Universal Model to Predict Expected Direction of Products Quality Improvement
Abstract
1. Introduction
2. Literature Review
3. Model
3.1. Concept of Model
3.2. Assumptions and Conditions of the Model Ensuring Its Versatility
- The product for verification should be the current existing product [1];
- The type (kind) of products for verification should not be limited;
- The product quality level should be calculated separately according to the assessments from individual customers.
3.3. Characterization of Model
- Stage 1. Definition of purpose
- Stage 2. Choice of products
- Stage 3. Determining criteria and state of criteria
- Stage 4. Obtaining customer expectations
- Stage 5. Calculating the quality level
- Stage 6. Initial determination of customer satisfaction
- Stage 7. Predicting the expected direction of product quality improvement
4. Test of Model
- Rated power (Wp);
- Short-circuit current (current at maximum load) (A);
- Maximum (output) current (A);
- Open-circuit voltage (no load, open circuit) (V);
- Efficiency (%);
- Front glass (mm);
- Dimensions (mm);
- Number of cells;
- Temperature coefficient of intensity (%/C);
- Visibility;
- Degree of integration;
- Light reflection;
- Fractality;
- Pattern (texture).
5. Discussion
- Estimating product quality according to assessment of the importance of criteria and assessments of satisfaction with states of these criteria;
- Determining customers’ satisfaction with product quality levels;
- Predicting the direction of eventual changes in the product to meet customers’ satisfaction;
- Reduction in waste sources by determining adequate improvement actions;
- Sustainable development of existing products, which can be in the maturity or decline phase;
- Possibility to predict the direction of products improvement based on a small number of customers;
- Possibility to use the model by any entity;
- Possibility to use the model for any product.
- Supporting entity in making the right decision during the process of improving the product;
- Low-cost model, which can also be supported by a software program;
- Choice of the appropriate direction of product improvement;
- Support for planning and design activities;
- Predicting ahead of the competition the direction of product improvement.
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Siwiec, D.; Pacana, A. A Pro-environmental method of sample size determination to predict the quality level of products considering current customers’ expectations. Sustainability 2021, 13, 5542. [Google Scholar] [CrossRef]
- Pacana, A.; Pasternak-Malicka, M.; Zawada, M.; Radon-Cholewa, A. Decision support in the production of packaging films by cost-quality analysis. Przemysl Chem. 2016, 95, 1042–1044. [Google Scholar] [CrossRef]
- Siwiec, D.; Pacana, A. Model of choice photovoltaic panels considering customers’ expectations. Energies 2021, 14, 5977. [Google Scholar] [CrossRef]
- Ulewicz, R.; Siwiec, D.; Pacana, A.; Tutak, M.; Brodny, J. Multi-criteria method for the selection of renewable energy sources in the polish industrial sector. Energies 2021, 14, 2386. [Google Scholar] [CrossRef]
- Tawalbeh, M.; Al-Othman, A.; Kafiah, F.; Abdelsalam, E.; Almomani, F.; Alkasrawi, M. Environmental impacts of solar photovoltaic systems: A critical review of recent progress and future outlook. Sci. Total Environ. 2021, 759, 143528. [Google Scholar] [CrossRef] [PubMed]
- López, G.; Ramírez, D.; Alonso-Montesinos, J.; Sarmiento, J.; Polo, J.; Martín-Chivelet, N.; Marzo, A.; Batlles, F.J.; Ferrada, P. Design of a low-cost multiplexer for the study of the impact of soiling on PV panel performance. Energies 2021, 14, 4186. [Google Scholar] [CrossRef]
