Design Evaluation of a Next-Generation High-Temperature Particle Receiver for Concentrating Solar Thermal Applications
Abstract
:1. Introduction
2. Experimental and Numerical Methods
2.1. National Solar Thermal Test Facilty
2.2. NSTTF Falling Particle Receiver System
2.3. Modeling and Simulation Strategy
3. Falling Particle Receiver Studies
3.1. Quartz Half-Shell Aperture Covers
3.2. Active Air Flow
3.3. Staggered Angle Iron Receiver (Multistage)
3.4. Falling Particle Receiver Cavity Optimization
3.5. PID Particle Outlet Temperature Control
4. Results and Discussion
4.1. Receiver Features Integrated into G3P3-USA
4.2. On-Sun NSTTF FPR Testing
4.3. Beam Defocusing in On-Sun Tests
4.4. Operational Lessons Learned for FPRs
- Thermal expansion of components (e.g., slide gate, duct joints, and structural supports) at high temperatures can cause interference and problems with particle flow and mass flow rate measurements. Thermal expansion needs to be accommodated during design and assembly of high-temperature components.
- High concentrated solar fluxes around the receiver aperture and along the back wall can potentially damage the refractory insulation boards. Sacrificial boards or active cooling may be required to prevent damage in high-flux regions. Heliostat defocusing strategies may be leveraged during days with highly variable DNI.
- Particle dust (~1–10 microns and less) was generated during operation of the particle receiver and can be ejected through the open aperture. Sampling during on-sun testing at the NSTTF indicated that the dust was within acceptable limits [42], but dust capture or filtration methods should be considered [78].
- Particle and heat loss through the receiver aperture can be minimized with proper receiver geometries that mitigate the impacts of external wind (e.g., SNOUT) and entrained ambient air.
- Thermocouples immersed in particle funnels at the outlet of the receiver worked well, but the impact of wind created uncertainties in spatial variability and average particle temperatures.
- To prevent wear and erosion of containment materials, falling or flowing particles should be directed to impact other particles (rather than duct or containment walls), when possible.
5. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- 2030 Solar Cost Targets. Available online: https://www.energy.gov/eere/solar/articles/2030-solar-cost-targets (accessed on 13 December 2021).
- Turchi, C.S.; Ma, Z.; Neises, T.W.; Wagner, M.J. Thermodynamic Study of Advanced Supercritical Carbon Dioxide Power Cycles for Concentrating Solar Power Systems. J. Sol. Energy Eng. 2013, 135, 41007. [Google Scholar] [CrossRef]
- Ho, C.K. A review of high-temperature particle receivers for concentrating solar power. Appl. Therm. Eng. 2016, 109, 958–969. [Google Scholar] [CrossRef] [Green Version]
- Ho, C.K.; Schroeder, N.R.; Labuscher, H.L.; Yue, L.; Mills, B.; Shaeffer, R.; Christian, J.M.; Albrecht, K.J. Receiver Design and On-Sun Testing for G3P3-USA. In Proceedings of the SolarPACES 2020, Virtual Online Conference, 28 September–2 October 2020. [Google Scholar]
- Ebert, M.; Amsbeck, L.; Rheinländer, J.; Schlögl-Knothe, B.; Schmitz, S.; Sibum, M.; Uhlig, R.; Buck, R. Operational Experience of a Centrifugal Particle Receiver Prototype. AIP Conf. Proc. 2019, 2126, 30018. [Google Scholar] [CrossRef] [Green Version]
- Hruby, J.M.; Steele, B.R. A solid particle central receiver for solar-energy. Chem. Eng. Prog. 1986, 82, 44–47. [Google Scholar]
- Falcone, P.K.; Noring, J.E.; Hruby, J.M. Assessment of a Solid Particle Receiver for a High Temperature Solar Central Receiver System; Sandia National Laboratories: Albuquerque, NM, USA, 1985; pp. 1–92. [Google Scholar]
