Indirect Impact of the COVID-19 Pandemic on Natural Gas Consumption by Commercial Consumers in a Selected City in Poland
Abstract
:1. Introduction
2. The COVID-19 Pandemic
3. Literature Review
3.1. National Level
3.2. Cities Level
4. Case Study
5. Neural Network
- u1: inputs on dendrites (incoming signals passing through inputs)
- w1: weights (correspond to synapses)
- Σ: summation function (corresponds to the nucleus)
- ϕ: activation function (corresponds to the axon hillock)
- y: output (corresponds to the axon)
6. Calculations
7. Results
8. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ervural, B.F.; Beyca, O.F.; Zaim, S. Model estimation of ARMA using genetic algorithms: A case study of forecasting natural gas consumption. Procd. Soc. Behv. 2016, 235, 537–545. [Google Scholar] [CrossRef]
- Voudouris, V.; Matsumoto, K.; Sedgwick, J.; Rigby, R.; Stasinopolus, D.; Jeffersin, M. Exploring the production of natural gas through the lenses of the ACEGRS model. Energy Policy 2016, 64, 124–133. [Google Scholar] [CrossRef]
- GUS. “Główny Urząd Statystyczny” (Statistics Poland). 2018–2020. Available online: https://stat.gov.pl/ (accessed on 3 June 2021).
- Szurlej, A.; Ruszel, M.; Olkuski, T. Will natural gas be competitive fuel? (in Polish: Czy gaz ziemny będzie paliwem konkurencyjnym?). Rynek Energii 2015, 5, 3–10. [Google Scholar]
- Ciechanowska, M. Poland’s Energy Policy until 2050 (in Polish: Polityka Energetyczna Polski do 2050 roku). Naft. Gaz 2014, 11, 839–842. [Google Scholar]
- Europen Commission. Energy Roadmap 2050; European Commissioner for Energy: Luxembourg, 2012. [Google Scholar]
- Kosowski, P.; Kosowska, K. Valuation of Energy Security for Natural Gas—European Example. Energies 2021, 14, 2678. [Google Scholar] [CrossRef]
- Statistical Review of World Energy. Available online: https://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy.html (accessed on 3 June 2021).
- Ozmen, A.; Yilmaz, Y.; Weber, G.-W. Natural gas consumption forecast with MARS and CMARS models for residential users. Energy Econ. 2018, 70, 357–381. [Google Scholar] [CrossRef]
- Sanchez-Ubeda, E.F.; Berzosa, A. Modeling and forecasting industrial end-use natural gas consumption. Energy Econ. 2007, 29, 710–742. [Google Scholar] [CrossRef]
- Baldacci, L.; Golfarelli, M.; Lombardi, D.; Sami, F. Natural gas consumption forecasting for anomaly detection. Expert Syst. Appl. 2016, 62, 190–201. [Google Scholar] [CrossRef]
- Khan, M.A. Modelling and forecasting the demand for natural gas in Pakistan. Renew. Sust. Energ. Rev. 2015, 49, 1145–1159. [Google Scholar] [CrossRef]
- Bartnicki, G.; Nowak, B. Model ARIMA w prognozowaniu zużycia gazu w cyklach miesięcznych. Zesz. Nauk. Inst. Gospod. Surowcami Miner. I Energią Pol. Akad. Nauk 2018, 103, 145–158. [Google Scholar] [CrossRef]
- Bai, Y.; Li, C. Daily natural gas consumption forecasting based on a structure-calibrated support vector regression approach. Energ Build. 2016, 127, 571–579. [Google Scholar] [CrossRef]
- Brown, R.H.; Kaftan, D.J.; Smalley, J.L.; Fakoor, M.; Graupman, S.J.; Povinelli, R.J.; Corliss, G.F. Improving Daily Natural Gas Forecasting by Tracking and Combining Models. In Proceedings of the International Symposium on Forecasting, Cairns, QLD, Australia, 25–28 June 2017; Available online: https://epublications.marquette.edu/electric_fac/288 (accessed on 3 June 2021).