- Shaito, A.; Hammoud, M.; Kawtharani, F.; Kawtharani, A.; Reda, H. Power enhancement of a PV module using different types of phase change materials. Energies 2021, 14, 5195. [Google Scholar] [CrossRef]
- Amaral, T.G.; Pires, V.F.; Pires, A.J. Fault detection in PV tracking systems using an image processing algorithm based on PCA. Energies 2021, 14, 7278. [Google Scholar] [CrossRef]
- Pandey, A.; Pandey, P.; Tumuluru, J.S. Solar energy production in India and commonly used technologies—An overview. Energies 2022, 15, 500. [Google Scholar] [CrossRef]
- Trela, M.; Dubel, A. Net-metering vs. net-billing from the investors perspective—Impacts of changes in RES financing in Poland on the profitability of a joint photovoltaic panels and heat pump system. Energies 2022, 15, 227. [Google Scholar] [CrossRef]
- Kshatri, S.S.; Dhillon, J.; Mishra, S.; Tariq, R.; Sharma, N.K.; Bajaj, M.; Rehman, A.U.; Shafiq, M.; Choi, J.-G. Reliability analysis of bifacial PV panel-based inverters considering the effect of geographical location. Energies 2022, 15, 170. [Google Scholar] [CrossRef]
- Kusznier, J.; Wojtkowski, W. IoT solutions for maintenance and evaluation of photovoltaic systems. Energies 2021, 14, 8567. [Google Scholar] [CrossRef]
- Aguilar, F.J.; Ruiz, J.; Lucas, M.; Vicente, P.G. Analiza i optymalizacja wydajności słonecznego klimatyzatora on-grid. Energies 2021, 14, 8054. [Google Scholar] [CrossRef]
- Al Siyabi, I.; Al Mayasi, A.; Al Shukaili, A.; Khanna, S. Effect of soiling on solar photovoltaic performance under desert climatic conditions. Energies 2021, 14, 659. [Google Scholar] [CrossRef]
- Griffin, A.; Hauser, J. The voice of the customer. Mark. Sci. 1991, 12, 1–27. [Google Scholar] [CrossRef]
- Ben Hamad, K.; Luta, D.N.; Raji, A.K. A grid-tied fuel cell multilevel inverter with low harmonic distortions. Energies 2021, 14, 688. [Google Scholar] [CrossRef]
- El-Bayeh, C.Z.; Zellagui, M.; Shirzadi, N.; Eicker, U. A novel optimization algorithm for solar panels selection towards a self-powered EV parking lot and its impact on the distribution system. Energies 2021, 14, 4515. [Google Scholar] [CrossRef]
- Mutani, G.; Todeschi, V. Optimization of costs and self-sufficiency for roof integrated photovoltaic technologies on residential buildings. Energies 2021, 14, 4018. [Google Scholar] [CrossRef]
- Stamatellos, G.; Zogou, O.; Stamatelos, A. Energy performance optimization of a house with grid-connected rooftop PV installation and air source heat pump. Energies 2021, 14, 740. [Google Scholar] [CrossRef]
- Abdallah, R.; Natsheh, E.; Juaidi, A.; Samara, S.; Manzano-Agugliaro, F. A multi-level world comprehensive neural network model for maximum annual solar irradiation on a flat surface. Energies 2020, 13, 6422. [Google Scholar] [CrossRef]
- Nguyen, D.P.N.; Lauwaert, J. Calculating the energy yield of si-based solar cells for belgium and vietnam regions at arbitrary tilt and orientation under actual weather conditions. Energies 2020, 13, 3180. [Google Scholar] [CrossRef]
- Gutiérrez Galeano, A.; Bressan, M.; Jiménez Vargas, F.; Alonso, C. Shading ratio impact on photovoltaic modules and correlation with shading patterns. Energies 2018, 11, 852. [Google Scholar] [CrossRef]
- Mousavi Maleki, S.A.; Hizam, H.; Gomes, C. Estimation of hourly, daily and monthly global solar radiation on inclined surfaces: Models re-visited. Energies 2017, 10, 134. [Google Scholar] [CrossRef]
- Gazda, A.; Pacana, A.; Malindzak, D. Study on improving the quality of stretch film by Taguchi method. Przemysl Chem. 2013, 92, 980–982. [Google Scholar]