- Martin, J. ASCUAS: A Solar Central Receiver Utilizing a Solid Thermal Carrier; Sandia National Laboratories: Albuquerque, NM, USA, 1982; pp. 1–36. [Google Scholar]
- Hruby, J.M. Technical Feasibility Study of a Solid Particle Solar Central Receiver for High Temperature Applications; Sandia National Laboratories: Albuquerque, NM, USA, 1986. [Google Scholar]
- Hruby, J.M.; Steeper, R.; Evans, G.; Crowe, C. An Experimental and Numerical Study of Flow and Convective Heat Transfer in a Freely Falling Curtain of Particles. J. Fluids Eng. 1988, 110, 172–181. [Google Scholar] [CrossRef]
- Ho, C.K.; Christian, J.; Gill, D.; Moya, A.; Jeter, S.; Abdel-Khalik, S.; Sadowski, D.; Siegel, N.; Al-Ansary, H.; Amsbeck, L.; et al. Technology Advancements for Next Generation Falling Particle Receivers. Energy Procedia 2014, 49, 398–407. [Google Scholar] [CrossRef] [Green Version]
- Tan, T.; Chen, Y. Review of study on solid particle solar receivers. Renew. Sustain. Energy Rev. 2010, 14, 265–276. [Google Scholar] [CrossRef]
- Flamant, G.; Gauthier, D.; Benoit, H.; Sans, J.-L.; Garcia, R.; Boissière, B.; Ansart, R.; Hemati, M. Dense suspension of solid particles as a new heat transfer fluid for concentrated solar thermal plants: On-sun proof of concept. Chem. Eng. Sci. 2013, 102, 567–576. [Google Scholar] [CrossRef] [Green Version]
- Ho, C.K.; Iverson, B.D. Review of high-temperature central receiver designs for concentrating solar power. Renew. Sustain. Energy Rev. 2014, 29, 835–846. [Google Scholar] [CrossRef] [Green Version]
- Albrecht, K.J.; Bauer, M.L.; Ho, C.K. Parametric Analysis of Particle CSP System Performance and Cost to Intrinsic Particle Properties and Operating Conditions. In Proceedings of the ASME 2019 13th International Conference on Energy Sustainability, Bellevue, Washington, DC, USA, 14–17 July 2019; p. V001T003A006. [Google Scholar]
- Ho, C.K.; Albrecht, K.J.; Yue, L.; Mills, B.; Sment, J.; Christian, J.; Carlson, M. Overview and Design Basis for the Gen 3 Particle Pilot Plant (G3P3). AIP Conf. Proc. 2020, 2303, 30020. [Google Scholar] [CrossRef]
- Al-Ansary, H.; El-Leathy, A.; Jeter, S.; Djajadiwinata, E.; Alaqel, S.; Golob, M.; Nguyen, C.; Saad, R.; Shafiq, T.; Danish, S.; et al. On-Sun Experiments on a Particle Heating Receiver with Red Sand as the Working Medium. AIP Conf. Proc. 2018, 2033, 40002. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.-S.; Gardner, W.; Potter, D.; Too, Y.C.S. Design of a multi-stage falling particle receiver with truncated-cone. AIP Conf. Proc. 2020, 2303, 30023. [Google Scholar] [CrossRef]
- Al-Ansary, H.; El-Leathy, A.; Jeter, S.; Golob, M.; Nguyen, C.; Djajadiwinata, E.; Alaqel, S.; Saeed, R.; Abdel-Khalik, S.; Al-Suhaibani, Z.; et al. Design Features of the World’s First Commercial Concentrating Solar Power Plant Using the Particle Heating Receiver Concept. In Proceedings of the ASME 2019 13th International Conference on Energy Sustainability, Bellevue, Washington, DC, USA, 14–17 July 2019; p. V001T003A003. [Google Scholar]
- Wu, W.; Amsbeck, L.; Buck, R.; Uhlig, R.; Pitz-Paal, R. Proof of Concept Test of a Centrifugal Particle Receiver. Energy Procedia 2014, 49, 560–568. [Google Scholar] [CrossRef] [Green Version]
- Wu, W.; Trebing, D.; Amsbeck, L.; Buck, R.; Pitz-Paal, R. Prototype Testing of a Centrifugal Particle Receiver for High-Temperature Concentrating Solar Applications. J. Sol. Energy Eng. 2015, 137, 41011. [Google Scholar] [CrossRef]
- Amsbeck, L.; Buck, R.; Ebert, M.; Gobereit, B.; Hertel, J.; Jensch, A.; Rheinländer, J.; Trebing, D.; Uhlig, R. First tests of a centrifugal particle receiver with a 1 m2 aperture. AIP Conf. Proc. 2018, 2033, 40004. [Google Scholar] [CrossRef]
