Enhanced Energy Savings with Adaptive Watchful Sleep Mode for Next Generation Passive Optical Network
Abstract
:1. Introduction
2. Related Work
3. Watchful and Cyclic Sleep Processes
4. Adaptive Watchful Sleep Mode (AWSM)
4.1. System Description
4.2. Adaptive Sleep Control Algorithm
Algorithm 1: Adaptive Sleep control at the ONT. | |||||
Input: | |||||
Output: Watchful Sleep Process, Message to OLT | |||||
1 | |||||
2 | |||||
3 | |||||
4 | |||||
5 | |||||
6 | |||||
7 | End if | ||||
8 | |||||
9 | |||||
10 | |||||
11 | |||||
12 | |||||
13 | |||||
14 | |||||
15 | |||||
16 | AS_Time += SimTime()-AS_Start; | ||||
17 | AS_Start = 0; | ||||
18 | |||||
19 | |||||
20 | |||||
21 | |||||
22 | AS_Start = SimTime() | ||||
23 | Rx_Time += SimTime() | ||||
24 | |||||
25 | End if | ||||
26 | Start for | ||||
27 | |||||
28 | |||||
29 | ShutDownRxFlag = 0; | ||||
30 | Rx_Start = simTime(); //Measure Rx Time | ||||
31 | Init_Time_Rx += SimTime()-Init_Start_Rx | ||||
32 | Init_Start_Rx = 0; //RX Initialization Ends | ||||
33 | End if | ||||
34 | If ( Expired) | ||||
35 | Init_Time += SimTime()-Init_Start; | ||||
36 | Init_Start = 0; | ||||
37 | ShutDownRxFlag = 0; | ||||
38 | ShutDownTxFlag = 0 | ||||
39 | ONTMode = 1 | ||||
40 | SleepOver = 1 | ||||
41 | End if | ||||
42 | End if |
5. Performance Evaluation
6. Results and Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sharma, N.; Agrawal, S.; Kapoor, V. Performance optimization of OADM based DP-QPSK DWDM optical network with 37.5 GHz channel spacing. Opt. Switch. Netw. 2021, 40, 100606. [Google Scholar] [CrossRef]
- Do, D.T.; Nguyen, T.T.T. Impacts of imperfect SIC and imperfect hardware in performance analysis on AF non-orthogonal multiple access network. Telecommun. Syst. 2019, 72, 579–593. [Google Scholar] [CrossRef]
- International Telecommunication Union. Measuring Digital Development Facts and Figures 2020; International Telecommunication Union: Geneva, Switzerland, 2020. [Google Scholar]
- Obite, F.; Jaja, E.T.; Ijeomah, G.; Jahun, K.I. The evolution of Ethernet Passive Optical Network (EPON) and future trends. Optik 2018, 167, 103–120. [Google Scholar] [CrossRef]
- Effenberger, F. PON Convergence. IEICE Trans. Commun. 2018, E101-B, 947–951. [Google Scholar] [CrossRef] [Green Version]
- Shen, C. Experiences and Future Perspective of China Telecom on Optical Access Networks. In Proceedings of the IEEE Optical Fiber Communications Conference and Exhibition (OFC 2017), Los Angeles, CA, USA, 19–23 March 2017; pp. 26–28. [Google Scholar]
- Nesset, D. PON Roadmap [Invited]. J. Opt. Commun. Netw. 2017, 9, A71–A76. [Google Scholar] [CrossRef]
- Yi, L.; Ji, H.; Li, Z.; Li, X.; Li, C.; Yang, Q.; Xue, L.; Wang, X.; Wang, S.; Yang, Y.; et al. Field-Trial of Real-Time 100 Gb/s TWDM-PON Based on 10G-Class Optical Devices. In Proceedings of the 42nd European Conference and Exhibition on Optical Communications, Dusseldorf, Germany, 18–22 September 2016; pp. 688–697. [Google Scholar]
- ITU-T. ITU-T 40-Gigabit-Capable Passive Optical Networks 2 (NG-PON2): Physical Media Dependent (PMD) Layer Specification G.989.2; International Telecommunication Union: Geneva, Switzerland, 2019; Volume 2. [Google Scholar]
- Shi, B.; Zhang, Y. A novel algorithm to optimize the energy consumption using iot and based on ant colony algorithm. Energies 2021, 14, 1709. [Google Scholar] [CrossRef]
- Oliveira, T.F.; Xavier-De-souza, S.; Silveira, L.F. Improving energy efficiency on SDN control-plane using multi-core controllers. Energies 2021, 14, 3161. [Google Scholar]
- Dourado, D.M.; Ferreira, R.J.L.; Rocha, M.D.; Duarte, U.R. Energy consumption and bandwidth allocation in passive optical networks. Opt. Switch. Netw. 2018, 28, 1–7. [Google Scholar] [CrossRef]
- Morley, J.; Widdicks, K.; Hazas, M. Energy Research & Social Science Digitalisation, energy and data demand: The impact of Internet traffic on overall and peak electricity consumption. Energy Res. Soc. Sci. 2018, 38, 128–137. [Google Scholar]
- Dabaghi-Zarandi, F.; Movahedi, Z. An energy-efficient algorithm based on sleep-scheduling in IP backbone networks. Int. J. Commun. Syst. 2017, 30, 1–8. [Google Scholar] [CrossRef]
- ITU-T Standard, G.987.3; 10-Gigabit-Capable Passive Optical Networks (XG-PON): Transmission Convergence (TC) Layer Specification. ITU-T: Geneva, Switzerland, 2014; pp. 1–146.