- Samidurai, A.; Das, A. Cardiovascular Complications Associated with COVID-19 and Potential Therapeutic Strategies. Int. J. Mol. Sci. 2020, 21, 6790. [Google Scholar] [CrossRef] [PubMed]
- Krajewska, J.; Krajewski, W.; Zub, K.; Zatoński, T. COVID 19 in otolaryngologist practice: A review of current knowledge. Eur. Arch. Oto-Rhino-Laryngol. 2020, 277, 1885–1897. [Google Scholar] [CrossRef] [PubMed]
- Gottlieb, M.; Long, B. Dermatologic manifestations and complications of COVID-19. Am. J. Emerg. Med. 2020, 38, 1715–1721. [Google Scholar] [CrossRef] [PubMed]
- Klok, F.A.; Kruip, M.J.; Van der Meer, N.J.; Arbous, M.S.; Gommers, D.A.; Kant, K.M.; Kaptein, F.H.; Van Paassen, J.; Stals, M.A.; Huisman, M.; et al. Incidence of thrombotic complications in critically ill ICU patients with COVID-19. Thromb. Res. 2020, 19, 145–147. [Google Scholar] [CrossRef] [PubMed]
- Bridwell, R.; Long, B.; Gottlieb, M. Neurologic complications of COVID-19. Am. J. Emerg. Med. 2020, 38, 1549.e3–1549.e7. [Google Scholar] [CrossRef]
- Kunutsor, S.K.; Laukkanen, J.A. Renal complications in COVID-19: A systematic review and meta-analysis. Ann. Med. 2020, 52, 345–353. [Google Scholar] [CrossRef]
- Aminian, A.; Safari, S.; Razeghian-Jahromi, A.; Ghorbani, M.; Delaney, C.P. COVID-19 Outbreak and Surgical Practice: Unexpected Fatality in Perioperative period. Ann. Surg. 2020, 272, e27–e29. [Google Scholar] [CrossRef]
- Alqahtani, S.; Schattenberg, J. Liver injury in COVID-19: The current evidence. United Eur. Gastroent. 2020, 8, 509–519. [Google Scholar] [CrossRef]
- Pal, R.; Bhadada, S.K. COVID-19 and diabetes mellitus: An unholy interaction of two pandemics. Diabetes Metab. Syndr. Clin. Res. Rev. 2020, 14, 513–517. [Google Scholar] [CrossRef]
- She, J.; Jiang, J.; Ye, L.; Hu, L.; Bai, C.; Song, Y. 2019 novel coronavirus of pneumonia in Wuhan, China: Emerging attack and management strategies. Clin. Trans. Med. 2020, 9, 1–7. [Google Scholar] [CrossRef] [PubMed]
- WHO (World Health Organization). Coronavirus Disease 2019 (COVID-19) Situation Report-88. 2020. Available online: https://www.who.int/ (accessed on 3 June 2021).
- Ministerstwo Zdrowia (Ministry of Health). Ordinance of the Minister of Health of 20 March 2020 on the declaration of an epidemic in the Republic of Poland (in Polish: Rozporządzenie Ministra Zdrowia z dnia 20 marca 2020 w sprawie ogłoszenia na obszarze Rzeczpospolitej Polskiej stanu epidemii). 2020. Available online: https://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp? (accessed on 3 June 2021).
- Deloitte Touche Tohmatsu India LLP. Member of Deloitte Touche Tohmatsu Limited. 2020. Available online: https://www2.deloitte.com/content/dam/Deloitte/in/Documents/finance/in-fa-impact-of-covid-19-on-o-and-g-industry-noexp.pdf (accessed on 3 June 2021).