- Frantz, C.; Buck, R.; Amsbeck, L. Design and Cost Study of Improved Scaled-Up Centrifugal Particle Receiver Based on Simulation. In Proceedings of the ASME 2020 14th International Conference on Energy Sustainability, Virtual Online Conference, 17–18 June 2020; p. V001T002A005. [Google Scholar]
- Deng, Y.; Sabatier, F.; Dewil, R.; Flamant, G.; Gal, A.L.; Gueguen, R.; Baeyens, J.; Li, S.; Ansart, R. Dense upflow fluidized bed (DUFB) solar receivers of high aspect ratio: Different fluidization modes through inserting bubble rupture promoters. Chem. Eng. J. 2021, 418, 129376. [Google Scholar] [CrossRef]
- Behar, O.; Grange, B.; Flamant, G. Design and performance of a modular combined cycle solar power plant using the fluidized particle solar receiver technology. Energy Convers. Manag. 2020, 220, 113108. [Google Scholar] [CrossRef]
- Benoit, H.; López, I.P.; Gauthier, D.; Sans, J.-L.; Flamant, G. On-sun demonstration of a 750 °C heat transfer fluid for concentrating solar systems: Dense particle suspension in tube. Sol. Energy 2015, 118, 622–633. [Google Scholar] [CrossRef]
- Ho, C.K.; Peacock, G.; Christian, J.M.; Albrecht, K.J.; Yellowhair, J.E.; Ray, D. On-Sun Testing of a 1 MWt Particle Receiver with Automated Particle Mass-Flow and Temperature Control. AIP Conf. Proc. 2019, 2126, 30027. [Google Scholar] [CrossRef]
- Falcone, P.K. A Handbook for Solar Central Receiver Design; Sandia National Laboratories: Albuquerque, NM, USA, 1986; pp. 1–275. [Google Scholar]
- Christian, J.; Ho, C.K. Alternative Designs of a High Efficiency, North-facing, Solid Particle Receiver. Energy Procedia 2014, 49, 314–323. [Google Scholar] [CrossRef] [Green Version]
- Khalsa, S.S.S.; Christian, J.M.; Kolb, G.J.; Röger, M.; Amsbeck, L.; Ho, C.K.; Siegel, N.P.; Moya, A.C. CFD Simulation and Performance Analysis of Alternative Designs for High Temperature Solid Particle Receivers. In Proceedings of the ASME 2011 5th International Conference on Energy Sustainability, Washington, DC, USA, 7–10 August 2011; pp. 687–693. [Google Scholar]
- Gobereit, B.; Amsbeck, L.; Buck, R.; Pitz-Paal, R.; Röger, M.; Müller-Seinhagen, H. Assessment of a falling solid particle receiver with numerical simulation. Sol. Energy 2015, 115, 505–517. [Google Scholar] [CrossRef] [Green Version]
- Röger, M.; Amsbeck, L.; Gobereit, B.; Buck, R. Face-Down Solid Particle Receiver Using Recirculation. J. Sol. Energy Eng. 2011, 133, 31009. [Google Scholar] [CrossRef]
- Ho, C.K.; Christian, J.M.; Yellowhair, J.E.; Armijo, K.; Kolb, W.J.; Jeter, S.; Golob, M.; Nguyen, C. On-Sun Performance Evaluation of Alternative High-Temperature Falling Particle Receiver Designs. J. Sol. Energy Eng. 2019, 141, 11009. [Google Scholar] [CrossRef] [Green Version]
- Al-Ansary, H.; El-Leathy, A.; Alswaiyd, A.; Alaqel, S.; Saleh, N.; Saeed, R.; Al-Suhaibani, Z.; Danish, S.; Djajadiwinata, E.; Jeter, S. Study of the Optimum Discrete Structure Configuration in Obstructed Flow Particle Heating Receivers. AIP Conf. Proc. 2020, 2303, 30001. [Google Scholar] [CrossRef]
- Kim, J.-S.; Kumar, A.; Gardner, W.; Lipiński, W. Numerical and Experimental Investigation of a Novel Multi-Stage Falling Particle Receiver. AIP Conf. Proc. 2019, 2126, 30030. [Google Scholar] [CrossRef]
- Ho, C.K.; Mills, B.; Christian, J.M. Volumetric Particle Receivers for Increased Light Trapping and Heating. In Proceedings of the ASME 2016 10th International Conference on Energy Sustainability, Charlotte, NC, USA, 26–30 June 2016; pp. 1–9. [Google Scholar]
- Mills, B.; Ho, C.K.; Christian, J.M.; Peacock, G. Novel Particle Release Patterns for Increased Receiver Thermal Efficiency. AIP Conf. Proc. 2017, 1850, 30035. [Google Scholar] [CrossRef]