- Butt, R.A.; Ashraf, M.W.; Anwar, M.Y.; Anwar, M. Receiver ON Time Optimization for Watchful Sleep Mode to Enhance Energy Savings of 10-Gigabit Passive Optical Network. Tech. J. Univ. Eng. Technol. Taxila 2018, 23, 72–80. [Google Scholar]
- Butt, R.A.; Idrus, S.M.; Zulkifli, N.; Ashraf, M.W. A survey of energy conservation schemes for present and next generation passive optical networks. J. Commun. 2018, 13, 129–138. [Google Scholar] [CrossRef]
- Iiyama, N.; Kimura, H.; Hadama, H. A Novel WDM-based Optical Access Network with High Energy Effeciency Using Elastic OLT. In Proceedings of the Optical Network Design and Modeling (ONDM), Kyoto, Japan, 1–3 February 2010; pp. 1–6. [Google Scholar]
- Zhang, J.; Wang, T.; Ansari, N. Designing energy-efficient optical line terminal for TDM passive optical networks. In Proceedings of the 34th IEEE Sarnoff Symposium (SARNOFF), Princeton, NJ, USA, 3–4 May 2011; pp. 1–5. [Google Scholar]
- Butt, R.A.; Ashraf, M.W.; Faheem, M.; Idrus, S.M. Processing efficient frame structure for passive optical network (PON). Opt. Switch. Netw. 2018, 30, 85–92. [Google Scholar] [CrossRef]
- Sankaran, G.C.; Sivalingam, K.M. ONU buffer reduction for power efficiency in Passive Optical Networks. Opt. Switch. Netw. 2013, 10, 416–429. [Google Scholar] [CrossRef]
- Wong, E. Energy Efficient Passive Optical Networks with Low Power VCSELs. In Proceedings of the Annual Wireless and Optical Communications Conference (WOCC), Kaohsiung, Taiwan, 19–21 April 2012; pp. 48–50. [Google Scholar]
- Suvakovic, D.; Chow, H.; Anthapadmanabhan, N.P.; van Veen, D.T.; van Wijngaarden, A.J.; Ayhan, T.; van Praet, C.; Torfs, G.; Yin, X.; Vetter, P. A Low-Energy Rate-Adaptive Bit-Interleaved Passive Optical Network. IEEE J. Sel. Areas Commun. 2014, 32, 1552–1565. [Google Scholar] [CrossRef] [Green Version]
- Lingas, N.; Uddin, M.R. Sleep Mode on Delay Sensitive Traffic on Optical Network Unit. In Proceedings of the 23rd IEEE International Conference on Advanced Communication Technology (ICACT), PyeongChang, Korea, 7–10 February 2021; pp. 407–410. [Google Scholar]
- Nikoukar, A.; Hwang, I.S.; Wang, C.J.; Ab-Rahman, M.S.; Liem, A.T. A SIEPON based transmitter sleep mode energy-efficient mechanism in EPON. Opt. Fiber Technol. 2015, 23, 78–89. [Google Scholar] [CrossRef]
- Alaelddin, F.Y.M.; Newaz, S.H.S.; L-Hazemi, F.A.; Choi, J.K. Grant management procedure for energy saving TDM-PONs. Opt. Fiber Technol. 2018, 40, 118–129. [Google Scholar] [CrossRef]
- Maneyama, Y.; Kubo, R. QoS-Aware Cyclic Sleep Control With Proportional-Derivative Controllers for Energy-Efficient PON Systems. J. Opt. Commun. Netw. 2017, 6, 1048. [Google Scholar] [CrossRef]
- Nikoukar, A.; Hwang, I.-S.; Andrew Fernando Pakpahan Andrew Tanny Liem. Two-phase ONU Doze Mode Energy-saving Mechanism in EPON. In Proceedings of the International MultiConference of Engineers and Computer Scientists, Hong Kong, China, 16–18 March 2016. [Google Scholar]