- Brosemer, K.; Schelly, C.; Gagnon, V.; Arola, K.L.; Pearce, J.M.; Bessette, D.; Olabisi, L.S. The energy crises revealed by COVID: Intersections of Indigeneity, inequity, and health. Energy Res. Soc. Sci. 2020, 68, 101661. [Google Scholar] [CrossRef] [PubMed]
- Mostafa, M.K.; Gamal, G.; Wafig, A. The impact of COVID 19 on air pollution levels and other environmental indicators—A case study of Egypt. J. Environ. Manag. 2021, 277, 111496. [Google Scholar] [CrossRef] [PubMed]
- Filonchyk, M.; Hurynovich, V.; Yan, H. Impact of COVID-19 lockdown on air quality in the Poland, Eastern Europe. Environ. Res. 2020, 198, 110454. [Google Scholar] [CrossRef] [PubMed]
- Karan, A.; Kabeer, A.; Teelucksingh, S.; Sakhamuri, S. The impact of air pollution on the incidence and mortality of COVID-19. Glob. Health Res. Policy 2020, 5, 1–3. [Google Scholar] [CrossRef]
- Nurshad, A.; Farjana, I. The Effects of Air Pollution on COVID-19 Infection and Mortality—A Review on Recent Evidence. Front. Public Health 2020, 8, 580057. [Google Scholar] [CrossRef]
- Comunian, S.; Dongo, D.; Milani, C.; Palestini, P. Air pollution and COVID-19: The role of particulate matter in the spread and increase of COVID-19’s morbidity and mortality. Int. J. Environ. Res. Public Health 2020, 17, 1–20. [Google Scholar] [CrossRef]
- COVID-19 pandemic impacts on traffic system delay, fuel consumption and emissions. Int. J. Transp. Sci. Technol. 2020, 10, 184–196. [CrossRef]
- Prol, J.L.; Sungmin, O. Impact of COVID-19 Measures on Short-Term Electricity Consumption in the Most Affected EU Countries and USA States. iScience 2020, 23, 101639. [Google Scholar] [CrossRef]
- Department for Business, Energy & Industrial Strategy. Energy Trends. 2021. Available online: https://www.gov.uk/government/statistics/electricity-section-5-energy-trends (accessed on 3 June 2021).
- Mahajan, M. Estimating, U.S. Energy Demand and Emissions Impacts of COVID-19 with the Energy Policy Simulator. Energy Innovation: San Francisco, CA, USA, 2020. Available online: https://energyinnovation.org/wp-content/uploads/2020/05/Modeling-COVID-Impacts-On-US-Emissions.pdf (accessed on 3 June 2021).
- Bulut, M. Analysis of the COVID-19 impact on electricity consumption and production. Sak. Univ. J. Comput. Inf. Sci. (SAUCIS) 2020, 3, 283–295. [Google Scholar] [CrossRef]
- Elavarasan, R.M.; Shafiullah, G.M.; Raju, K.; Mudgal, V.; Arif, M.T.; Jamal, T.; Subramanian, S.; Balaguru, V.S.S.; Reddy, K.S.; Subramaniam, U. COVID-19: Impact analysis and recommendations for power sector operation. Appl. Energy 2020, 279, 115739. [Google Scholar] [CrossRef] [PubMed]
- Ruan, G.; Wu, J.; Zhong, H.; Xia, Q.; Xie, L. Quantitative assessment of U.S. bulk power systems and market operations during the COVID-19 pandemic. Appl. Energy 2021, 286, 116354. [Google Scholar] [CrossRef] [PubMed]
- Eryilmaz, D.; Partia, M.; Heilbrum, C. Assessment of the COVID-19 pandemic effect on regional electricity generation mix in NYISO, MISO, and PJM markets. Electr. J. 2020, 33, 106829. [Google Scholar] [CrossRef]
- Werth, A.; Gravino, P.; Prevedello, G. Impact analysis of COVID-19 responses on energy grid dynamics in Europe. Appl. Energy 2021, 281, 116045. [Google Scholar] [CrossRef] [PubMed]
- Halbrügge, S.; Schott, P.; Weibelzahl, M.; Buhl, H.U.; Fridgen, G.; Schöpf, M. How did the German and other European electricity systems react to the COVID-19 pandemic? Appl. Energy 2021, 285, 116370. [Google Scholar] [CrossRef]
- Abadie, L.M. Energy Market Prices in Times of COVID-19: The Case of Electricity and Natural Gas in Spain. Energies 2021, 14, 1632. [Google Scholar] [CrossRef]
- Ghiani, E.; Galici, M.; Mureddu, M.; Pilo, F. Impact on electricity consumption and market Pricing of energy and ancillary services during pandemic of COVID-19 in Italy. Energies 2020, 13, 3357. [Google Scholar] [CrossRef]
- Kalbusch, A.; Henning, E.; Brikalski, M.P.; Vieira de Luca, F.; Konrath, A.C. Impact of coronavirus (COVID-19) spread-prevention actions on urban water consumption. Resour. Conserv. Recycl. 2020, 163, 105098. [Google Scholar] [CrossRef]
- Huang, L.; Liao, Q.; Qiu, R.; Liang, Y.; Long, Y. Prediction-based analysis on power consumption gap under long-term emergency: A case in China under COVID-19. Appl. Energy 2021, 283, 116339. [Google Scholar] [CrossRef]
- Eastman, L.; Smull, E.; Patterson, L.; Doyle, M. COVID-19 Impacts on Water. Utility Consumption and Revenues. Preliminary results. Available online: www.raftelis.com/covid-19-resources (accessed on 3 June 2021).