- Garcia, A.Q.; Nishiumi, N.; Saito, A.; Matsumura, E.; Senda, J. Economic, environmental and energetic analysis of a distributed generation system composed by waste gasification and photovoltaic panels. Energies 2021, 14, 3889. [Google Scholar] [CrossRef]
- Chatterji, E.; Bazilian, D. Smart meter data to optimize combined roof-top solar and battery systems using a stochastic mixed integer programming model. IEEE Access 2020, 8, 1333843–1333853. [Google Scholar] [CrossRef]
- Niri, M.; Liu, K.; Apachitei, G.; Ramirez, L.; Lain, M.; Widanage, D.; Marco, J. Machine learning for optimised and clean Li-ion battery manufacturing: Revealing the dependency between electrode and cell characteristics. J. Clean. Prod. 2021, 324, 129272. [Google Scholar] [CrossRef]
- Liu, K.; Hu, X.; Meng, J.; Guerrero, J.; Teodorescu, R. RUBoost-based ensemble machine learning for electrode quality classification in Li-ion battery manufacturing. IEEE/ASME Trans. Mechatron. 2021, 10, 1–10. [Google Scholar] [CrossRef]
- Liu, K.; Peng, Q.; Sun, H.; Fei, M.; Ma, H.; Hu, T. A transferred recurrent neural network for battery calendar health prognostics of energy-transportation systems. IEEE Trans. Ind. Inf. 2022. [Google Scholar] [CrossRef]
- Liu, K.; Tang, X.; Teodorescu, R.; Gao, F.; Meng, J. Future ageing trajectory prediction for lithium-ion battery considering the knee point effect. IEEE Trans. Ind. Inf. 2022. [Google Scholar] [CrossRef]
- Liu, K.; Hu, X.; Zhou, H.; Tong, L.; Widanage, W.; Marco, J. Feature analyses and modeling of lithium-ion battery manufacturing based on random forest classification. IEEE/ASME Trans. Mechatron. 2021, 26, 2944–2955. [Google Scholar] [CrossRef]
- Lawlor, K.B.; Hornyak, M.J. Smart goals: How the application of smart goals can contribute to achievement of student learning outcomes. Dev. Bus. Simul. Exp. Learn. 2012, 39, 259–267. [Google Scholar]
- Kohn, N.; Smith, S. Collaborative fixation: Effects of others’ ideas on brainstorming. Appl. Cognit. Psychol. 2011, 25, 359–371. [Google Scholar] [CrossRef]
- Pacana, A.; Siwiec, D.; Bednarova, L. Analysis of the incompatibility of the product with fluorescent method. Metalurgija 2019, 58, 337–340. [Google Scholar]
- Joshi, A.; Kale, S.; Chandel, S.; Pal, D.K. Likert scale: Explored and explained. Curr. J. Appl. Sci. Technol. 2015, 7, 396–403. [Google Scholar] [CrossRef]
- Chmielarz, W.; Zborowski, M. On the assessment of e-banking websites supporting sustainable development goals. Energies 2022, 15, 378. [Google Scholar] [CrossRef]
- Garcia-Ayllon, S.; Hontoria, E.; Munier, N. The contribution of MCDM to SUMP: The case of Spanish cities during 2006–2021. Int. J. Environ. Res. Public Health 2022, 19, 294. [Google Scholar] [CrossRef] [PubMed]
- Tran, N.H.; Yang, S.-H.; Tsai, C.Y.; Yang, N.C.; Chang, C.-M. Developing transportation livability-related indicators for green urban road rating system in Taiwan. Sustainability 2021, 13, 14016. [Google Scholar] [CrossRef]
- Othman, A.A.; Obaid, A.K.; Al-Manmi, D.A.M.; Pirouei, M.; Salar, S.G.; Liesenberg, V.; Al-Maamar, A.F.; Shihab, A.T.; Al-Saady, Y.I.; Al-Attar, Z.T. Insights for landfill site selection using GIS: A case study in the Tanjero River Basin, Kurdistan Region, Iraq. Sustainability 2021, 13, 12602. [Google Scholar] [CrossRef]
- Siwiec, D.; Pacana, A. Model supporting development decisions by considering qualitative–Environmental aspects. Sustainability 2021, 13, 9067. [Google Scholar] [CrossRef]
- Sugahara, S.; Ueno, M. Exact learning augmented naive bayes classifier. Entropy 2021, 23, 1703. [Google Scholar] [CrossRef]