- Mills, B.; Ho, C.K. Numerical Evaluation of Novel Particle Release Patterns in High-Temperature Falling Particle Receivers. In Proceedings of the ASME 2017 11th International Conference on Energy Sustainability, Charlotte, NC, USA, 26–30 June 2017; p. V001T005A016. [Google Scholar]
- Tan, T.; Chen, Y.; Chen, Z.; Siegel, N.; Kolb, G.J. Wind effect on the performance of solid particle solar receivers with and without the protection of an aerowindow. Sol. Energy 2009, 83, 1815–1827. [Google Scholar] [CrossRef]
- Kim, K.; Moujaes, S.F.; Kolb, G.J. Experimental and simulation study on wind affecting particle flow in a solar receiver. Sol. Energy 2010, 84, 263–270. [Google Scholar] [CrossRef]
- Mills, B.; Shaeffer, R.; Ho, C.K.; Yue, L. Modeling the Thermal Performance of Falling Particle Receivers Subject to External Wind. In Proceedings of the ASME 2019 13th International Conferenece on Energy Sustainabilty, Bellevue, Washington, DC, USA, 14–17 July 2019. [Google Scholar]
- Ho, C.K.; Kinahan, S.; Ortega, J.D.; Vorobieff, P.; Mammoli, A.; Martins, V. Characterization of Particle and Heat Losses From Falling Particle Receivers. In Proceedings of the ASME 2019 13th International Conferenec on Energy Sustainibilty, Bellevue, Washington, DC, USA, 14–17 July 2019. [Google Scholar]
- Generation 3 Concentrating Solar Power Systems (Gen3 CSP) Phase 3 Project Selection. Available online: https://www.energy.gov/eere/solar/generation-3-concentrating-solar-power-systems-gen3-csp-phase-3-project-selection (accessed on 13 December 2021).
- Mills, B.; Ho, C.K. Simulation and performance evaluation of on-sun particle receiver tests. AIP Conf. Proc. 2019, 2126, 30036. [Google Scholar] [CrossRef]
- Kaneko, H.; Kodama, T.; Gokon, N.; Tamaura, Y.; Lovegrove, K.; Luzzi, A. Decomposition of Zn-ferrite for O2 generation by concentrated solar radiation. Sol. Energy 2004, 76, 317–322. [Google Scholar] [CrossRef]
- Ho, C.K.; Christian, J.M.; Yellowhair, J.; Siegel, N.; Jeter, S.; Golob, M.; Abdel-Khalik, S.I.; Nguyen, C.; Al-Ansary, H. On-sun testing of an advanced falling particle reciever system. AIP Conf. Proc. 2016, 1734, 30022. [Google Scholar] [CrossRef] [Green Version]
- Flesch, R.; Stadler, H.; Uhlig, R.; Pitz-Paal, R. Numerical analysis of the influence of inclination angle and wind on the heat losses of cavity receivers for solar thermal power towers. Sol. Energy 2014, 110, 427–437. [Google Scholar] [CrossRef] [Green Version]
- Stadler, H.; Flesch, R.; Maldonado, D. On the influence of wind on cavity receivers for solar power towers: Flow visualisation by means of background oriented schlieren imaging. Appl. Therm. Eng. 2017, 113, 1381–1385. [Google Scholar] [CrossRef]
- Siegel, N.P.; Gross, M.D.; Coury, R. The Development of Direct Absorption and Storage Media for Falling Particle Solar Central Receivers. J. Sol. Energy Eng. 2015, 137, 41003. [Google Scholar] [CrossRef]
- González-Portillo, L.F.; Abbas, R.; Albrecht, K.J.; Ho, C.K. Analysis of optical properties in particle curtains. Sol. Energy 2021, 213, 211–224. [Google Scholar] [CrossRef]
- Rightly, M.J.; Matthews, L.K.; Mulholland, G.P. Experimental Characterization of the Heat Transfer in a Free-falling-particle Reciever. Sol. Energy 1992, 48, 363–374. [Google Scholar] [CrossRef]
- Ho, C.K.; Khalsa, S.S. A Photographic Flux Mapping Method for Concentrating Solar Collectors and Receivers. J. Sol. Energy Eng. 2012, 134, 41004. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Shuai, Y.; Lougou, B.G.; Jiang, B. Thermal performance analysis of free-falling solar particle receiver and heat transfer modelling of multiple particles. Appl. Therm. Eng. 2021, 187, 116567. [Google Scholar] [CrossRef]