- Ong, A.; Nielsen, E. Economic Impacts of COVID-19 on the Water Sector. 2020. Available online: https://www.water.org.uk/wp-content/uploads/2020/12/Impact-of-COVID-19-on-the-water-sector_FINAL-REPORT-STC-141220.pdf (accessed on 3 June 2021).
- Cheshmehzangi, A. COVID-19 and household energy implications: What are the main impacts on energy use. Heliyon 2020, 6, e05202. [Google Scholar] [CrossRef]
- Nemati, M. COVID-19 and Urban Water Consumption. Giannini Foundation of Agricultural Economics. ARE Update 2020, 24, 9–11. Available online: https://s.giannini.ucop.edu/uploads/giannini_public/6c/45/6c45e9f6-7f90-4c99-9d14-63905593539a/v24n1_3.pdf (accessed on 3 June 2021).
- Balacco, G.; Totaro, V.; Iacobellis, V.; Manni, A.; Spagnoletta, M.; Piccinni, A.F. Influence of COVID-19 spread on water drinking demand: The case of Puglia Region (Southern Italy). Sustainability 2020, 12, 5919. [Google Scholar] [CrossRef]
- Mastropierto, P.; Rodilla, P.; Batlle, C. Emergency measures to protect energy consumers during the COVID-19 pandemic: A global review and critical analysis. Energy Res. Soc. Sci. 2020, 68, 101678. [Google Scholar] [CrossRef]
- Kim, D.; Yim, T.; Lee, J.Y. Analytical study on changes in domestic hot water use caused by COVID-19 pandemic. Energy 2021, 231, 120915. [Google Scholar] [CrossRef]
- Collette, M.W.; Baffes, J.; Kabundi, A.; Kindberg-Hanlon, G.; Nagle, P.S.; Ohnsorge, F.L. Adding fuel to the fire. Cheap oil during the COVID-19 Pandemic. In Policy Research Working Paper World Bank Group; The World Bank: Washington, DC, USA, 2020; Available online: http://hdl.handle.net/10986/34129 (accessed on 3 June 2021).
- Aloui, D.; Goutte, S.; Guesmi, K.; Hchaichi, R. COVID-19’s impact on crude oil and natural gas S&P GS Indexes. HAL Sci. Hum. Et Soc. 2020, 1–17. [Google Scholar] [CrossRef]
- Prawiraatmadja, W. COVID-19 Pandemic: Impact on the Oil and Gas Industry; Institute for Essential Services Reform (IESR): Jakarta, Indonesia, 2020; Available online: http://iesr.or.id/wp-content/uploads/2020/05/Covid19-Pandemic-Impact-on-the-Oil-and-Gas-Industry-IESR.pdf (accessed on 3 June 2021).
- Ghosh, S. Marine Insight. 2021. Available online: https://www.marineinsight.com/know-more/oil-tanker-business-boomed-during-covid-19-pandemic/ (accessed on 3 June 2021).
- IEA. Countries and Regions. 2021. Available online: https://www.iea.org/countries (accessed on 3 June 2021).
- Amara, R.; Belaifa, M. COVID-19 and Its Implications on the Italian Natural Gas Market. 2020. Available online: https://www.gecf.org/_resources/files/events/gecf-expert-commentary---covid-19-and-its-implications-on-the-italian-natural-gas-market/covid-19-and-its-implication-in-the-italian-gas-market.pdf (accessed on 3 June 2021).