- Nikoukar, A.; Hwang, I.-S.; Liem, A.T.; Su, Y.-M. A new ONU-initiated doze mode energy-saving mechanism in EPON. In Proceedings of the International MultiConference of Engineers and Computer Scientists, Hong Kong, China, 18–20 March 2015; Volume 1, pp. 1–5. [Google Scholar]
- Hirafuji, R.O.C.; Dhaini, A.; Khotimsky, D. Energy efficiency analysis of the Watchful Sleep mode in next-generation passive optical networks. In Proceedings of the IEEE Symposium on Computers and Communication (ISCC), Messina, Italy, 27–30 June 2016; pp. 689–695. [Google Scholar]
- Zhu, M.; Zeng, X.; Lin, Y.; Sun, X. Modeling and Analysis of Watchful Sleep Mode With Different Sleep Period Variation Patterns in PON Power Management. J. Opt. Commun. Netw. 2017, 9, 803. [Google Scholar] [CrossRef]
- Zin, A.M.; Idrus, S.M.; Ramli, A.; Butt, R.A.; Atan, F.M.; Ismail, N.A. Performance Evaluation of XG-PON with DBA Based-Watchful Sleep Mode. In Proceedings of the IEEE 7th International Conference on Photonics (ICP), Langkawi, Malaysia, 9–11 April 2018; pp. 6–8. [Google Scholar]
- Pakpahan, A.F.; Hwang, I.-S.; Liem, A.T. Enabling Agile Software-Defined and NFV based Energy-Efficient Operations in TWDM-PON. In Proceedings of the 7th International Conference on Cyber and IT Service Management (CITSM 2019), Jakarta, Indonesia, 6–8 November 2019; pp. 1–7. [Google Scholar]
- Garg, S.; Dixit, A. Novel bandwidth and wavelength allocation algorithm for energy efficiency in TWDM-PON. In Proceedings of the International Conference on Transparent Optical Networks, Angers, France, 9–13 July 2019; pp. 1–4. [Google Scholar]
- Dixit, A.; Lannoo, B.; Colle, D.; Pickavet, M.; Demeester, P. ONU power saving modes in next generation optical access networks: Progress, efficiency and challenges. Opt. Express 2012, 20, B52–B63. [Google Scholar] [CrossRef]
- Dixit, A.; Lannoo, B.; Colle, D.; Pickavet, M.; Demeester, P. Energy efficient dynamic bandwidth allocation for Ethernet passive optical networks: Overview, challenges, and solutions. Opt. Switch. Netw. 2015, 18, 169–179. [Google Scholar] [CrossRef]
- Rayapati, B.R.; Rangaswamy, N. Heuristic polling sequence to enhance sleep count of EPON. Front. Optoelectron. 2019, 12, 422–432. [Google Scholar] [CrossRef]
- Zhu, M.; Li, G.; Zhang, S.; Gu, J.; Chen, B.; Sun, Q. Pairwise-combination-based dba scheme for energy-efficient low-latency tdm-pons. In Proceedings of the 2018 10th International Conference on Advanced Infocomm Technology, ICAIT, Stockholm, Sweden, 12–15 August 2018; pp. 128–132. [Google Scholar]
- Khalili, H.; Rinc, D.; Sallent, S. An Energy-Efficient Distributed Dynamic Bandwidth Allocation Algorithm for Passive Optical Access Networks. Opt. Eng. 2020, 12, 2264. [Google Scholar] [CrossRef] [Green Version]
- Hirafuji, R.O.C.; Cunha, K.B.; Campelo, D.R.; Dhaini, A.R.; Khotimsky, D.A. The Watchful Sleep Mode: A New Standard for Energy Efficiency in Future Access Networks. IEEE Commun. Mag. 2015, 58, 150–157. [Google Scholar] [CrossRef]
- Zhu, M.; Zeng, X.; Lin, Y.; Sun, X. Modeling and analysis for watchful sleep mode in PON power management. In Proceedings of the 15th International Conference on Optical Communications and Networks, Hangzhou, China, 24–27 September 2016; pp. 15–17. [Google Scholar]