- Chen, H.; Chen, Y.; Hsieh, H.-T.; Siegel, N. Computational Fluid Dynamics Modeling of Gas-Particle Flow Within a Solid-Particle Solar Receiver. ASME J. Sol. Energy Eng. 2007, 129, 160–170. [Google Scholar] [CrossRef]
- Siegel, N.P.; Ho, C.K.; Khalsa, S.S.; Kolb, G.J. Development and evaluation of a prototype solid particle receiver: On-sun testing and model validation. J. Sol. Energy Eng. 2010, 132, 21008. [Google Scholar] [CrossRef]
- Martinek, J.; Ma, Z. Granular Flow and Heat-Transfer Study in a Near-Blackbody Enclosed Particle Receiver. J. Sol. Energy Eng. 2015, 137, 51008. [Google Scholar] [CrossRef]
- Kumar, A.; Lipiński, W.; Kim, J.-S. Numerical modelling of radiation absorption in a novel multi-stage free-falling particle receiver. Int. J. Heat Mass Tran. 2020, 146, 118821. [Google Scholar] [CrossRef]
- Ho, C.K.; Christian, J.M.; Romano, D.; Yellowhair, J.; Siegel, N.; Savoldi, L.; Zanino, R. Characterization of Particle Flow in a Free-Falling Solar Particle Receiver. J. Sol. Energy Eng. 2017, 139, 21011. [Google Scholar] [CrossRef]
- Kim, K.; Siegel, N.; Kolb, G.; Rangaswamy, V.; Moujaes, S.F. A study of solid particle flow characterization in solar particle receiver. Sol. Energy 2009, 83, 1784–1793. [Google Scholar] [CrossRef]
- Shih, T.-H.; Liou, W.W.; Shabbir, A.; Yang, Z.; Zhu, J. A New k-ϵ Eddy Viscosity Model for High Reynolds Number Turbulent Flows. Comput. Fluids 1995, 24, 227–238. [Google Scholar] [CrossRef]
- ANSYS, Inc. ANSYS® Fluent® Theory Guide; ANSYS, Inc.: Canonsburg, PA, USA, 2021. [Google Scholar]
- Morsi, S.A.; Alexander, A.J. An investigation of particle trajectories in two-phase flow systems. J. Fluid Mech. 1972, 55, 193–208. [Google Scholar] [CrossRef]
- Ranz, W.R. Evaporation from Drops, Part I. Chem. Eng. Prog. 1952, 48, 141–146. [Google Scholar]
- Yue, L.; Mills, B.; Christian, J.; Ho, C.K. Effect of quartz aperture covers on the fluid dynamics and thermal efficiency of falling particle receivers. In Proceedings of the ASME 2019 13th International Conference on Energy Sustainability Collocated with the ASME 2019 Heat Transfer Summer Conference, Washington, DC, USA, 14–17 July 2021. [Google Scholar]
- Mills, B.; Shaeffer, R.; Yue, L.; Ho, C.K. Improving Next-Generation Falling Particle Receiver Designs Subject to Anticipated Operating Conditions. In Proceedings of the ASME 2020 14th International Conference on Energy Sustainability, Virtual Online Conference, 17–18 June 2020. [Google Scholar]
- Wendelin, T. SolTRACE: A New Optical Modeling Tool for Concentrating Solar Optics. In Proceedings of the ISEC 2003: International Solar Energy Conference, Kohala Coast, HI, USA, 15–18 March 2003; pp. 253–260. [Google Scholar]
- Wagner, M.J.; Wendelin, T. SolarPILOT: A power tower solar field layout and characterization tool. Sol. Energy 2018, 171, 185–196. [Google Scholar] [CrossRef]
- Mills, B.; Ho, C.K. Annualized thermal performance of intermediate-scale falling particle receivers. AIP Conf. Proc. 2018, 2033, 40026. [Google Scholar] [CrossRef] [Green Version]
- Siegel, R.; Howell, J.R. Thermal Radiation Heat Transfer, 2nd ed.; Hemisphere Publishing Corporation: Washington, DC, USA, 1981. [Google Scholar]
- Yellowhair, J.; Ho, C.K. Optical ray-tracing performance modeling of quartz half-shell tubes aperture cover for falling particle receiver. In Proceedings of the ASME 2019 13th International Conference on Energy Sustainability, Bellevue, WA, USA, 14–17 July 2019. [Google Scholar]
- Buck, R. Optical performance of segmented aperture windows for solar tower receivers. AIP Conf. Proc. 2017, 1850, 30006. [Google Scholar] [CrossRef] [Green Version]