- Honore, A. Natural Gas Demand in Europe: The Impacts of COVID-19 and other Influences in 2020; The Oxford Institute for Energy Studies: Oxford, UK, 2021; Available online: https://www.oxfordenergy.org/wpcms/wp-content/uploads/2020/06/Natural-gas-demand-in-Europe-the-impacts-of-COVID-19-and-other-influences-in-2020.pdf (accessed on 3 June 2021).
- IGU. Global Gas Report 2020. Available online: https://www.igu.org/resources/global-gas-report-2020/ (accessed on 3 June 2021).
- Koyama, K.; Suehiro, S. COVID-19 and the Outlook for Oil, Natural Gas, and LNG Demand in 2021; The Institute Of Energy Economics, Japan: Tokyo, Japan, 2020; pp. 1–5. Available online: https://eneken.ieej.or.jp/data/8933.pdf (accessed on 3 June 2021).
- Soldo, B. Forecasting Natural Gas Consumption. Appl. Energy 2012, 92, 26–37. [Google Scholar] [CrossRef]
- Musilek, P.; Palikan, T.; Brabec, M.; Simunek, M. Recurrent Neural Network Based Gating for Natural Gas Load Prediction System. In Proceedings of the 2006 IEEE International Joint Conference on Neural Network Proceedings, Vancouver, BC, Canada, 16–20 July 2006; pp. 3736–3741. [Google Scholar] [CrossRef]
- Wang, X.; Luo, D.; Liu, J.; Wang, W.; Jie, G. Prediction of natural Gas Consumption in Different regions of China using a hybrid MVO-NNGBM. Math. Probl. Eng. 2017, 2017, 6045708. [Google Scholar] [CrossRef]
- Jinynuan, L.; Nan, W.; Shouxi, W.; Xi, C.; Hanyui, X.; Wang, J. Natural gas consumption forecasting: A discussion on forecasting history and future challenges. J. Nat. Gas. Sci. Eng. 2021, 90, 103930. [Google Scholar] [CrossRef]
- Siemek, J.; Nagy, S.; Rychlicki, S. Estimation of natural-gas consumption in Poland based on the logistic-curve interpretation. Appl. Energy 2003, 75, 1–7. [Google Scholar] [CrossRef]
- Gutierrez, R.; Nafidi, A.; Gutierrez Sanchez, R. Forecasting total natural gas consumption in Spain by using the stochastic Gompertz innovation diffusion model. Appl. Energy 2005, 80, 115–124. [Google Scholar] [CrossRef]
- Oliver, R.; Duffy, A.; Enright, B.; O’Connor, R. Forecasting peak-day consumption for year-ahead management of natural gas networks. Util Policy 2017, 44, 1–11. [Google Scholar] [CrossRef]
- Thornton, H.E.; Hoskins, B.J.; Scaife, A.A. The role of temperature in the variability and extremes of electricity and gas demand in Great Britain. Environ. Res. Lett 2016, 11, 114015. [Google Scholar] [CrossRef]
- Reynolds, D.; Kolodziej, M. North America Natural Gas Supply Forecast: The Hubbert Method including the Effects of Institutions. Energies 2009, 2, 269–306. [Google Scholar] [CrossRef]
- Taspinar, F.; Celebi, N.; Tutkun, N. Forecasting of daily natural gas consumption on regional basis in Turkey using various computational methods. Energy Build. 2013, 56, 23–31. [Google Scholar] [CrossRef]
- Melikoglu, M. Vision 2023: Forecasting Turkey’s natural gas demand between 2013 and 2030. Renew. Sustain. Energy Rev. 2013, 22, 393–400. [Google Scholar] [CrossRef]
- Aras, N. Forecasting Residential Consumption of natural Gas Using Genetic Algorithms. Energy Explor. Exploit 2008, 26, 241–266. [Google Scholar] [CrossRef]
- Xu, G.; Wang, W. Forecasting China’s natural gas consumption based on combination model. J. Nat. Gas. Chem. 2010, 19, 493–496. [Google Scholar] [CrossRef]
- Shaikh, F.; Ji, Q.; Shaikh, P.H.; Mirjat, N.H.; Uqaili, M.A. Forecasting China’s natural gas demand based on optimized nonlinear grey models. Energy 2017, 140, 941–951. [Google Scholar] [CrossRef]
- Yifei, M.; Yanli, L. Analysis of the supply-demand status of China’s natural gas to 2020. Pet. Sci. 2010, 7, 132–135. [Google Scholar] [CrossRef]
