for two reasons.
First, based on the literature review, this is the first study that evaluates the use of these two
sets of exogenous meteorological input variables with ANNs, LSTMs and at three distinct
short-term horizons. Second, the Reduced Input Set, which has the fewest exogenous
meteorological variables (temperature, wind speed and direction), demonstrated similar
prediction accuracy with ANNs and LSTMs compared to using the seven meteorological
variables from the Complete Input Set (air temperature, relative humidity, atmospheric
pressure, wind speed, wind direction, maximum wind speed and precipitation).

As mentioned in Section 1.1, the variables in the Reduced Input Set were selected
because they have a greater impact on solar irradiance, complementing and validating the
results of previous studies [55], from experimental analysis with ANN and LSTM models.
Thus, in particular, these results contribute to PSPPG by validating and adding new and
relevant information about the use of meteorological variables in short-term predictions
with ANN and LSTM.

Finally, a prediction example for ANN and LSTM models with two sets of input
variables is depicted in Figure 7. The predictions for the 1 min horizon are presented
for a partially cloudy day (2 June 2014). Although visually similar, ANN and LSTM
model prediction accuracies showed significant differences for all horizons, except for the
60 min horizon.
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4. Conclusions

In this study, the ANN and LSTM models’ accuracies for short-term prediction of solar
photovoltaic energy generation were developed and evaluated. The tools, environment
and methodology were designed to enable a controlled and homogeneous experimental
configuration and, hence, provide an adequate comparison between ANN and LSTM
prediction models’ accuracy. In general, both ANN and LSTM models outperformed the
persistence model and, thus, the analyses were focused on both models.

The analysis performed in the present study differs from the literature by considering
comparisons simultaneously including the three following characteristics of the PSPPG:
prediction models (ANN and LSTM), meteorological and exogenous input variables (Com-
plete Input Set and Reduced Input Set) and three shot-term prediction horizons (1, 15 and
60 min). Although ANN models have been most used in the PSPPG in the last decade [10],
several recent works with LSTMs have been reported in the PSPPG literature. This allowed
identifying the originality and purpose of this study, as detailed in Table 1. Although there
are other studies in various areas of knowledge that evaluate ANN and LSTM models,
no study including all the characteristics evaluated here has been observed in the PSPPG
literature.

In this context, the main results and contributions of this study for the evaluated
model configurations, inputs and prediction horizons are summarized below:

A. The prediction performances between the two groups of ANN and LTSM models
are significantly different (p < 0.001). LSTM models showed better average accuracy
in predictions, with MAPE 1.63% lower compared to ANN models. This difference
exhibits higher amplitude for the smallest prediction horizons evaluated. Therefore,
the LSTM networks evaluated in this study are better suited for short-term predictions,
especially when considering the smallest prediction horizons evaluated. It should
be noted that the aim of the study is to compare ANN and LSTM models with
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similar structure and, thus, to measure the ability of LSTMs to memorize the temporal
dependencies of long-term data in the PSPPG context.

B. The ANN and LSTM models’ accuracy was evaluated in the three prediction horizons
of 1, 15 and 60 min. Both models showed similar behavior, with R2 values tending
to decrease as the prediction horizon increases. Although this result is known in the
PSPPG literature [11], this study provides additional information about the accuracy
of ANN and LSTM models at the horizons evaluated. The statistical analysis of
accuracy at the prediction horizons indicated a significant difference (p < 0.001) in the
nRMSE, except for the ANN and LSTM accuracy predictions at the 60 min horizon,
where the hypothesis test showed no significant difference. Therefore, it is concluded
that the choice of the LSTM model, evaluated in this study, is adequate and provides
better accuracy at the 1 and 15 min horizons. The results indicate that the LSTM
model, in this study, was not able to adequately capture the variability and patterns
of the existing data at the 60 min horizon. This may possibly be due to the simplicity
of the LSTM structure used or the limited amount of training data. Furthermore, a
denser and complex layer structure may enhance the ability of LSTMs to capture solar
irradiance patterns at horizons of 60 min or more.

C. Each ANN and LSTM model was evaluated with two different sets of input exogenous
variables: Complete Input Set and Reduced Input Set. The statistical result indicated
no significant difference in accuracy between the evaluated input variables sets.
Therefore, the use of more exogenous meteorological variables did not significantly
influence the prediction accuracy of the models evaluated. In other words, the ANN
and LSTM models using the Reduced Input Set (with three meteorological variables)
demonstrated the same prediction accuracy as compared to the seven exogenous
variables in the Complete Input Set. This information is particularly relevant in the
prediction system design, because there are additional costs in the acquisition of
sensors to capture meteorological information and, with this study, it is possible to
choose, or not, their use.

D. The study results concerning short-term PSPPG with ANN and LSTM models sug-
gest that prediction systems can be designed without the need for installation and
maintenance of solar irradiance sensors, permitting cost reduction.

This study did not aim to improve the ANN and LSTM models’ accuracy, but is limited
to evaluating and comparing those with similar structures with different exogenous input
variables, and short-term prediction horizons, in order to contribute to future research in
the context of the PSPPG. In addition, a standardized database [57] was selected to perform
experiments with controlled and quality data.

Another contribution of this study is the fact that prediction models based on LSTM
networks should be carefully designed and evaluated in the PSPPG context. Several studies
consider the prediction horizon of one hour (60 min) ahead [73] or else analyze only one
ANN or LSTM model [74]. The present study differs by evaluating two additional short-
term horizons (1 and 15 min) and both models. The variability of this type of problem
is dynamically accentuated as the prediction horizon increases and this requires a more
complex structure of the predictive LSTM model in order to capture the long-term patterns
and dependencies in the data. In addition, it requires a larger amount of training data and,
consequently, higher computational cost and training time for the models [61]. Finally,
the results and conclusions of this study suggest further analysis, such as the use of other
structures and parameter optimization, as well the application of hybrid machine learning
and deep learning models. On the other hand, there are efforts in the community to
optimize the prediction performance of the ANN [31,59] and LSTM [44,75,76] models,
making it possible to improve the accuracy rates of these models.
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Nomenclature

ANN Artificial Neural Network
BRT Bagged Regression Trees
CNN Convolutional Neural Networks
cvRMSE Coefficient of Variation–Root Mean Square Error
CWC Coverage Width-Based Criterion
BPNN Back Propagation Neural Network
WPD-LSTM Wavelet Packet-Decomposition Long Short-Term Memory
DL Deep Learning
DMAE Dynamic Mean Absolute Error
GHI Global Horizontal Irradiance
GPR Gaussian Process Regression
SCNN-LSTM Siamese Convolutional Neural Network–Long Short-Term Memory
ELM Extreme Learning Machine
GW Gigawatt
IRENA International Renewable Energy Agency
LS-SVR Least-Squares Support Vector Regression
LSTM Long Short-Term Memory
MBE Mean Bias Error
ML Machine Learning
MLR Multiple Linear Regression
nRMSE Normalized Root Mean Square Error
PSPPG Prediction of Photovoltaic Solar Energy Generation
PV Photovoltaic
R2 Coefficient of Determination
RMSE Root Mean Square Error
r Correlation Coefficient
fs Forecast Skill
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