- Chen, H.; Hu, S.; Hua, R.; Zhaon, X. Improved naive Bayes classification algorithm for traffic risk management. EURASIP J. Adv. Signal. Process. 2021, 30, 1–12. [Google Scholar] [CrossRef]
- Zhang, W.; Gao, F. An improvement to naïve bayes for text classification. Procedia Eng. 2011, 15, 2160–2164. [Google Scholar] [CrossRef]
- Liu, S.; Zhu, M.; Yang, Y. A Bayesian classifier learning algorithm based on optimization model. Math. Probl. Eng. 2013, 2013, 975953. [Google Scholar] [CrossRef]
- Hansen, E.; Bush, R.J. Understanding customer quality requirements—Model and application. Ind. Mark. Manag. 1999, 28, 119–130. [Google Scholar] [CrossRef]
- Huang, Y.M. On the general evaluation of customer requirements during conceptual design. J. Mech. Des. 1999, 121, 92–97. [Google Scholar] [CrossRef]
- Roder, B.; Heidl, M.J.; Birkhofer, H. Pre-acquisition clustering of requirements–Helping Customers to realize what they want. Des. Harm. 2013, 7, 407–416. [Google Scholar]
- Stylidis, K.; Rossi, M.; Wickman, C.; Söderberg, R. The communication strategies and customer’s requirements definition at the early design stages: An empirical study on italian luxury automotive brands. Procedia CIRP 2016, 50, 553–558. [Google Scholar] [CrossRef]
- Ostasz, G.; Czerwinska, K.; Pacana, A. Quality management of aluminum pistons with the use of quality control points. Manag. Syst. Prod. Eng. 2020, 28, 29–33. [Google Scholar] [CrossRef]
- Madzik, P.; Chocholakova, A. Structured transfer of customer’s requirements into product quality attributes—A University Case Study. Qual. Access Success 2016, 17, 38–45. [Google Scholar]
- Gupta, M.; Shri, C. Understanding customer requirements of corrugated industry using Kano model. Int. J. Qual. Reliab. Manag. 2018, 35, 1653–1670. [Google Scholar] [CrossRef]
- Pacana, A.; Siwiec, D. Model to predict quality of photovoltaic panels considering customers’ expectations. Energies 2022, 15, 1101. [Google Scholar] [CrossRef]
- Mu, E.; Pereyra-Rojas, M. Practical decision making. In Springer Briefs in Operations Research, Appendix A: Practical Questions Related to AHP Modeling; Springer Nature: Basel, Switzerland, 2017; pp. 105–106. [Google Scholar]
- Chan, F.T.S.; Kumar, N. Global supplier development considering risk factors using fuzzy extended AHP-based approach. Omega 2007, 35, 417–431. [Google Scholar] [CrossRef]
- Wang, L.; Chu, J.; Wu, J. Selection of optimum maintenance strategies based on a fuzzy analytic hierarchy process. Int. J. Prod. Econ. 2007, 107, 151–163. [Google Scholar] [CrossRef]
- Gawilk, R. Stratification of research target group and selection of experts for AHP-based decision making model. Stud. Mater. Misc. Oecon. 2016, 20, 193–200. [Google Scholar]
- Pacana, A.; Siwiec, D. Universal model to support the quality improvement of industrial products. Materials 2021, 14, 7872. [Google Scholar] [CrossRef] [PubMed]
- Jie, Y.; Ji, X.; Yue, A.; Chen, J.; Deng, Y.; Chen, J.; Zhang, Y. Combined multi-layer feature fusion and edge detection method for distributed photovoltaic power station identification. Energies 2020, 13, 6742. [Google Scholar] [CrossRef]
- Guzman Razo, D.E.; Müller, B.; Madsen, H.; Wittwer, C. A genetic algorithm approach as a self-learning and optimization tool for PV power simulation and digital twinning. Energies 2020, 13, 6712. [Google Scholar] [CrossRef]
- Lucchi, E.; Polo Lopez, C.S.; Franco, G. A conceptual framework on the integration of solar energy systems in heritage sites and buildings. IOP Conf. Ser. Mater. Sci. Eng. 2020, 949, 1. [Google Scholar] [CrossRef]
- Sánchez-Pantoja, N.; Vidal, R.; Pastor, M.C. EU-funded projects with actual implementation of renewable energies in cities. Analysis of their concern for aesthetic impact. Energies 2021, 14, 1627. [Google Scholar] [CrossRef]