- Suykens, J.A.K.; Lemmerling, P.; Favoreel, W.; De Moor, B.L.R.; Crepel, M.; Briol, P. Modelling the Belgian gas consumption using neural networks. Neural. Process. Lett. 1996, 4, 157–166. [Google Scholar] [CrossRef]
- Brown, R.H.; Kaftan, D.J.; Feng, X.; Piessens, L.P.; Nestor, D. Development of feed-forward network models to predict gas consumption. In Proceedings of the 1994 IEEE International Conference on Neural Networks (ICNN’94), Orlando, FL, USA, 28 June–2 July 1994; Volume 2, pp. 802–805. [Google Scholar] [CrossRef]
- Paliński, A. Forecasting gas demand using artificial intelligence methods (In Polish: Prognozowanie zapotrzebowania na gaz metodami sztucznej inteligencji). Naft. Gaz 2019, 2, 111–117. [Google Scholar] [CrossRef]
- Panapakidis, I.P.; Dagoumas, A.S. Day-ahead natural gas demand forecasting based on the combination of wavelet transform and ANFIS/genetic algorithm/neural network model. Energy 2017, 118, 231–245. [Google Scholar] [CrossRef]
- Beyca, O.F.; Ervural, B.C.; Tatoglu, E.; Ozuyar, P.G.; Zaim, S. Using machine learning tools for forecasting natural gas consumption in the province of Istanbul. Energy Econ. 2019, 80, 937–949. [Google Scholar] [CrossRef]
- Kizilaslan, R.; Karlik, B. Comparison neural networks models for short term forecasting of natural gas consumption in Istanbul, 2008. Proceeding of the First International Conference on the Applications of Digital Information and Web Technologies (ICADIWT), Ostrava, Czech Republik, 4–6 August 2008; pp. 448–453. [Google Scholar] [CrossRef]
- Sarak, H.; Satman, A. The degree-day method to estimate the residential heating natural gas consumption in Turkey: A case study. Energy 2003, 28, 929–939. [Google Scholar] [CrossRef]
- Yu, Y.; Zheng, X.; Han, Y. On the demand for natural gas in urban China. Energy Policy 2014, 70, 57–63. [Google Scholar] [CrossRef]
- Yu, F.; Xu, X. A short-term load forecasting model of natural gas based on optimized genetic algorithm and improved BP neural network. Appl. Energy 2014, 134, 102–113. [Google Scholar] [CrossRef]
- Lu, H.; Azimi, M.; Iseley, T. Short-term load forecasting of urban gas using a hybrid model based on improved fruit fly optimization algorithm and support vector machine. Energy Rep. 2019, 5, 666–677. [Google Scholar] [CrossRef]
- Wei, N.; Li, C.; Peng, X.; Li, Y.; Zeng, F. Daily natural gas consumption forecasting via the application of a novel hybrid model. Appl. Energy 2019, 250, 358–368. [Google Scholar] [CrossRef]
- Wei, N.; Li, C.; Duan, J.; Liu, J.; Zeng, F. Daily Natural Gas Load Forecasting Based on a Hybrid deep Learning Model. Energies 2019, 12, 218. [Google Scholar] [CrossRef]
- Szoplik, J. Forecasting of natural gas consumption with artificial neural networks. Energy 2015, 85, 208–220. [Google Scholar] [CrossRef]
- Cieślik, T.; Metelska, K. Modeling of gas consumption in the city. AGH Drill. Oil Gas 2017, 34, 439–453. [Google Scholar] [CrossRef]
- Sabo, K.; Scitovski, R.; Vazler, I.; Zekic-Susac, M. Mathematical models of natural gas consumption. Energ Convers. Manag. 2011, 52, 1721–1727. [Google Scholar] [CrossRef]
- Izadyar, N.; Ong, H.C.; Shamshirband, S.; Ghadamian, H.; Tong, C.W. Intelligent forecasting of residential heating demand for the District Heating System based on the monthly overall natural gas consumption. Energy Build. 2015, 104, 208–214. [Google Scholar] [CrossRef]
- Karimi, H.; Dastranj, J. Artificial neural network-based genetic algorithm to predict natural gas consumption. Energy Syst. 2014, 5, 571–581. [Google Scholar] [CrossRef]
- Hribar, R.; Potocnik, P.; Silc, J.; Papa, G. A comparison of model for forecasting the residential natural gas demand of an urban area. Energy 2019, 167, 511–522. [Google Scholar] [CrossRef]
- Meteomodel. 2021. Available online: https://meteomodel.pl/ (accessed on 3 June 2021).