- Yue, L.; Mills, B.; Ho, C.K. Effect of Quartz Aperture Covers on the Fluid Dynamics and Thermal Efficiency of Falling Particle Receivers. In Proceedings of the ASME 2019 13th International Conference on Energy Sustainability, Bellevue, Washington, DC, USA, 14–17 July 2019. [Google Scholar]
- Yue, L.; Shaeffer, R.; Mills, B.; Ho, C.K. Active Airflow for Reducing Advective and Particle Loss in Falling Particle Receivers. AIP Conf. Proc. 2019, 2303, 30036. [Google Scholar] [CrossRef]
- Yue, L.; Schroeder, N.; Ho, C.K. Particle Flow Testing of a Multistage Falling Particle Receiver Concept: Staggered Angle Iron Receiver (StAIR). In Proceedings of the ASME 2020 14th International Conference on Energy Sustainability, Virtual Online Conference, 17–18 June 2020. [Google Scholar]
- Ho, C.K.; Sment, J.; Albrecht, K.J.; Mills, B.; Schroeder, N.; Laubscher, H.; González-Portillo, L.F.; Libby, C.; Pye, J.; Gan, P.G.; et al. Gen 3 Particle Pilot Plant (G3P3)—High-Temperature Particle System for Concentrating Solar Power (Phases 1 and 2); Sandia National Laboratories: Albuquerque, NM, USA, 2021; pp. 1–212. [Google Scholar]
- Shaeffer, R.; Mills, B.; Yue, L.; Ho, C.K. Evaluation of Performance Factors for a Multistage Falling Particle Receiver. In Proceedings of the ASME 2020 14th International Conference on Energy Sustainability, Virtual Online Conference, 17–18 June 2020. [Google Scholar]
- Mills, B.; Schroeder, B.; Yue, L.; Shaeffer, R.; Ho, C.K. Optimizing a Falling Particle Receiver Geometry Using CFD Simulations to Maximize the Thermal Efficiency. AIP Conf. Proc. 2019, 2303, 30027. [Google Scholar] [CrossRef]
- Schroeder, N.; Sanchez, A.; Ho, C.K. Design and Testing of a Recirculating Dust Removal Loop for High-Temperature Particle Receivers (in review). In Proceedings of the SolarPACES 2021, Virtual Online Conference, 27 September–1 October 2021. [Google Scholar]
- Schroeder, N.; Laubscher, H.; Mills, B.; Ho, C.K. Receiver Outlet Temperature Control for Falling Particle Receiver Applications. In Proceedings of the ASME 2021 15th International Conference on Energy Sustainability, Virtual Online Conference, 16–18 June 2021. [Google Scholar]
- González-Portillo, L.F.; Albrecht, K.J.; Ho, C.K. Techno-economic optimization of CSP plants with free-falling particle receivers. Entropy 2021, 23, 76. [Google Scholar] [CrossRef] [PubMed]
- Mills, B.; Shaeffer, R.; Ho, C.K. Predicting the Annual Thermal Performance of Next-Generation Falling Particle Receivers Subject to Wind. In Proceedings of the ASME 2021 15th International Conference on Energy Sustainability, Virtual Online Conference, 16–18 June 2021. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mills, B.H.; Ho, C.K.; Schroeder, N.R.; Shaeffer, R.; Laubscher, H.F.; Albrecht, K.J. Design Evaluation of a Next-Generation High-Temperature Particle Receiver for Concentrating Solar Thermal Applications. Energies 2022, 15, 1657. https://doi.org/10.3390/en15051657
Mills BH, Ho CK, Schroeder NR, Shaeffer R, Laubscher HF, Albrecht KJ. Design Evaluation of a Next-Generation High-Temperature Particle Receiver for Concentrating Solar Thermal Applications. Energies. 2022; 15(5):1657. https://doi.org/10.3390/en15051657
Chicago/Turabian StyleMills, Brantley H., Clifford K. Ho, Nathaniel R. Schroeder, Reid Shaeffer, Hendrik F. Laubscher, and Kevin J. Albrecht. 2022. "Design Evaluation of a Next-Generation High-Temperature Particle Receiver for Concentrating Solar Thermal Applications" Energies 15, no. 5: 1657. https://doi.org/10.3390/en15051657
APA StyleMills, B. H., Ho, C. K., Schroeder, N. R., Shaeffer, R., Laubscher, H. F., & Albrecht, K. J. (2022). Design Evaluation of a Next-Generation High-Temperature Particle Receiver for Concentrating Solar Thermal Applications. Energies, 15(5), 1657. https://doi.org/10.3390/en15051657