- Wall, M.; Probst, M.; Roecker, C.; Dubois, M.; Horvat, M.; Jorgensen, O.; Kappel, K. Achieving solar energy in architecture-IEA SHC Task 41. Energy Procedia 2012, 30, 1250–1260. [Google Scholar] [CrossRef][Green Version]
- Sanchez-Pantoja, N.; Pastor, M.; Vidal, R. Aesthetic impact of solar energy systems. Renew. Sustain. Energy Rev. 2018, 98, 227–238. [Google Scholar] [CrossRef]
- Ferreira, A.C.; Silva, A.; Teixeira, J.C.; Teixeira, S. Multi-objective optimization of solar thermal systems applied to portuguese dwellings. Energies 2020, 13, 6739. [Google Scholar] [CrossRef]
- Yildirim, M.A.; Nowak-Ocłoń, M. Modified maximum power point tracking algorithm under time-varying solar irradiation. Energies 2020, 13, 6722. [Google Scholar] [CrossRef]
Criteria of PV | Range of Quality Criteria (1) | Range of Quality Criteria (2) | Range of Quality Criteria (3) |
---|---|---|---|
rated power (Wp) | |||
short-circuit current (A) | |||
maximum current (A) | |||
open-circuit voltage (V) | |||
efficiency (%) | |||
front glass (mm) | |||
dimensions (mm) | |||
number of cells | |||
temp. coeff. of inten. (%/C) | |||
visibility | partially visible | visible | practically invisible |
degree of integration | not integrated | partially integrated | integrated |
light reflection | small | average | big |
fractality | small | average | big |
pattern (texture) | plain | porous | transparent |
Quality Level from Criteria States (1) | Quality Level from Criteria States (2) | Quality Level from Criteria States (3) | |||
---|---|---|---|---|---|
0.11 | very satisfying | 0.09 | a bit satisfying | 0.14 | a bit satisfying |
0.11 | very satisfying | 0.13 | very satisfying | 0.13 | very satisfying |
0.09 | a bit satisfying | 0.08 | not very satisfying | 0.10 | a bit satisfying |
0.11 | very satisfying | 0.09 | a bit satisfying | 0.14 | absolutely satisfying |
0.09 | a bit satisfying | 0.08 | not very satisfying | 0.11 | very satisfying |
0.10 | a bit satisfying | 0.08 | not very satisfying | 0.13 | very satisfying |
0.10 | a bit satisfying | 0.13 | very satisfying | 0.09 | a bit satisfying |
Quality Level | Customers’ Satisfaction (NBC Class) | A Priori Value | Average Value | Standard Deviation |
---|---|---|---|---|
Quality level from criteria states (1) | very satisfying | 0.428571 | 0.108333 | 0.000024 |
a bit satisfying | 0.571429 | 0.090750 | 0.000024 | |
Quality level from criteria states (2) | very satisfying | 0.285714 | 0.139500 | 0.000013 |
not very satisfying | 0.428571 | 0.079667 | 0.000020 | |
a bit satisfying | 0.285714 | 0.087000 | 0.000002 | |
Quality level from criteria states (3) | absolutely satisfying | 0.285714 | 0.137000 | 0.000008 |
very satisfying | 0.428571 | 0.125333 | 0.000176 | |
a bit satisfying | 0.285714 | 0.093000 | 0.000098 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ostasz, G.; Siwiec, D.; Pacana, A. Universal Model to Predict Expected Direction of Products Quality Improvement. Energies 2022, 15, 1751. https://doi.org/10.3390/en15051751
Ostasz G, Siwiec D, Pacana A. Universal Model to Predict Expected Direction of Products Quality Improvement. Energies. 2022; 15(5):1751. https://doi.org/10.3390/en15051751
Chicago/Turabian StyleOstasz, Grzegorz, Dominika Siwiec, and Andrzej Pacana. 2022. "Universal Model to Predict Expected Direction of Products Quality Improvement" Energies 15, no. 5: 1751. https://doi.org/10.3390/en15051751
APA StyleOstasz, G., Siwiec, D., & Pacana, A. (2022). Universal Model to Predict Expected Direction of Products Quality Improvement. Energies, 15(5), 1751. https://doi.org/10.3390/en15051751