- Mohamed, Z.E. Using the artificial neural networks for prediction and validating solar radiation. J. Egypt. Math. Soc. 2019, 27, 47. [Google Scholar] [CrossRef]
- Cieślik, T.; Kogut, K. Forecasting the work of gas network by means of artificial neural network (in Polish: Prognozowanie pracy sieci gazowej za pomocą sztucznych sieci neuronowych). Naft. Gaz 2016, 6, 443–450. [Google Scholar] [CrossRef]
- Żurada, J. Artificial Neural Networks (In Polish: Sztuczne Sieci Neuronowe); PWN: Warszawa, Poland, 1996. [Google Scholar]
- Tadeusiewicz, R.; Gaciarz, T.; Borowik, B.; Leper, B. Exploring the Properties of Neural Networks (in Polish: Odkrywanie Własności Sieci Neuronowych); Polska Akademia Umiejętności: Kraków, Poland, 2007. [Google Scholar]
- Silva, N.I. Artificial Neural Network Architectures and Training Processes. In Artificial Neural Networks; Springer International Publishing: Cham, Switzerland, 2017. [Google Scholar] [CrossRef]
- Wang, S.-C. Interdisciplinary Computing in Java Programming; Springer Science+Business Media: New York, NY, USA, 2003. [Google Scholar] [CrossRef]
- Gallo, C. Artificial neural network: Tutorial. In Encyclopedia of Information Science and Technology, 3rd ed.; Khosrow-Pour, M., Ed.; IGI Global: Hershey, PA, USA, 2015; pp. 6369–6378. [Google Scholar]
- Wójcik, M. A Gas Network Model Based on Artificial Neural Networks (In Polish: Model Sieci Gazowniczej Oparty o Sztuczne Sieci Neuronowe). Master of Thesis, AGH University Science and Technology, Kraków, Poland, 2005. [Google Scholar]
- Maciejasz, M. Application of Neural Networks for the Analysis of Transmission Network Operation (In Polish: Zastosowanie Sieci Neuronowych do Analizy Pracy Sieci Przesyłowych). Master of Thesis, AGH University Science and Technology, Kraków, Poland, 2005. [Google Scholar]
- Kogut, K. Analysis of Natural Gas Transmission Network Modeling Capabilities (In Polish: Analiza Możliwości Modelowania Sieci Przesyłowej Gazu Ziemnego). Ph.D. Thesis, AGH University Science and Technology, Kraków, Poland, 2007. [Google Scholar]
- Stefanowski, J.; Lectures on Neural Networks (In Polish: Wykłady z Sieci Neuronowych). Machine Learning. Available online: http://www.cs.put.poznan.pl/jstefanowski/mlteaching.html (accessed on 3 June 2021).