- Rayapati, B.R.; Rangaswamy, N.; Shaik, E.H. Investigation on power efficiency of gpon with heterogeneous traffic. In Proceedings of the 2017 Progress in Electromagnetics Research Symposium—Fall (PIERS—FALL), Singapore, 19–22 November 2017; pp. 2603–2607. [Google Scholar]
- Butt, R.A.; Idrus, S.M.; Zulkifli, N. Comparative analysis of cyclic and watchful sleep modes for GPON. In Proceedings of the 2016 IEEE 6th International Conference on Photonics, ICP, Kuching, Malaysia, 14–16 March 2016. [Google Scholar]
- Zeng, X.; Zhu, M.; Wang, L.; Sun, X. Optimization of sleep period in watchful sleep mode for power-efficient passive optical networks. Photonic Netw. Commun. 2017, 35, 300–308. [Google Scholar] [CrossRef]
- Valcarenghi, L. Cognitive PONs: A Novel Approach toward Energy Efficiency. In Proceedings of the Asia Communications and Photonics Conference, Guangzhou, China, 7–10 November 2012; pp. 2–4. [Google Scholar]
- Butt, R.A.; Idrus, S.M.; Qureshi, K.N.; Shah, P.M.A.; Zulkifli, N. An energy efficient cyclic sleep control framework for ITU PONs. Opt. Switch. Netw. 2018, 27, 7–17. [Google Scholar] [CrossRef]
- Zhu, M.; Gu, J.; Li, G. PWC-PON: An Energy-Efficient Low-Latency DBA Scheme for Time Division Multiplexed Passive Optical Networks. IEEE Access 2020, 8, 206848–206865. [Google Scholar] [CrossRef]
- Butt, R.A.; Faheem, M.; Ashraf, M.W.; Arfeen, A.; Memon, K.A.; Khawaja, A. Sleep-aware wavelength and bandwidth assignment scheme for TWDM PON. Opt. Quantum Electron. 2021, 53, 295. [Google Scholar] [CrossRef]
- Han, M.S.; Yoo, H.; Lee, D.S. Development of Efficient Dynamic Bandwidth Allocation Algorithm for XGPON. ETRI J. 2013, 35, 18–26. [Google Scholar] [CrossRef]
Parameter | Values |
---|---|
1 s | |
2 ms | |
330 ns | |
Watch state ON/OFF values computed using Equations (1) and (3). | |
2 ms | |
2.33 ms | |
0.5 ms | |
+ SI + RTT) = 1.05 s | |
) = 1.08 ms | |
5% | |
40% | |
100% | |
100% | |
= 10 (10 Mbps Bandwidth) | |
= 10 (45 Mbps Bandwidth) | |
= 10 (22.5 Mbps Bandwidth) | |
= 10 (22.5 Mbps Bandwidth) | |
= 10 (90 Mbps Bandwidth) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Butt, R.A.; Akhunzada, A.; Faheem, M.; Raza, B. Enhanced Energy Savings with Adaptive Watchful Sleep Mode for Next Generation Passive Optical Network. Energies 2022, 15, 1639. https://doi.org/10.3390/en15051639
Butt RA, Akhunzada A, Faheem M, Raza B. Enhanced Energy Savings with Adaptive Watchful Sleep Mode for Next Generation Passive Optical Network. Energies. 2022; 15(5):1639. https://doi.org/10.3390/en15051639
Chicago/Turabian StyleButt, Rizwan Aslam, Adnan Akhunzada, Muhammad Faheem, and Basit Raza. 2022. "Enhanced Energy Savings with Adaptive Watchful Sleep Mode for Next Generation Passive Optical Network" Energies 15, no. 5: 1639. https://doi.org/10.3390/en15051639
APA StyleButt, R. A., Akhunzada, A., Faheem, M., & Raza, B. (2022). Enhanced Energy Savings with Adaptive Watchful Sleep Mode for Next Generation Passive Optical Network. Energies, 15(5), 1639. https://doi.org/10.3390/en15051639