- Lichota, J. Neural Control of Thermal Energy Objects (in Polish: Neuronowe Sterowanie Obiektami Termoenergetycznymi); Oficyna Wydawnicza Politechniki Wrocławskiej: Wrocław, Polonia, 2013. [Google Scholar]
- Dombayci, A.O. The prediction of heating energy consumption in a model house by using artificial neural networks in Denizli–Turkey. Adv. Eng. Softw. 2010, 41, 141–147. [Google Scholar] [CrossRef]
- Cieślik, T. Change in the structure of electricity generation in the USA, China, Japan and the EU, and a forecast of electricity consumption. AGH Drill. Oil Gas 2017, 34, 291–302. [Google Scholar] [CrossRef]
- Khotanzad, A.; Elragal, H.; Lu, T.L. Combination of artificial neural-network forecasters for prediction of natural gas consumption. IEEE Trans. Neural. Netw. 2000, 11, 464–473. [Google Scholar] [CrossRef]
- Panek, W.; Wlodek, T. Natural Gas Consumption Forecasting Based on the Variability of External Meteorological Factors Using Machine Learning Algorithms. Energies 2022, 15, 348. [Google Scholar] [CrossRef]
Model No. | Independent Parameter | |||||
---|---|---|---|---|---|---|
Atmospheric Data | Artificial Data | |||||
Temperature | Wind Speed | Humidity | Additional Data with Duration of Atmospheric Event | Days of the Week | Months | |
1 | × | |||||
2 | × | × | ||||
3 | × | × | × | |||
4 | × | × | × | × | ||
5 | × | × | × | |||
6 | × | × | ||||
7 | × | × | × | |||
8 | × | × | × | × | ||
9 | × | × | × | × | × | |
10 | × | × | × | × | ||
11 | × | × | × | |||
12 | × | × | × | × | ||
13 | × | × | × | × | × | |
14 | × | × | × | × | × | × |
15 | × | × | × | × | × |
Model No. | Independent Parameter | ||||||
---|---|---|---|---|---|---|---|
Atmospheric Data | Artificial Data | ||||||
Temperature | Wind Speed | Humidity | Additional Data with Duration of Atmospheric Event | Data from One Day Back | Days of the Week | Months | |
1 | × | × | |||||
2 | × | × | × | ||||
3 | × | × | × | × | |||
4 | × | × | × | × | × | ||
5 | × | × | × | × | |||
6 | × | × | × | ||||
7 | × | × | × | × | |||
8 | × | × | × | × | × | ||
9 | × | × | × | × | × | × | |
10 | × | × | × | × | × | ||
11 | × | × | × | × | |||
12 | × | × | × | × | × | ||
13 | × | × | × | × | × | × | |
14 | × | × | × | × | × | × | × |
15 | × | × | × | × | × | × |
Model No. | Independent Parameter | |||||||
---|---|---|---|---|---|---|---|---|
Atmospheric Data | Artificial Data | |||||||
Temperature | Wind Speed | Humidity | Additional Data with Duration of Atmospheric Event | Data from One Day Back | Data from Two Days Back | Days of the Week | Months | |
1 | × | × | × | |||||
2 | × | × | × | × | ||||
3 | × | × | × | × | × | |||
4 | × | × | × | × | × | × | ||
5 | × | × | × | × | × | |||
6 | × | × | × | × | ||||
7 | × | × | × | × | × | |||
8 | × | × | × | × | × | × | ||
9 | × | × | × | × | × | × | × | |
10 | × | × | × | × | × | × | ||
11 | × | × | × | × | × | |||
12 | × | × | × | × | × | × | ||
13 | × | × | × | × | × | × | × | |
14 | × | × | × | × | × | × | × | × |
15 | × | × | × | × | × | × | × |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cieślik, T.; Narloch, P.; Szurlej, A.; Kogut, K. Indirect Impact of the COVID-19 Pandemic on Natural Gas Consumption by Commercial Consumers in a Selected City in Poland. Energies 2022, 15, 1393. https://doi.org/10.3390/en15041393
Cieślik T, Narloch P, Szurlej A, Kogut K. Indirect Impact of the COVID-19 Pandemic on Natural Gas Consumption by Commercial Consumers in a Selected City in Poland. Energies. 2022; 15(4):1393. https://doi.org/10.3390/en15041393
Chicago/Turabian StyleCieślik, Tomasz, Piotr Narloch, Adam Szurlej, and Krzysztof Kogut. 2022. "Indirect Impact of the COVID-19 Pandemic on Natural Gas Consumption by Commercial Consumers in a Selected City in Poland" Energies 15, no. 4: 1393. https://doi.org/10.3390/en15041393
APA StyleCieślik, T., Narloch, P., Szurlej, A., & Kogut, K. (2022). Indirect Impact of the COVID-19 Pandemic on Natural Gas Consumption by Commercial Consumers in a Selected City in Poland. Energies, 15(4), 1393. https://doi.org/10.3390/en15041393